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9 LAPLACE

TRANSFORMS

PREVIEW

The Laplace transform is a linear integral transform used extensively to solve

differential equations and characterize linear systems. For the initial value

problem described by a linear ordinary differential equation with constant

coefficients, the Laplace transform converts the equation into an algebraic

equation in which any initial conditions are incorporated. The solution to

the original differential equation is then found by inverting the transform.

This chapter defines the Laplace transform and its properties and illustrates

the application of the transform to analyze various physical systems.

The chapter begins with the definition and properties of the Laplace

transform. The discussion presents examples of the transform as well as the

mathematical conditions for the existence of the transform. Next,

techniques for the computation of the inverse transform are explored.

Determining the inverse transform is a key step when differential equations

are solved by the Laplace transform technique. Then, MATLAB commands

are used to aid computation of Laplace Transforms and their inverses.

An important section of the chapter demonstrates the Laplace

transform method as applied to solution of ordinary differential equations.

A related application is the characterization of linear systems. We show
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that the transfer function and conditions of stability for such systems can be

studied using Laplace transforms.

Table 9.1 summarizes example applications of Laplace transform

techniques. This chapter emphasizes Laplace transform solution of

differential equations but briefly describes applications to linear systems.

TABLE 9.1 Applications of Laplace transforms

Area Application

Differential equations Laplace transforms are used to solve linear,
ordinary differential equations with constant
coefficients and given initial conditions.

Linear systems The Laplace transform can be used to characterize
the response of a linear system

Stability Stability of a linear system can be determined by
analyzing the transfer function given by the
Laplace transform.

For some purposes, the Laplace transform can be viewed as a

generalization of the Fourier transform. A section of this chapter explores

the relationship between the transforms. Another section presents a

summary of basic Laplace transform properties.

9.1 DEFINITION AND PROPERTIES OF THE LAPLACE

TRANSFORM

Let the function f(t) be a function defined for t ≥ 0. Such a function
is called causal and generally such functions that begin at t = 0 are
of interest in the analysis of physical systems. If f(t) satisfies suitable
conditions and is nonzero only for 0 ≤ t < ∞, the unilateral or one-

sided Laplace transform is an operation, denoted by the symbol L, which
associates a function F (s) with f(t) according to the rule

L[f(t)] = F (s) =

∫

∞

0

f(t)e−st dt. (9.1)

In this text, the function F (s) will be called simply the Laplace transform

of f(t). Functions that are nonzero on the whole real axis (−∞,∞) require
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the two-sided (bilateral) Laplace transform which has −∞ as the lower
limit of integration. This form has limited use and is not considered here.

The variable of integration t in Equation 9.1 is a dummy variable
and may be replaced by any other symbol. In order for the quantity st
to be dimensionless in the factor e−st, if t represents time, then s has
dimensions of frequency . In general, s is complex and is written

s = σ + iω

in which σ and ω are real.
If F (s) is the Laplace transform of the function f(t), we say that f(t)

is the inverse Laplace transform when the inverse transform exists. In
operator notation, the inverse transform will be denoted

f(t) = L−1[F (s)].

EXAMPLE 9.1 Laplace Transform Examples

a. Consider the piecewise continuous function f(t) defined as

f(t) =

{

0, t < 0,

Ae−at, t ≥ 0.

The Laplace transform is

F (s) = L[f(t)] =

∫

∞

0

Ae−ate−st dt

=

∫

∞

0

Ae−(s+a)t dt

= A
e−(s+a)t

−(s + a)

∣

∣

∣

∣

∞

0

=
A

s + a
(9.2)

provided that s + a > 0.1 Thus, we make the transform correspondence

Ae−at (t ≥ 0) ⇔ A

s + a
. (9.3)

b. The Laplace transform of the unit step function,

U(t) =

{

0, t < 0,
1, t ≥ 0.

is

F (s) = L[U(t)] =

∫

∞

0

1e−st dt = −1

s
e−st

∣

∣

∣

∞

0
=

1

s
(9.4)

for s > 0. Thus, we have the transform pair

U(t) ⇔ 1

s
. (9.5)

1Recall that this integral is an improper integral since the interval of integration is infinite. The integral

is evaluated as
∫

∞

0
f(t)e−st dt = limT→∞

∫ T

0
f(t)e−st dt.
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The unit step function is often called the Heaviside unit step in honor of
the engineer Oliver Heaviside who applied Laplace transform techniques
to engineering problems. The unit step function is often used as a test
signal input to physical systems to determine the response as discussed
in Chapter 6. Mathematically, a function that is zero for t < 0 can be
written

f(t)U(t).

Thus, Ae−atU(t) represents the function with the Laplace transform
given by Equation 9.2. The transform pair of Equation 9.3 can be writ-
ten

Ae−atU(t) ⇔ A

s + a
.

W H A T I F ? Consider the Fourier transforms of the functions in
Example 9.1. Show that the Fourier transform of f(t) = e−at is given by
F (iω) where F (s) is the Laplace transform of f(t).

What happens if you apply the Fourier transform integral to the
unit step function?

PROPERTIES OF

THE LAPLACE

TRANSFORM

Various important properties of the Laplace transform will be stated as
theorems. These theorems can be employed to simplify the derivation of
the Laplace transform for many functions.

THEOREM 9.1 Linearity

Assume that L[f(t)] = F (s) and L[g(t)] = G(s). Then

L[αf(t) + βg(t)] = αF (s) + βG(s).

