
© IEEE – Trial Version 1.00 – May2001 2–1

CHAPTER 2
SOFTWARE REQUIREMENTS

Pete Sawyer and Gerald Kotonya
Computing Department,

Lancaster University
United Kingdom

{sawyer} {gerald}@comp.lancs.ac.uk

Table of Contents

1 Introduction ...1
2 Definition of the Software Requirements Knowledge

Area ...2
3 Breakdown of Topics for Software Requirements7
4 Breakdown Rationale ..15
5 Matrix of Topics vs. Reference Material for Software

Requirements...16
6 Recommended References for Software

Requirements...17
Appendix A – List of Further Readings.............................19
Appendix B – References Used to Write and Justify the

Description ..23

1 INTRODUCTION

This document proposes a breakdown of the SWEBOK
Software Requirements Knowledge Area. The knowledge
area is concerned with the acquisition, analysis,
specification, validation and management of software
requirements. It is widely acknowledged within the
software industry that software projects are critically
vulnerable when these activities are performed poorly. This
has led to the widespread use of the term ‘requirements
engineering’ to denote the systematic handling of
requirements. This is the term we use in the rest of this
document. Software requirements are one of the products of
the requirements engineering process.
Software requirements express the needs and constraints
that are placed upon a software product that contribute to
the satisfaction of some real world application [Kot00]. The
application may be, for example, to solve some business
problem or exploit a business opportunity offered by a new
market. It is important to understand that, except where the
problem is motivated by technology, the problem is an
artifact of the problem domain and is generally technology-
neutral. The software product alone may satisfy this need
(for example, if it is a desktop application), or it may be a
component (for example, a speech compression module

used in a mobile phone) of a software-intensive system for
which satisfaction of the need is an emergent property. In
fundamental terms, the way in which the requirements are
handled for stand-alone products and components of
software-intensive systems is the same.
One of the main objectives of requirements engineering is
to discover how to partition the system; to identify which
requirements should be allocated to which components. In
some systems, all the components will be implemented in
software. Others will comprise a mixture of technologies.
Almost all will have human users and sometimes it makes
sense to consider all components of the system to which
requirements should be allocated (for example, to save
costs or to exploit human adaptability and resourcefulness).
Because of this requirements engineering is fundamentally
an activity of systems engineering rather than one that is
specific to software engineering. In this respect, the term
‘software requirements engineering’ is misleading because
it implies a narrow scope concerned only with the handling
of requirements that have already been acquired and
allocated to software components. Since it is increasingly
common for practicing software engineers to participate in
the elicitation and allocation of requirements, it is essential
that the scope of the knowledge area extends to the whole
of the requirements engineering process.
One of the fundamental tenets of good software
engineering is that there is good communication between
system users and system developers. It is the requirements
engineer who is the conduit for this communication. They
must mediate between the domain of the system user (and
other stakeholders) and the technical world of the software
engineer. This requires that they possess technical skills, an
ability to acquire an understanding of the application
domain, and the inter-personal skills to help build
consensus between heterogeneous groups of stakeholders
[Gog93].
We have tried to avoid domain dependency in the
document. The knowledge area document identifies
requirements engineering practice and identifies when it is
and isn’t appropriate. We recognise that desktop software
products are different from nuclear reactor control systems
and the document should be read in this light. Where we
refer to particular tools, methods, notations, SPI models,

2–2 © IEEE – Trial Version 1.00 – May 2001

etc. it does not imply our endorsement of them. They are
merely used as examples.

2 DEFINITION OF THE SOFTWARE REQUIREMENTS
KNOWLEDGE AREA

This section provides an overview of requirements
engineering in which:
♦ the notion of a ‘requirement’ is defined;
♦ motivations for systems are identified and their

relationship to requirements is discussed;
♦ a generic process for analysis of requirements is

described, followed by a discussion of why, in
practice, organisations often deviate from this process;
and

♦ the deliverables of the requirements engineering
process and the need to manage requirements are
described.

This overview is intended to provide a perspective or
‘viewpoint’ on the knowledge area that complements the
one in Section 3 – Breakdown of topics for the Software
Requirements Knowledge Area.