THEOREM 9.2 s-shifting

If L[f(t)] = F (s),

L[eatf(t)] = F (s − a). (9.6)

This allows the computation of eatf(t) from the transform F (s) of
f(t) by shifting on the s-axis. It follows that the inverse transform is

L−1[F (s− a)] = eatf(t).
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THEOREM 9.3 Time Shifting

Shifting f(t) in time by t0 simply multiplies the Laplace transform by est0,
so that

L[f(t − t0)] = e−st0F (s). (9.7)

Each of these theorems is easily proven by substituting the definition
of the Laplace transform in the theorem. Their use greatly simplifies the
computation of many Laplace transform pairs.

THEOREM 9.4 Multiplication by t
If L[f(t)] = F (s),

L[tf(t)] = −dF (s)

ds
. (9.8)

Thus, multiplying f(t) by t results in (negative) differentiation of the
transform as shown by writing

t exp(−st) = −
d[exp(−st)]

ds

and reversing the order of differentiation and integration in the transform
so that

L[tf(t)] =

∫

∞

0

f(t)

[

−
d[exp(−st)]

ds

]

dt

= −
d

ds

∫

∞

0

f(t)e−st dt = −
dF (s)

ds
. (9.9)

EXAMPLE 9.2 Examples Using Laplace Transform Properties

a. Applying the linearity theorem, we find that

L[cos(ωt)] = L
[

eiωt + e−iωt

2

]

=
1

2

[

1

s − iω
+

1

s + iω

]

=
s

s2 + ω2
(9.10)

using the result of Example 9.1 for L[e−at] with a = ±iω.

b. If the Laplace transform of cos(ωt) is s/(s2 + ω2), then

L[e−at cos(ωt)] =
s + a

(s + a)2 + ω2

according to the s-shift theorem.
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c. The rectangular pulse of height A and width τ defined as

P (t) =

{

A, 0 ≤ t ≤ τ,

0, |t| > τ

can be written as A[U(t) − U(t − τ)] using the unit step function. The
Laplace transform is

L[P (t)] = AL[U(t) − U(t − τ)]

= A

[

1

s
− e−sτ

s

]

using Equation 9.5 of Example 9.1 and the time-shift theorem.

d. Since the transform of the unit step function U(t) is 1/s, the transform
of tU(t) is

L[tU(t)] = − d

ds

[

1

s

]

=
1

s2

EXISTENCE OF

THE LAPLACE

TRANSFORM

In the definition of the Laplace transform,

L[f(t)] = F (s) =

∫

∞

0

f(t)e−st dt,

the integral exists if f(t)e−st is absolutely integrable. We expect that if
f(t) is a function that does not grow too rapidly with t, the integral will
converge if the real part of s is sufficiently positive. Sufficient conditions
for f(t) to have a Laplace transform are as follows:

1. There are constants α, M and T such that

e−αt|f(t)| < M for all t > T.

2. f(t) is piecewise continuous on [0,∞).

Functions that satisfy the first condition are said to be of exponential

order . For example, even an increasing exponential such as e2tU(t) can
satisfy the inequality in Part 1 and thus have a Laplace transform for any

α greater than or equal to 2. Functions such as et
2

do not satisfy the
condition since

lim
t→∞

et
2

eαt
= lim

t→∞

et
2
−αt = ∞

no matter the value of α.
The second condition implies that even if f(t) is piecewise continuous

and thus has finite jump discontinuities, the function approaches finite
limits as t approaches either endpoint from the interior of the interval
where f(t) is continuous.

The Laplace transform of a function is unique. For practical purposes,
two functions that have the same transforms are identical.2

2The functions can only differ at isolated points. Two continuous functions with the same transform are
identical. (This statement is known as Lerch’s theorem).
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TABLE LOOKUP When computing a Laplace transform analytically, it is often useful to
make use of a known transform and the properties of the transform such
as in the transforms in Example 9.2. Problem ?? asks you to compute a
number of Laplace transforms that are shown in Table 9.2. In the table,
the functions f(t) are causal because they are multiplied by the unit step
function.

TABLE 9.2 Example Laplace transforms

f(t) F (s) f(t) F (s)

U(t)
1

s
cos(ωt)U(t)

s

s2 + ω2

tU(t)
1

s2
sin(ωt)U(t)

ω

s2 + ω2

tnU(t)
n!

sn+1
exp(−at) cos(ωt)U(t)

s + a

(s + a)2 + ω2

exp(−at)U(t)
1

s + a
exp(−at) sin(ωt)U(t)

ω

(s + a)2 + ω2

9.2 COMPUTATION OF INVERSE LAPLACE TRANSFORMS

The primary mathematical use of the Laplace transform is to solve differ-
ential equations. In particular, Laplace techniques solve the initial value
problem for ordinary differential equations with constant coefficients. The
basic idea is to convert the differential equation to an algebraic equation
which is solved in terms of the Laplace variable s. Then, the solution of the
original equation is found by determining the functions that correspond
to the Laplace solution. This involves inverting the Laplace solution.

The section concerning differential equations later in this chapter
elaborates on the technique of using Laplace transforms to find solutions.
First, it is necessary to understand how to determine the inverse function
corresponding to a Laplace transform. In other words, given a transform
F (s) as in Equation 9.1, we wish to find the function f(t) that is the
inverse Laplace transform.

When the Laplace transform F (s) of a function is tabulated as for the
functions in Table 9.2, the inverse transform f(t) is also given in the table.
In many cases, however, it is necessary to compute the inverse transform.
The general method is not presented in this chapter but we present the
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method of inverting transforms that are the ratio of polynomials in the
Laplace variable3

INVERSE

TRANSFORMS

FOR RATIONAL

FUNCTIONS

Before considering various applications of Laplace transforms, we will
explore methods to compute the inverse Laplace transform for a special
class of transforms. These transforms arise from the study of linear time-
invariant systems which are described by linear ordinary time-invariant
differential equations as explained in Chapter 5.

In this section, the Laplace transforms we consider are a function of
s that can be written as the ratio of polynomials in s, say

P (s)

Q(s)
=

b0 + b1s + . . . + bps
p

a0 + a1s + · · ·+ arsr
(9.11)

for which

1. All coefficients are real;

2. P (s) and Q(s) have no common factors;

3. Q(s) has higher degree than P (s) (r > p) so that P (s)/Q(s) is said
to be a proper rational fraction.

Elementary problems of interest will lead to a transform which is a proper
rational fraction. Problem ?? presents a Laplace transform for which this
is not the case.

It can be shown that any proper rational fraction in s can be written

F (s) =
P (s)

Q(s)
= F1(s) + · · ·+ Fn(s) (9.12)

where each Fi(s) is a rational function, called a partial fraction. The
denominator Q(s) can be factored into linear factors and quadratic factors
having the form

(s− a)m or (s2 + αs + β)n (9.13)

when a, α, and β are real.
When m = 1 in the first expression, the term is called a simple factor .

Otherwise, where m = 2, 3, . . ., the term is said to be a repeated factor . We
will call the second form an irreducible complex factor if the denominator
has no real roots.

The approach to expanding F (s) in terms of partial fractions in s is
an extension of the method of partial fraction expansion used in calculus
to integrate functions of the form P (x)/Q(x) where x is a real variable.
The extension to functions of the complex variable s is straightforward

3The general method requires integration in the complex plane for which the techniques of complex variable
theory are required.
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and we will accept the result without proof. For the functions of interest,
the expansion can be demonstrated by finding a common denominator in
the expansion and showing the expansion equals the original function.

In this section, we write P (s)/Q(s) as a sum of terms according to
the form of the denominators in Equation 9.13 as follows:

1. To a simple factor (s − a) assign the term

K

(s − a)
;

2. To factors (s − a)m with m > 1 assign the sum of terms

K1

s− a
+

K2

(s − a)2
+ · · ·+

Km

(s − a)m
;

3. To factors (s2 + αs + β)n with complex roots in the denominator
assign the sum of terms

A1s + B1

(s2 + αs + β)
+

A2s + B2

(s2 + αs + β)2
+ · · ·+

Ans + Bn

(s2 + αs + β)n
.

In the last case, we assume that the quadratic polynomial in the denom-
inator has no real roots. Thus, the roots will occur in complex conju-
gates pairs since the coefficients are real. Once P (s)/Q(s) is written in
terms of its partial fractions, it is necessary to solve for the constants,
K, K1, . . . , Km, A1, . . . , Bn.

The coefficients for the factors just listed, such as K, K1, . . . , Km, and
the As and Bs, can be found by various techniques. The main idea in
this section is to expand a proper rational fraction P (s)/Q(s) in terms of
the partial fractions by finding the coefficients and then use the results
listed in Table 9.2 and the properties of the Laplace transform to find the
inverse transform.4

Heaviside Expansion Technique Several theorems will be presented
that define a procedure to find the partial fraction expansion for a proper
rational function with simple factors or repeated factors. The technique
is called Heaviside expansion. Theorem 9.5 applies to the simple factors
in the partial fraction expansion of a Laplace transform.

THEOREM 9.5 Inverse transforms for simple factors
Suppose that P (s)/Q(s) is a proper rational fraction. The coefficient of a

simple factor in the partial fraction expansion such as

K

s − a

4The computation of the inverse Laplace transform for a general transform requires integration in the
complex plane. Such integration techniques are not considered in this chapter.
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is given by

K =
P (a)

Q′(a)
=

P (a)

q(a)

where Q′(a) is the derivative of Q(s) evaluated at s = a and q(a) is the product

of all the factors of Q(s) except s − a, so that q(s) = Q(s)/(s − a).

Considering the theorem, it is not necessary to compute the derivative
to find the coefficient of a simple factor when Q(s) is a polynomial in s. In
practice, the coefficient K is found analytically by multiplying the Laplace
transform by the factor s − a and evaluating the result at s = a so that

K = lim
s→a

[

(s− a)
P (s)

Q(s)

]

=
P (a)

q(a)
.

From the theorem and Table 9.2, the inverse transform corresponding
to the simple factor would be

L−1

[

K

s − a

]

= L−1

[

P (a)

q(a)(s − a)

]

=
P (a)

q(a)
eatU(t).

Thus, if the factors of the denominator in the partial fraction ex-
pansion are all simple, such as (s − si), the transform is easily inverted.
Suppose the Laplace transform can be written as

F (s) =
P (s)

Q(s)
=

P (s)

(s− s1)(s − s2) · · · (s − sN )

=
A1

(s− s1)
+

A2

(s − s2)
+ · · ·+

AN

(s − sN )
. (9.14)

The ith coefficient can be found by multiplying both sides by (s−si) and
evaluating them at s = si so that

Ai = lim
s→si

[(s − si)F (s)] = (s − si) F (s)|
s=si

.

Each term in Equation 9.14 will yield an inverse transform of the form
Ai exp(sit)U(t) so the inverse will be

f(t) = A1e
s1t + A2e

s2t + · · ·+ ANesN t t ≥ 0.

Table 9.3 summarizes the partial fraction expansion technique for
transforms with simple factors. In this case, there are N simple roots of
Q(s) as in Equation 9.14.

TABLE 9.3 Partial fraction expansions

F (s) = P (s)/Q(s) Expansion Constants

P (s)

N
∏

i=1

1

(s − si)

N
∑

i=1

Ai

(s − si)
Ai = (s − si) F (s)|s=si
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For a transform with only simple factors as shown in the table, the
inverse transform consists of a sum of exponential terms having the coef-
ficients A1, A2, . . . , AN .