2.1 What is a requirement?

At its most basic, a requirement is a property that must be
exhibited in order to solve some problem of the real world
[Pfl98, Kot00, Som01, Tha97]. This document refers to
requirements on ‘systems’ rather than ‘solutions’ because it
is concerned with problems that have software-based
solutions. Hence, a requirement is a property that must be
exhibited by a system developed or adapted to solve a
particular problem. The problem may be to automate part
of a task of someone who will use the system, to support
the business processes of the organisation that has
commissioned the system, to correct shortcomings of an
existing system, to control a device and many more. The
functioning of users, business processes and devices are
typically complex. By extension, therefore, the
requirements on a system are typically a complex
combination of requirements from different people at
different levels of an organisation and from the
environment in which the system must operate.
Requirements vary in intent and in the kinds of properties
they represent. A distinction can be drawn between product
parameters and process parameters. Product parameters
are requirements on the system to be developed and can be
further classified as [Kot00, Som97]:
♦ Functional requirements on the system such as

formatting some text or modulating a signal.
Functional requirements are sometimes known as
capabilities.

♦ Non-functional requirements that act to constrain the
solution. Non-functional requirements are sometimes

known as constraints or quality requirements. They
can be further classified according to whether they are
(for example) performance requirements,
maintainability requirements, safety requirements,
reliability requirements, electro-magnetic
compatibility requirements and many other types of
requirements.

A process parameter is essentially a constraint on the
development of the system (e.g. ‘the software shall be
written in Ada’). These are sometimes known as process
requirements.
Requirements must be stated clearly and unambiguously
and, where appropriate, quantitatively. It is important to
avoid vague and unverifiable requirements that depend for
their interpretation on subjective judgement (‘the system
shall be reliable’, ‘the system shall be user-friendly’). This
is particularly important for non-functional requirements.
Two examples of quantified requirements are: that a system
must increase a call-center’s throughput by 20%; and a
requirement that a system shall have a probability of
generating a fatal error during any hour of operation of less
than 1 * 10-8. The throughput requirement is at a very high
level and will need to be used to derive a number of
detailed requirements. The reliability requirement will
tightly constrain the system architecture [Dav93, Som01].
Some requirements are emergent properties. That is,
requirements that can’t be addressed by a single
component, but which depend for their satisfaction on how
all the system components inter-operate. The throughput
requirement for a call-centre given above would, for
example, depend upon how the telephone system,
information system and the operators all interacted under
actual operating conditions. Emergent properties are
crucially dependent upon the system architecture.
An essential property of all requirements is that they should
be verifiable. It may be difficult or costly to verify certain
requirements. For example, verification of the throughput
requirement on the call-center may necessitate the
development of simulation software. The requirements
engineering and V&V personnel must ensure that the
requirements can be verified within the available resource
constraints.
Some requirements generate implicit process requirements.
The choice of verification method is one example. Another
might be the use of particularly rigorous analysis
techniques (such as formal specification methods) to reduce
systemic errors that can lead to inadequate reliability.
Process requirements may also be imposed directly by the
development organization, their customer, or a third party
such as a safety regulator.
Requirements have other attributes in addition to the
behavioural property that they express. Common examples
include a priority rating to enable trade-offs in the face of
finite resources and a status value to enable project progress
to me monitored. Every requirement must be uniquely

© IEEE – Trial Version 1.00 – May2001 2–3

identified so that they can be subjected to configuration
control and managed over the entire system life cycle.

2.2 System requirements and process drivers

The literature on requirements engineering sometimes calls
system requirements “user requirements”. We prefer a
restricted definition of the term user requirements in which
they denote the requirements of the people who will be the
system customers or end-users. System requirements, by
contrast, are inclusive of user requirements, requirements of
other stakeholders (such as regulatory authorities) and
requirements that do not have an identifiable human source.
Typical examples of system stakeholders include (but are
not restricted to):
♦ Users – the people who will operate the system. Users

are often a heterogeneous group comprising people
with different roles and requirements.

♦ Customers – the people who have commissioned the
system or who represent the system’s target market.

♦ Market analysts – a mass-market product will not
have a commissioning customer so marketing people
are often needed to establish what the market needs
and to act as proxy customers.