EXAMPLE 9.3 Inverse Laplace Transform with Simple Roots
As an example of a Laplace transform with simple factors, let

F (s) =
s2 + 4s + 2

s(s + 1)(s + 2)
. (9.15)

Equating this expression to terms with simple factors

s2 + 4s + 2

s(s + 1)(s + 2)
=

A

s
+

B

s + 1
+

C

s + 2
, (9.16)

the right-hand side could be summed and the three coefficients may be equated
to those on the left. This would lead to three equations in three unknowns. In
this case, A = 1, B = 1, and C = −1, which you should verify.

Another technique is to solve for a single unknown by multiplying both
sides by the corresponding denominator and letting s be equal to the root of
that denominator. For example, to find A, multiply both sides of Equation 9.16
by s and take the limit as s → 0 so that

s2 + 4s + 2

(s + 1)(s + 2)

∣

∣

∣

∣

s→0

= lim
s→0

[

A +
sB

s + 1
+

sC

s + 2

]

.

Thus, A = 1. Multiplying Equation 9.16 by (s + 1) and letting s = −1 yields
B = 1. Finally, multiplying by (s + 2) and letting s = −2 yields C = −1.

The expansion of Equation 9.15 is thus

F (s) =
1

s
+

1

s + 1
− 1

s + 2
.

Using the linearity property of the Laplace transform and Table 9.2, the inverse
transform is

f(t) = 1 + e−t − e−2t t ≥ 0.

Repeated and Simple Factors Consider a Laplace transform with
simple factors and a repeated factor of multiplicity m and its partial
fraction expansion

P (s)

Q(s)
=

P (s)

(s − a)m(s − s1) · · · (s − sN )

=
A1

s − s1
+

A2

s − s2
+ · · ·+

AN

s − sN

+
K1

(s− a)
+

K2

(s− a)2
+ · · ·+

Km

(s− a)m
. (9.17)

Table 9.4 describes a procedure for calculating the coefficients in
Equation 9.17 that generalizes the procedure of Table 9.3. In the table,
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the denominator Q(s) contains N simple factors and a repeated factor
of multiplicity m. Note that if we treat a derivative of order zero as the
original function, all the terms in the expansion are of the same form.

TABLE 9.4 Partial fraction expansions with repeated roots

F (s) = P (s)/Q(s) Expansion Constants

P (s)

(s − a)m

N
∏

i=1

1

(s − si)

N
∑

i=1

Ai

(s − si)
+

m
∑

j=1

Kj

(s − a)j
Kj =

1

(m − j)!

d(m−j)

dsm−j
[(s − a)mF (s)]s=a

We list the steps to compute the coefficients of the repeated factors
using the formal method shown in the table:

1. Km =
1

0!
(s − a)mF (s) evaluated at s = a.

2. Km−1 =
1

1!

d

ds
[(s− a)mF (s)] evaluated at s = a.

3. In general, Kj , j < m is found by taking the (m−j)th derivative of
the function (s−a)mF (s) evaluated at s = a, for j = 1, 2, . . . , m−1
and dividing the result by (m− j)!.

EXAMPLE 9.4 Inverse Laplace Transform with Repeated Roots
Suppose a transform has repeated roots as in the example

Y (s) =
s + 3

s(s + 1)(s + 2)3
. (9.18)

The expansion will be

Y (s) =
A1

s
+

A2

s + 1
+

K3

(s + 2)3
+

K2

(s + 2)2
+

K1

(s + 2)
(9.19)

The coefficients for the simple roots are A1 = 3/8 and A2 = −2. Using the
prescription in Table 9.4, the coefficients for the repeated factors are

K3 =
1

0!
(s + 2)3Y (s)

∣

∣

s=−2
=

s + 3

s(s + 1)

∣

∣

∣

∣

s=−2

=
1

2

K2 =
1

1!

d

ds

[

s + 3

s(s + 1)

]

s=−2

=
(s2 + s) − (2s + 1)(s + 3)

(s2 + s)2

∣

∣

∣

∣

s=−2

=
5

4

K1 =
1

2!

d2

ds2

[

s + 3

s(s + 1)

]

s=−2

=
1

2

−(s2 + s)(2s + 6) + 2(2s + 1)(s2 + 6s + 3)

(s2 + s)3

∣

∣

∣

∣

s=−2

=
13

8
.
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Thus, the Laplace transform of Y (s) can be written

Y (s) =
3/8

s
+

−2

s + 1
+

1/2

(s + 2)3
+

5/4

(s + 2)2
+

13/8

(s + 2)
(9.20)

with the inverse transform

y(t) =
3

8
− 2e−t +

1

4
t2e−2t +

5

4
te−2t +

13

8
e−2t t ≥ 0. (9.21)

Problem ?? presents another method to determine the partial fraction
expansion when factors are repeated. Generally speaking, when Q(s) is a
polynomial, even with repeated factors, an algebraic method to find the
coefficients in the expansion is less work than using derivatives.

Factors with Complex Roots Consider the partial fraction term in
the form

As + B

(s2 + bs + c)

for which there are no real roots of the denominator polynomial. In the al-
gebra of the real numbers, such a polynomial would be called irreducible.
For the purposes of inverting a Laplace transform, the complex factors
could be used. An alternative procedure is to recognize that the denomi-
nator can be written as

s2 + bs + c = (s − s1)(s − s̄1)

where s1 = α + iβ and s̄1 = α − iβ is the complex conjugate, using the
notation of Chapter 2. It then follows that

(s − s1)(s − s̄1) = s2 − (s1 + s̄1)s + s1 s̄1

= s2 − 2αs + α2 + β2

= (s − α)2 + β2.

The Laplace transform can be rewritten as

F (s) =
As + B

(s − α)2 + β2
=

A(s − α) + αA + B

(s− α)2 + β2
(9.22)

and thus has the inverse transform

Aeαt cos βt + eαt

(

αA + B

β

)

sin βt (9.23)

according to Table 9.2.
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EXAMPLE 9.5 Inverse Laplace Transform with Complex Factors
Consider the Laplace transform

Y (s) =
s2 + s + 1

s(s2 + 2s + 2)
.

The two methods described will be used to evaluate the inverse transform.

a. Since the quadratic in the denominator has the roots −1 ± i,

Y (s) =
K

s
+

B

s + 1 + i
+

B̄

s + 1 − i
.

Since the numerator and denominator of Y (s) have real coefficients, and
since the denominators of the second and third fractions are conjugates,
the numerators B and B̄ are conjugates, as you can easily verify. Eval-
uating the simple factors as in previous examples leads to the result

K =
1

2
, B =

i

(−1 − i)(−2i)
=

1

4

√
2e−iπ/4, B̄ =

1

4

√
2eiπ/4.

Taking the inverse transform and combining the complex exponential
terms yields

y(t) =
1

2
+

1

2

√
2 cos

(

t +
π

4

)

.

This can also be written as y(t) = 0.5 + 0.5e−t(cos t − sin t).

b. The other approach is to write Y (s) as

Y (s) =
K

s
+

As + B

(s + 1)2 + 1

to allow evaluation of the inverse transform without using complex num-
bers. As before K = 1/2. To determine A and B, subtract the term in
1/s to yield

Y (s) − 1/2

s
=

As + B

(s + 1)2 + 1
=

s2 + s + 1

s(s2 + 2s + 2)
− 1/2

s

=
1

2

s2

s(s2 + 2s + 2)

Equating numerators to determine A and B yields

As + B =
1

2
s

so A = 1/2 and B = 0. Considering the form of Equation 9.22 with
α = −1 and β = 1, the transform becomes

Y (s) =
1

2s
+

1

2

(s + 1)

(s + 1)2 + 1
+

(−1)(1/2)

(s + 1)2 + 1

with the inverse y(t) = 0.5 + 0.5e−t(cos t − sin t), as before.
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9.3 MATLAB AND LAPLACE TRANSFORMS

MATLAB has commands that can be used to compute Laplace transforms
and their inverse. The Symbolic Math Toolbox and the Signal Processing

Toolbox have additional commands for this purpose.5 Table 9.5 lists com-
mands that are useful for Laplace analysis. The Symbolic Math Toolbox

also contains commands useful for the manipulation of polynomials. Use
the command help symbolic to see the list of commands.

TABLE 9.5 MATLAB commands for Laplace analysis

Command Result

Numerical operations:
conv Convolution and polynomial

multiplication
polyder Derivative of a polynomial
roots Roots of a polynomial
residue Partial fraction expansion
Symbolic Math Toolbox operations:
laplace Laplace transform
ilaplace Inverse Laplace transform
Special Symbolic functions:

Dirac Dirac delta function
Heaviside Unit step function

The first example in this section will present the numerical commands
that are useful to aid computation of inverse transforms. The residue

command is used to compute the factors in a partial fraction expansion. It
is so named because in complex variable theory the coefficients of the fac-
tors in the expansion are called residues. Then, we will use the symbolic
commands laplace and ilaplace to compute Laplace transforms and in-
verse transforms. The special symbolic functions Dirac and Heaviside will
be described later in the chapter.

MATLAB AND

INVERSE

TRANSFORMS

If a Laplace transform is a ratio of polynomials in s, MATLAB commands
can aid computation of the inverse. The numerical commands in Table 9.5
perform much of the algebra involved in inverting a rational transform.

5These toolboxes are included in the student version of MATLAB. They must be purchased separately
from the professional version of MATLAB.
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EXAMPLE 9.6 MATLAB Inverse Laplace Transform Examples
This example shows how to use MATLAB commands to aid in determining

the partial fraction expansion for the Laplace transform

F (s) =
s2 + 4s + 2

s(s + 1)(s + 2)

of Example 9.3. The factors of the polynomial in the denominator are multiplied
by the conv (convolution) command. It is used twice to find the coefficients of
the third-degree polynomial in the denominator.

The M-file shown then uses the residue command in the form

[K,S,p]=residue(P,Q)

to determine the roots of the denominator and numerator. The residue com-
mand determines the coefficients of the partial fraction expansion and the roots
of simple or repeated factors. The column vector K contains the coefficients
and S is the vector of corresponding roots. If the Laplace transform is a proper
rational fraction, the column vector p will be empty.

MATLAB Script

Example 9.6

% INVLAP.M Factors of Inverse Laplace transform of

% (s^2+4s+2)/s(s+1)(s+2) using conv and residue

%

% Compute the coefficients of denominator polynomial

Q1=[1 0]; % s

Q2=[1 1]; % s+1

QD1=conv(Q1,Q2);

Q3=[1 2]; % s+2

Q=conv(QD1,Q3) % Coefficients of denominator

% Compute partial fraction coefficients

P=[1 4 2] % Coefficients of numerator

[K,S,p]=residue(P,Q) % K coefficients, S roots of Q

%

% The edited results are as follows

Q = 1 3 2 0 % Coefficients of denominator

P = 1 4 2 % Coefficients of numerator

K = -1 % Coefficients of expansion

1

1

S = -2 % Roots

-1

0

p =[]

The results are edited from the diary file. From the results of residue, we can
write

s2 + 4s + 2

s(s + 1)(s + 2)
=

−1

s + 2
+

1

s + 1
+

1

s
.
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Other examples using MATLAB to find inverse transforms are given
in Problem ??. Also, MATLAB plotting commands are useful to represent
a Laplace transform graphically. This is helpful in analyzing systems
described by the transform as indicated in the section of this chapter
concerning the application of Laplace transforms to linear systems.