♦ Regulators – many application domains such as
banking and public transport are regulated. Systems in
these domains must comply with the requirements of
the regulatory authorities.

♦ System developers – these have a legitimate interest in
profiting from developing the system by, for example,
reusing components in different products. If, in this
scenario, a customer of a particular product has
specific requirements that compromise the potential
for component reuse, the developer must carefully
weigh their own stake against those of the customer.
For mass-market products, the developer is often the
primary stakeholder because they wish to maintain the
product in as large a market as possible for as long as
possible.

In addition to these human sources of requirements,
important system requirements often derive from other
devices or systems in the environment, which require some
services of the system or act to constrain the system, or
even from fundamental characteristics of the application
domain [Lou95, Tha97]. For example, a business system
may be required to inter-operate with a legacy database and
many military systems have to be tolerant of high levels of
electro-magnetic radiation. We talk of ‘eliciting’
requirements but in practice the requirements engineer has
to systematically extract and inventory the requirements
from a combination of human stakeholders, the system’s
environment, feasibility studies, market analyses, business
plans, analyses of competing products and domain
knowledge [Som97].

The elicitation and analysis of system requirements needs
to be driven by the need to achieve the overall project aims.
To provide this focus, a business case should be made
which clearly defines the benefits that the investment must
deliver. These should act as a ‘reality check’ that can be
applied to the system requirements to ensure that project
focus does not drift. Where there is any doubt about the
technical, operational or financial viability of the project, a
feasibility analysis should be conducted. This is designed to
identify project risks and assess the extent to which they
threaten the system’s viability. Risks should be documented
in the project management plan.
Typical risks include the ability to satisfy non-functional
requirements such as performance, or the availability of
off-the-shelf components. In some specialised domains, it
may be necessary to design simulations to generate data to
enable an assessment of the project risks to be made. In
domains such as public transport where safety is an issue, a
hazard analysis should be conducted from which safety
requirements can be identified.

2.3 Overview of requirements analysis

Once the aims of the project have been established, the
work of eliciting, analysing and validating the system
requirements can commence. This is crucial to gaining a
clear understanding of the problem for which the system is
to provide a solution and its likely cost [Tha97].
The requirements engineer must strive for completeness by
ensuring that all the relevant sources of requirements are
identified and consulted. It will usually be infeasible to
consult everyone. There may be many of users of a large
system, for example. However, representative examples of
each class of system stakeholder should be identified and
consulted. Although individual stakeholders will be
authoritative about aspects of the system that represent their
interests or expertise, the requirements engineer has the
responsibility to create the ‘big picture’ to permit for the
assurance of completeness with all individual stakeholders.
Elicitation of the stakeholders’ requirements is rarely easy
and the requirements engineer has to learn a range of
techniques for helping people articulate how they do their
jobs and what would help them do their jobs better. There
are many social and political issues that can affect
stakeholders’ requirements and their ability or willingness
to articulate them and it is necessary to be sensitive to them
[Gog93]. In many cases, it is necessary to provide a
contextual framework that serves to focus the consultation;
to help the stakeholder identify what is possible and help
the requirements engineer verify their understanding.
Exposing the stakeholders to prototypes may help, and
these don’t necessarily have to be high fidelity. A series of
rough sketches on a flip chart can sometimes serve the
same purpose as a software prototype, whilst avoiding the
pitfalls of distraction caused by cosmetic features of the
software. Walking the stakeholder through a small number

2–4 © IEEE – Trial Version 1.00 – May 2001

of scenarios representing sequences of events in the
application domain can also help the stakeholder and
requirements engineer to explore the key factors affecting
the requirements.
Once identified, the system requirements should be
validated by the stakeholders and trade-offs negotiated
before further resources are committed to the project. To
enable validation, the system requirements are normally
kept at a high level and expressed in terms of the
application domain rather than in technical terms. Hence
the system requirements for an Internet book store will be
expressed in terms of books, authors, warehousing and
credit card transactions, not in terms of the communication
protocols, or key distribution algorithms that may form part
of the solution. Too much technical detail at this stage
obscures the essential characteristics of the system viewed
from the perspective of its customer and users.
Some system requirements may not be satisfiable. Some
may be technically infeasible, others may be too costly to
implement and some will be mutually incompatible. The
requirements engineer must analyse the requirements to
understand their implications and how they interact. They
must be prioritised and their costs estimated. The goal is to
identify the scope of the system and a ‘baseline’ set of
system requirements that is feasible and acceptable. This
may necessitate helping stakeholders whose requirements
conflict (with each other or with cost or other constraints)
to negotiate acceptable trade-offs.
To help the analysis of the system requirements, conceptual
models of the system are constructed. These aid
understanding of the logical partitioning of the system, its
context in the operational environment and the data and
control communications between the logical entities. In
general, a mix of static (e.g. an object model) and dynamic
(e.g. event traces and state diagrams) should be developed
to explore different aspects of the system and it’s problem
domain. However, the choice of which aspects to model is
conditioned by the nature of the problem domain.
The system requirements must be analysed in the context of
all the applicable constraints. Constraints come from many
sources, such as the business environment, the customer’s
organizational structure and the system’s operational
environment. They include budget, schedule, technical
(non-functional requirements), regulatory and other
constraints. Hence, the requirements engineer’s job is not
restricted to eliciting stakeholders’ requirements, but
includes making assessments of their feasibility.
Requirements that are clearly infeasible should be rejected
and the reason for rejection recorded. Requirements that are
merely suspected of being infeasible are more difficult. A
feasibility study may be justified if, for example, a doubtful
requirement is strongly advocated by stakeholders [Kot00,
Lou95].
Project resources should be focused on the most important
priority requirements. In principle, the requirements should
be both necessary and sufficient – there should be nothing

left out or anything that doesn’t need to be included.
Achieving this is, of course, difficult. The absence of
important requirements information can only be detected by
rigorous analysis. Similarly, it may take considerable effort
to reach consensus on requirement priorities because one
stakeholder’s essential requirement may have only
cosmetic value to another. In practice, the existence of
sufficient resources will allow some non-essential
requirements to be satisfied, while insufficient resources
may force even strongly advocated requirements to be
excluded. Regardless of how the baseline is identified,
requirements and V&V personnel must derive acceptance
tests that will assure compliance with the requirements
before delivery or release of the product.
Eventually, a complete and coherent set of system
requirements will emerge as the result of the analysis
process. At this point, the principal areas of functionality
should be clear. Subsystems or components are defined to
handle each principle area of functionality. The system
requirements are then allocated or distributed to
subsystems/components.
This activity of partitioning and allocation is part of
architectural design. Architectural design is a skill that is
driven by many factors such as the recognition of reusable
architectural ‘patterns’ or the existence of off-the shelf
components. Derivation of the system architecture
represents a major milestone in the project and it is crucial
to get the architecture right. In particular, the interaction of
the system components crucially affects the extent to which
the system will exhibit the desired emergent properties. At
this point, the system requirements and system architecture
are documented, reviewed and ‘signed off’ as the baseline
for subsequent development, project planning and cost
estimation.
Except in small-scale systems, it is generally infeasible for
software developers to begin detailed design of system
components from the system requirements document. The
requirements allocated to components that are complex
systems in themselves will need to undergo further cycles
of analysis in order to add more detail, and to interpret the
domain-oriented system requirements for developers who
may lack sufficient knowledge of the application domain to
interpret them correctly. Hence, a number of detailed
technical requirements are typically derived from each
high-level system requirement. It is crucial to record and
maintain this derivation to enable requirements to be traced.
Tracing is crucial to requirements management because it
allows, for example, the impact of any subsequent changes
to the requirements to be assessed.
Refinement of the requirements and system architecture is
where requirements engineering merges with software
design. There is no clear-cut boundary but it is rare for
requirements analysis to continue beyond 2 or 3 levels of
architectural decomposition before responsibility is handed
over to the design teams for the individual components.