SYMBOLIC

LAPLACE

TRANSFORMS

If you have the Symbolic Math Toolbox there are MATLAB symbolic
commands to compute Laplace transforms and their inverses for functions
defined symbolically. The command laplace computes the transform and
ilaplace the inverse as shown in Example 9.7.

EXAMPLE 9.7 MATLAB Symbolic Laplace Transform Examples
This example presents the MATLAB solution of several previous examples.

The edited results taken from the diary file are shown.

MATLAB Script

Example 9.7

% LAPEX.M Test of MATLAB Laplace function

% NOTE: This M-file requires the Symbolic Math Toolbox

%

syms A a s t w

% (a) Exponential

f1=sym(’A*exp(-a*t)’), F1=laplace(f1,t,s)

% (b) Cosine

f2=sym(’cos(w*t)’), F2=laplace(f2,t,s)

pretty(F2) % Redisplay as P(s)/Q(s)

% (c) Inverse transform

F4=sym(’(s^2+4*s+2)/(s^3+3*s^2+2*s)’), f4=ilaplace(F4,s,t)

%

F5=sym(’(s+3)/(s*(s+1)*(s+2)^3)’), f5=ilaplace(F5,s,t)

%

% The results (edited) are as follows:

% (a)

f1 =A*exp(-a*t)

F1 =A/(s+a)

% (b)

f2 =cos(w*t)

F2 =s/(s^2+w^2)

% Pretty s

-------

2 2

s + w

% (c) Inverse

F4 =(s^2+4*s+2)/(s^3+3*s^2+2*s), f4 = 1-exp(-2*t)+exp(-t)

%

F5 =(s+3)/(s*(s+1)*(s+2)^3)

f5 =3/8-2*exp(-t)+1/4*t^2*exp(-2*t)+5/4*t*exp(-2*t)+13/8*exp(-2*t)
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9.4 APPLICATIONS TO DIFFERENTIAL EQUATIONS

The Laplace transform is often used to solve differential equations and
also to analyze linear time-invariant systems. In the cases we consider
in this section, use of the Laplace transform converts a differential equa-
tion to an algebraic equation in the complex variable s. Inverting the
transform leads to the solution of the differential equation in terms of the
original variables. A diagram of the procedure is given in Figure 9.1. This
technique is particularly useful when solving initial value problems.

FIGURE 9.1 Procedure for solving linear differential equations

LAPLACE

TRANSFORMS

OF DERIVATIVES

AND INTEGRALS

Before applying Laplace transforms to differential equations, we will com-
pute the transform for derivatives and integrals of functions. The trans-
form of the first and higher derivatives of a function will be derived. The
notation for the derivative of f(t) with respect to t will be ḟ in this section.

THEOREM 9.6 Laplace transform of the Derivative
Suppose that f(t) is continuous for all t ≥ 0 and that f(t) is of exponential

order, and its derivative ḟ(t) is piecewise continuous on every interval. Then,
for a function f(t) with Laplace transform F (s)

L
[

df

dt

]

= L
[

ḟ(t)
]

= sF (s) − f(0). (9.24)

To show this result for ḟ(t) continuous, apply the definition of the
Laplace transform and integrate by parts so that

L
[

ḟ(t)
]

=

∫

∞

0

e−stḟ(t) dt = e−stf(t)
∣

∣

∞

0
+ s

∫

∞

0

e−stf(t) dt.

The first term on the right reduces to −f(0) since it is zero at the up-
per limit and the second term is the Laplace transform multiplied by s.
Thus, the theorem holds for a function with a continuous derivative. If
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the derivative is piecewise continuous, the range of integration must be
separated into intervals so that ḟ(t) is continuous in each interval.

Applying Theorem 9.6 to the second derivative d2f/dt2 ≡ f̈(t) yields

L
[

f̈(t)
]

= sL[ḟ(t)] − ḟ(0)

= s{sL[f(t)] − f(0)} − ḟ(0)

= s2L[f(t)] − sf(0) − ḟ(0). (9.25)

In general, the nth derivative f(n)(t) has the Laplace transform

L[f(n)(t)] = snL[f(t)] − sn−1f(0) − sn−2ḟ(0) − · · · − f(n−1)(0) (9.26)

if f(t) and the derivatives of f(t) through order n− 1 are continuous and
f(n)(t) is piecewise continuous.

THEOREM 9.7 Laplace transform of the Integral
If f(t) is piecewise continuous and is of exponential order with Laplace

transform F (s),

L
{

∫ t

0

f(τ) dτ

}

=
1

s
L[f(t)] =

F (s)

s
. (9.27)

These theorems are useful in the solution of equations that contain
derivatives or integrals as well as to aid in inverting transforms containing
the factors s or 1/s.

We summarize the results as follows: for certain functions, differentia-
tion of functions corresponds to the multiplication of the transforms by s,
and integration of functions corresponds to the division of the transforms
by s.

EXAMPLE 9.8 Inverse Laplace Transforms by Differentiation or Integration

a. Let L[f(t)] = F (s). If f(0) = 0, then

L−1 {sF (s)} = ḟ(t)

by Theorem 9.6. Since

L−1
{

1

s2 + 1

}

= sin t and sin 0 = 0

then

L−1
{

s

s2 + 1

}

=
d

dt
(sin t) = cos t.

b. Using Theorem 9.7, and given that

L−1
{

2

s2 + 4

}

= sin2t

then

L−1

{

2

s(s2 + 4)

}

=

∫ t

0

sin 2τ dτ =
1

2
(1− cos 2t).
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LAPLACE

SOLUTION OF

DIFFERENTIAL

EQUATIONS

Consider the n-th order linear differential equation with constant coeffi-
cients

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a1

dy(t)

dt
+ a0y(t) = f(t). (9.28)

The Laplace transform approach to the solution is to first transform the
differential equation and the forcing function f(t). The transformed equa-
tion is then solved for Y (s) and the inverse transform is taken to yield
y(t). Example 9.9 shows the steps to solve a second-order differential
equation.