© IEEE – Trial Version 1.00 – May2001 2–5

2.4 Requirements engineering in practice

The overview of requirements analysis given in section 2.3
described the process of eliciting and analysing
requirements and deriving the system architecture as if it
was a linear sequence of activities. This is an idealised view
of the process. This section examines some reasons why a
linear process is seldom practicable in the context of real
software projects.
There is a general pressure in the software industry for
ever-shorter development cycles, and this is particularly
pronounced in highly competitive market-driven sectors.
Moreover, most projects are constrained in some way by
their environment and many are upgrades to or revisions of
existing systems where the system architecture is a given.
In practice, therefore, it is almost always impractical to
implement requirements engineering as a linear,
deterministic process where system requirements are
elicited from the stakeholders, baselined, allocated and
handed over to the software development team. It is
certainly a myth that the requirements for large systems are
ever perfectly understood or perfectly specified [Som97].
Instead, requirements typically iterate toward a level of
quality and detail that is sufficient to permit design and
procurement decisions to me made. In some projects, this
may result in the requirements being baselined before all
their properties are fully understood. This risks expensive
rework if problems emerge late in the development process.
However, requirements engineers are necessarily
constrained by project management plans and must
therefore take steps to ensure that the requirements’ quality
is as high as possible given the available resources. They
should, for example, make explicit any assumptions that
underpin the requirements, and any known problems.
Even where requirements engineering is well resourced, the
level of analysis will seldom be uniformly applied. For
example, early in the analysis process experienced
engineers are often able to identify where existing or off-
the-shelf solutions can be adapted to the implementation of
system components. The requirements allocated to these
need not be elaborated further, while others, for which a
solution is less obvious, may need to be subjected to further
analysis. Critical requirements, such as those concerned
with public safety, must always be analyzed rigorously.
In almost all cases requirements understanding continues to
evolve as design and development proceeds. This often
leads to the revision of requirements late in the life cycle.
Perhaps the most crucial point of understanding about
requirements engineering is that a significant proportion of
the requirements will change. This is sometimes due to
errors in the analysis, but it is frequently an inevitable
consequence of change in the ‘environment’: the
customer’s operating or business environment; or in the
market into which the system must sell, for example.
Whatever the cause, it is important to recognise the
inevitability of change and adopt measures to mitigate the

effects of change. Change has to be managed by ensuring
that proposed changes go through a defined review and
approval process, and by applying careful requirements
tracing, impact analysis and version management. Hence,
the requirements engineering process is not merely a front-
end task to software development, but spans the whole
development life cycle. In a typical project the activities of
the requirements engineer evolve over time from elicitation
to change management.

2.5 Products and deliverables

Good requirements engineering requires that the products
of the process - the deliverables - are defined. The most
fundamental of these in requirements engineering is the
requirements document. This often comprises two separate
documents (an architecture description may also be
developed at this stage - see the knowledge area description
for software design):
A document that specifies the system requirements. This is
sometimes known as the requirements definition document,
user requirements document or, as defined by IEEE std
1362-1998, the concept of operations (ConOps) document.
This document serves to define the high-level system
requirements from the stakeholders’ perspective(s). It also
serves as a vehicle for validating the system requirements.
Its readership includes representatives of the system
stakeholders. It must therefore be couched in terms of the
customer’s domain. In addition to a list of the system
requirements, the requirements definition needs to include
background information such as statements of the overall
objectives for the system, a description of its target
environment and a statement of the constraints and non-
functional requirements on the system. It may include
conceptual models designed to illustrate the system context,
usage scenarios, the principal domain entities, and data,
information and work flows [Tha97].
A document that specifies the software requirements. This
is sometimes known as the software requirements
specification (SRS). The purpose and readership of the SRS
is somewhat different than the requirements definition
document. In crude terms, the SRS documents the detailed
requirements derived from the system requirements, and
which have been allocated to software. The non-functional
requirements in the requirements definition should have
been elaborated and quantified. The principal readership of
the SRS can be assumed to have some knowledge of
software engineering concepts. This can be reflected in the
language and notations used to describe the requirements,
and in the detail of models used to illustrate the system. For
custom software, the SRS may form the basis of a contract
between the developer and customer [Kot00, Tha97].
Requirements documents must be structured so as to
minimize the effort needed to read and locate information
within them. Failure to achieve this reduces the likelihood
that the system will conform to the requirements. It also

2–6 © IEEE – Trial Version 1.00 – May 2001

hinders the ability to make controlled changes to the
document as the system and its requirements evolve over
time. Standards such as IEEE std 1362-1998 and IEEE std
830-1998 provide templates for requirements documents.
Such standards are intended to be generic and need to be
tailored to the context in which they are used.
Care must also be taken to describe requirements as
precisely as possible. Requirements are usually written in
natural language but in the SRS this may be supplemented
by formal or semi-formal descriptions. Selection of
appropriate notations permits particular requirements and
aspects of the system architecture to be described more
precisely and concisely than natural language. The general
rule is that notations should be used that allow the
requirements to be described as precisely as possible. This
is particularly crucial for safety-critical and certain other
types of dependable systems. However, the choice of
notation is often constrained by the training, skills and
preferences of the document’s authors and readers.
Natural language has many serious shortcomings as a
medium for description. Among the most serious are that it
is ambiguous and hard to describe complex concepts
precisely. Formal notations such as Z or CSP avoid the
ambiguity problem because their syntax and semantics are
formally defined. However, such notations are not
expressive enough to adequately describe every system
aspect. Natural language, by contrast, is extraordinarily rich
and able to describe, however imperfectly, almost any
concept or system property. A natural language is also
likely to be the document author and readerships’ only
lingua franca. Because natural language is unavoidable,
requirements engineers must be trained to use language
simply, concisely and to avoid common causes of mistaken
interpretation. These include:
♦ long sentences with complex sub-clauses;
♦ the use of terms with more than one plausible

interpretation (ambiguity);
♦ presenting several requirements as a single

requirement;
♦ inconsistency in the use of terms such as the use of

synonyms.
To counteract these problems, requirements descriptions
often adopt a stylized form and use a restricted subset of a
natural language. It is good practice, for example, to
standardize on a small set of modal verbs to indicate
relative priorities. For example, ‘shall’ is commonly used to
indicate that a requirement is mandatory, and ‘should’ to
indicate a requirement that is merely desirable. Hence, the
requirement ‘The emergency breaks shall be applied to
bring the train to a stop if the nose of the train passes a
signal at DANGER’ is mandatory.
The requirements documents(s) must be subject to
validation and verification procedures. The requirements
must be validated to ensure that the requirements engineer

has understood the requirements. It is also important to
verify that a requirements document conforms to company
standards, and is understandable, consistent and complete.
Formal notations offer the important advantage that they
permit the last two properties to be proven (in a restricted
sense, at least). The document(s) should be subjected to
review by different stakeholders including representatives
of the customer and developer. Crucially, requirements
documents must be placed under the same configuration
management regime as the other deliverables of the
development process [Byr94, Ros98].
The requirements document(s) are only the most visible
manifestation of the requirements. They exclude
information that is not required by the document
readership. However this other information is needed in
order to manage them. In particular, it is essential that
requirements are traced.
One method for tracing requirements is through the
construction of a directed acyclic graph (DAG) that records
the derivation of requirements and provides audit trails of
requirements. As a minimum, requirements need to be
traceable backwards to their source (e.g. from a software
requirement back to the system requirement(s) from which
it was elaborated), and forwards to the design or
implementation artifacts that implement them (e.g. from a
software requirement to the design document for a
component that implements it). Tracing allows the
requirements to be managed. In particular, it allows an
impact analysis to be performed for a proposed change to
one of the requirements.
Modern requirements management tools help maintain
tracing information. They typically comprise a database of
requirements and a graphical user interface:
♦ to store the requirement descriptions and attributes;
♦ to allow the trace DAGs to be generated

automatically;
♦ to allow the propagation of requirements changes to

be depicted graphically;
♦ to generate reports on the status of requirements (such

as whether they have been analysed, approved,
implemented, etc.);

♦ to generate requirements documents that conform to
selected standards;

♦ and to apply configuration management to the
requirements.

It should be noted that not every organisation has a culture
of documenting and managing requirements. It is common
for dynamic start-up companies which are driven by a
strong ‘product vision’ and limited resources to view
requirements documentation as an unnecessary overhead.
Inevitably, however, as these companies expand, as their
customer base grows and as their product starts to evolve,
they discover that they need to recover the requirements
that motivated product features in order to assess the impact

© IEEE – Trial Version 1.00 – May2001 2–7

of proposed changes. Hence, requirements documentation
and management are fundamental to the any requirements
engineering process.