EXAMPLE 9.9 Laplace Solution of Differential Equation

Consider the second-order equation

mÿ(t) + βẏ(t) + ky(t) = f(t), (9.29)

for which it is desired to compute the Laplace transform solution. The equation
can be rewritten as

ÿ(t) + 2ζωnẏ(t) + ωn
2y(t) =

f(t)

m
(9.30)

using the substitutions ωn
2 = k/m and 2ζωn = β/m as was done in Chap-

ter 5. This form of the equation is written in terms of the natural frequency of
oscillation ωn that would be obtained if the damping factor β were zero. The
factor ζ is a measure of the damping and thus can range from zero in an ideal
undamped system to any positive value in a physical system.

Taking the Laplace transform of Equation 9.30 yields the subsidiary equa-
tion in terms of the variable s as

s2Y (s) − sy(0) − ẏ(0) + 2ζωn[sY (s) − y(0)] + ωn
2Y (s) =

F (s)

m
.

Solving for Y (s) gives the Laplace transform of y(t) as

Y (s) =
F (s)/m

s2 + 2ζωns + ω2
n

+
(s + 2ζωn)y(0) + ẏ(0)

s2 + 2ζωns + ω2
n

. (9.31)

As discussed in detail in Chapter 5, the solution to the differential equation
consists of the sum of the particular and complementary solution. The first term
in Equation 9.31 is the Laplace transform of the solution to the nonhomogeneous
differential equation and the second term is the transform of the complementary
solution.

As a specific example, let

ÿ(t) + 3ẏ(t) + 2y(t) = 2, y(0) = ẏ(0) = 1.

The Laplace solution of the equation is

Y (s) =
2/s + (s + 3)(1) + 1

s2 + 3s + 2
=

s2 + 4s + 2

s(s + 1)(s + 2)
.
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Taking the inverse transform y(t) as shown in Example 9.3 yields the solution
to the differential equation

y(t) = 1 + e−t − e−2t.

Discussion of Laplace Solution The Laplace transform solution of
a linear ordinary differential equation with constant coefficients has the
following properties:

1. Solves initial value problems uniquely.

2. Determines both the complementary and particular solution.

W H A T I F ? Considering the method of undetermined coefficients to
find particular solutions to differential equations as described in
Chapter 5, it might appear that there is no advantage to using the
Laplace transform method to determine these solutions. Do you agree?
Which method is more general?

Laplace Transfer Functions Consider the differential equation

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a1

dy(t)

dt
+ a0y(t) = f(t). (9.32)

but with zero initial conditions. In that case, taking the Laplace transform
of both sides yields an equation of the form

(sn + an−1s
n−1 + · · ·+ a1s + a0)Y (s) = F (s). (9.33)

If f(t) is considered the input function and y(t) the output or re-
sponse, then we define the rational fraction

H(s) =
1

sn + an−1sn−1 + · · ·+ a1s + a0

from Equation 9.33 as the transfer function for the system6. It is the
ratio of the transform of the output function and the transform of the
input function, so that

H(s) =
Y (s)

F (s)
=

L(Output)

L(Input)
. (9.34)

Alternatively, the transform of the output can be written as

Y (s) = F (s)H(s). (9.35)

6Chapter 8 presented the equivalent transfer function using Fourier transform techniques
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The transform of a linear differential equation with constant coeffi-
cients can be written in terms of the transfer function as F (s)H(s) with
F (s) being the transform of the input function, plus a term due to the
initial conditions. Assuming the initial conditions are zero, the transfer
function gives the Laplace model of the system described by the differen-
tial equation. From Equation 9.31 in Example 9.9, the transfer function
for a second-order system is

H(s) =
1/m

s2 + 2ζωns + ω2
n

.

The transfer function has the properties:

1. The transfer function is a mathematical model of the differential
equation describing a system.

2. The transfer function depends only on the system; it is independent
of the input function or any initial conditions.

3. It is possible to determine the transfer function of a system exper-
imentally from the input and output functions.

The transfer function will be considered again when we treat applications
to linear systems in this chapter.

SPECIAL

FUNCTIONS

This section presents the Laplace transform of step, impulse, and periodic
functions. Two important functions used to test or analyze linear systems
are the step function and the impulse function. Applying a step function
to a system might consist of applying a constant voltage to a circuit
or a constant force to a mechanical system. An impulsive voltage or
force is a relatively large excitation which acts over a short interval of
time. A system given a hammer blow experiences an impulsive force.
The impulse of force is defined in physics as the integral of the force
over its duration. This section presents the transforms of these special
functions but applications will be presented later.

It is useful to take the Laplace transform of a periodic function since
this is a common input function to systems. Chapter 8 introduced the
Fourier series representation of periodic signals. Many times the Laplace
transform approach to analyze a system is simpler.

Unit step The unit step function or Heaviside function was introduced
in Chapter 6 as an example of a forcing function for differential equations.
The Laplace transform of the shifted unit step function,

U(t − t0) =

{

0, t < t0,
1, t ≥ t0.

(9.36)

has the form

L[U(t− t0)] =
e−t0s

s
(9.37)
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based on Equation 9.5 and the time-shifting Theorem 9.3.
From this result, the pulse of height A from t = 0 to t = t0 can be

written as
P (t) = A(U(t) − U(t − t0)) (9.38)

with the Laplace transform

L[P (t)] = P (s) = A
1 − e−t0s

s
. (9.39)

This function is useful as an input function to a linear system. The pulse
with suitable characteristics can also be used to introduce the impulse
function.

Impulse function It is often convenient to define a narrow pulse input
to a system. One approach is to consider the pulse of Equation 9.38
defined with an area of unity as the pulse width is decreased to zero.
Thus, assume the pulse is defined as

Pε(t) =
1

ε
(U(t) − U(t − ε)) (9.40)

with Laplace transform

L[Pε(t)] =
1 − e−εs

εs
. (9.41)

Such a pulse is shown in Figure 9.2.

FIGURE 9.2 (a) Narrow pulse of unit area (b) impulse function

In the limit as ε → 0, the Laplace transform of Equation 9.38 becomes

lim
ε→0

1 − e−εs

εs
= lim

ε→0

[

1 −
εs

2!
+

ε2s2

3!
− · · ·

]

= 1.

In the limit, the pulse Pε(t) is denoted δ(t) and called the Impulse function

or the Dirac delta function.7 Considering the relationship between δ(t)
and the Laplace transform, we define the transform pair

δ(t) ⇐⇒ 1. (9.42)

7More formally, the impulse function is described as the Dirac delta function, after the famous physicist
Paul Dirac who used the function in advanced physics problems.
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Generalized Functions. Strictly speaking, δ(t) is not a function in the
ordinary sense. It is in a class of functions called generalized functions or
distributions. A definition is

δ(t) = 0 for t 6= 0,

∫

∞

−∞

δ(t) dt = 1 (9.43)

with the sifting property

∫

∞

−∞

δ(t)f(t) dt = f(0). (9.44)

An equivalence useful in the solution of differential equations is that

f(t)δ(t) = f(0)δ(t) (9.45)

provided that f(t) is continuous at t = 0.
The textbooks by Kaplan and Lighthill listed in the Annotated Bibli-

ography for this chapter treat generalized functions in some detail. We will
accept the properties of the delta function and its usefulness in Laplace
analysis.

Even though the function δ(t) has the strange property that it is zero
everywhere except at the point zero, it is useful in studying the properties
of linear systems. Also, since the unit step transform pair is

U(t) ⇐⇒
1

s
,

it is reasonable to associate the integral of the impulse function with the
unit step function.

Periodic Signal Consider a periodic function as shown in Figure 9.3.

t

2T 3T 4TT

. . .

FIGURE 9.3 Periodic function

The equation for the function can be written

f(t) = fT (t)U(t), f(t + T ) = f(t), (9.46)

where the period is a constant T > 0. This periodic function is defined
for all positive t and is zero for t < 0. Let f(t) be piecewise continuous
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so the Laplace transform of the function exists and we can compute the
transform as the sum of transforms over successive periods as follows:

L[f(t)] =

∫

∞

0

e−stf(t) dt

=

∫ T

0

e−stf(t) dt +

∫ 2T

T

e−stf(t) dt +

∫ 3T

2T

e−stf(t) dt + · · · .

Setting t = τ + (n − 1)T in the nth integral in the sum and recognizing
that

f(τ ) = f(τ + T ) = f(τ + 2T )

= · · · = f(τ + nT ) = · · ·

leads to the result

L[fT (t)U(t)] =

∫ T

0

e−sτf(τ ) dτ +

∫ T

0

e−s(τ+T )f(τ ) dτ

+

∫ T

0

e−s(τ+2T )f(τ ) dτ + · · · .

Taking out the factors that do not depend on τ from under the integral
sign and setting the dummy variable of integration τ to t yields

L[fT (t)U(t)] =
[

1 + e−sT + e−2sT + · · ·
]

∫ T

0

e−stf(t) dt. (9.47)

The series in brackets is a geometric series as described in Chapter 6
with the sum 1/(1 − e−sT ). Thus, the Laplace transform of a piecewise
continuous periodic function with period T is

1

1 − e−Ts

∫ T

0

e−stf(t) dt (9.48)

Laplace Transforms of Special Functions Table 9.6 summarizes
the transforms of the special functions treated in this section. These
functions are used in examples in following sections of this chapter and
in the problems.

TABLE 9.6 Laplace Transforms of Special Functions

Function f(t) F (s)

Unit Step U(t)
1

s

Impulse δ(t) 1

Periodic f(t) = f(t + T )
1

1− e−Ts

∫ T

0

e−stf(t) dt
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EXAMPLE 9.10 Differential Equations with Special Inputs
Consider the differential equation

ÿ(t) + 3ẏ(t) + 2y(t) = f(t), y(0) = ẏ(0) = 0. (9.49)

We wish to find the Laplace transform method solution of the equation for the
inputs:

a. f(t) = δ(t)

b. f(t) = U(t)

The Laplace transform of the differential equation with zero initial condi-
tion is

Y (s) =
F (s)

s2 + 3s + 2
. (9.50)

a. The response to the impulse input is determined by setting F (s) = 1 in
Equation 9.50 and inverting Y (s) = 1/(s2 + 3s + 2) to find

y(t) = e−t − e−2t t ≥ 0.

b. The response to a unit step is found by setting F (s) = 1/s in Equa-
tion 9.50 and inverting the transform so that

y(t) =
1

2
− e−t +

1

2
e−2t t ≥ 0.

Figure 9.4 shows the results for comparison.
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FIGURE 9.4 Impulse and step response of the second-order differential equation
of Example 9.10

W H A T I F ? Suppose you wish to determine the impulse response
from the step function response for the differential equation in
Example 9.10. What is the relationship between the two solutions?
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