3 BREAKDOWN OF TOPICS FOR SOFTWARE
REQUIREMENTS

The knowledge area breakdown we have chosen is broadly
compatible with the sections of ISO/IEC 12207-1995 that
refer to requirements engineering activities. This standard
views the software process at 3 different levels as primary,
supporting and organizational life cycle processes. In order
to keep the breakdown simple, we conflate this structure
into a single life cycle process for requirements
engineering. The separate topics that we identify include
primary life cycle process activities such as requirements
elicitation and requirements analysis, along with
requirements engineering-specific descriptions of
management and, to a lesser degree, organizational
processes. Hence, we identify requirements validation and
requirements management as separate topics.
We are aware that a risk of this breakdown is that a
waterfall-like process may be inferred. To guard against

this, the first topic, the requirements engineering process, is
designed to provide a high-level overview of requirements
engineering by setting out the resources and constraints that
requirements engineering operates under and which act to
configure the requirements engineering process.
There are, of course, many other ways to structure the
breakdown. For example, instead of a process-based
structure, we could have used a product-based structure
(system requirements, software requirements, prototypes,
use-cases, etc.). We have chosen the process-based
breakdown to reflect the fact that requirements engineering,
if it is to be successful, must be considered as a process
with complex, tightly coupled activities (both sequential
and concurrent) rather than as a discrete, one-off activity at
the outset of a software development project. The
breakdown is compatible with that used by many of the
works in the recommended reading list (Appendices C and
D). See section 4. for an itemised rationale for the
breakdown.
The breakdown comprises 6 topics as shown in Table 1
[Kot00, Lou95, Tha97].

Model
Validation

Software Requirements

Requirements
Engineering

Process

Requirements
Elicitation

Requirements
Analysis

Requirements
Validation

Requirements
Management

Process Models

Process Actors

Process Support
and Management

Process Quality
and

Improvement

Requirements
Sources

Elicitation
Techniques

Requirements
Classification

Conduct of
Requirements

Reviews

Prototyping

Acceptance tests

Change
Management

Requirements
Attributes

Requirements
Tracing

Conceptual
Modeling

Requirements
Negotiation

Architectural
Design and

Requirements
Allocation

Requirement
Specification

Requirements
Definition
Document
Software

Requirements
Specification

(SRS)

Document
Quality

Document
Structure and

Standards

Table 1 Knowledge area breakdown

2–8 © IEEE – Trial Version 1.00 – May 2001

Figure 1 shows conceptually, how these activities comprise
an iterative requirements engineering process. The different
activities in requirements engineering are repeated until an
acceptable requirements specification document is
produced or until external factors such as schedule pressure
or lack of resources cause the requirements engineering

process to terminate. It is important to note that terminating
the requirements engineering process prematurely can have
a detrimental effect on the system design. After a final
requirements document has been produced, any further
changes become part of the requirements management
process.

Figure 1 A spiral model of the requirements engineering process

3.1 The requirements engineering process

This section introduces the requirements engineering
process, orienting the remaining 5 topics and showing how
requirements engineering dovetails with the overall
software engineering process.

3.1.1 Process models.

The objective of this subtopic is to provide an
understanding that the requirements engineering process:
♦ is not a discrete front-end activity of the software life

cycle, but rather, a process that is initiated at the
beginning of a project and continues to be refined
throughout the life cycle of the software process;

♦ must identify requirements as configuration items, and
manage them under the same configuration regime as
other products of the development process;

♦ will need to be tailored to the organisation and project
context.

In particular, the subtopic is concerned with how the
activities of elicitation, analysis, specification, validation

and management are configured for different types of
project and constraints. The subtopic is also with activities
that provide input to the requirements engineering process
such as marketing and feasibility studies.

3.1.2 Process actors.

This subtopic introduces the roles of the people who
participate in the requirements engineering process.
Requirements engineering is fundamentally
interdisciplinary and the requirements engineer needs to
mediate between the domains of the user and software
engineering. There are often many people involved besides
the requirements engineer, each of whom have a stake in
the system. The stakeholders will vary across different
projects but always includes users/operators and customer
(who need not be the same) [Gog93]. These need not be
homogeneous groups because there may be many users and
many customers, each with different concerns. There may
also be other stakeholders who are external to the
user’s/customer’s organisation, such as regulatory
authorities, whose requirements need to be carefully
analysed. The system/software developers are also
stakeholders because they have a legitimate interest in

Requirements analysis
and negotiation

Requirements specification

Requirements elicitation

Requirements validation

Start

Informal statement of
requirements

Draft requirements
document

Agreed
requirements

Requirements document
and validation report

Decision point: Accept
document or reenter spiral

User needs
Domain information
Standards

© IEEE – Trial Version 1.00 – May2001 2–9

profiting from the system. Again, these may be a
heterogeneous group in which (for example) the system
architect has different concerns from the system tester.
It will not be possible to perfectly satisfy the requirements
of every stakeholder and the requirements engineer’s job is
to negotiate a compromise that is both acceptable to the
principal stakeholders and within budgetary, technical,
regulatory and other constraints. A prerequisite for this is
that all the stakeholders are indentified, the nature of their
‘stake’ is analysed and their requirements are elicited.

3.1.3 Process support and management.

This subtopic introduces the project management resources
required and consumed by the requirements engineering
process. This topic merely sets the context for topic 3
(Initiation and scope definition) of the software
management KA. Its principal purpose is to make the link
from process activities identified in 3.1.1 to issues of cost,
human resources, training and tools.

3.1.4 Process quality and improvement.

This subtopic is concerned with requirements engineering
process quality assessment. Its purpose is to emphasize the
key role requirements engineering plays in terms of the
cost, timeliness and customer satisfaction of software
products [Som97]. It will help to orient the requirements
engineering process with quality standards and process
improvement models for software and systems. Process
quality and improvement is closely related to the software
quality KA and the software process KA. Of particular
interest are issues of software quality attributes and
measurement, and software process definition. This
subtopic covers:
� requirements engineering coverage by process

improvement standards and models;
� requirements engineering measures and benchmarking;
� improvement planning and implementation

Table 2 shows the links to common themes in other KAs.

Links to common themes
Quality The process quality and improvement subtopic is concerned with quality. It

contains links to SPI standards such as the software and systems engineering
capability maturity models, the forthcoming ISO/IEC 15504 and ISO 9001-3
guideline. Requirements engineering process is at best peripheral to these and
the only work to address requirements engineering processes specifically, is the
requirements engineering good practice guide [Som97].

Standards SPI models/standards as described in the quality theme above. In addition, the
life cycle software engineering standard ISO/IEC 12207-1995 describes
requirements engineering activities in the context of the primary, supporting
and organizational life cycle processes for software.

Measurement At the process level, requirements measures tend to be relatively coarse-grained
and concerned with (e.g.) counting numbers of requirements and numbers and
effects of requirements changes. If these indicate room for improvement (as
they inevitably will) it is possible to measure the extent and rigour with which
requirements ‘good practice’ is used in a process. These measures can serve to
highlight process weaknesses that should be the target improvement efforts.

Tools General project management tools. Refer to the software management KA.

Table 2 Process quality links to other KAs

3.2 Requirements elicitation

This topic covers what is sometimes termed ‘requirements
capture’, ‘requirements discovery’ or ‘requirements
acquisition’. It is concerned with where requirements come
from and how they can be collected by the requirements
engineer. Requirements elicitation is the first stage in
building an understanding of the problem the software is
required to solve. It is fundamentally a human activity and
is where the stakeholders are identified and relationships
established between the development team (usually in the
form of the requirements engineer) and the customer.

3.2.1 Requirements sources

In a typical system, there will be many sources of
requirements and it is essential that all potential sources are
identified and evaluated for their impact on the system.
This subtopic is designed to promote awareness of different
requirements sources and frameworks for managing them.
The main points covered are:
� Goals. The term ‘Goal’ (sometimes called ‘business

concern’ or ‘critical success factor’) refers to the
overall, high-level objectives of the system. Goals
provide the motivation for a system but are often

2–10 © IEEE – Trial Version 1.00 – May 2001

vaguely formulated. Requirements engineers need to
pay particular attention to assessing the value (relative
to priority) and cost of goals. A feasibility study is a
relatively low-cost way of doing this [Lou95].

� Domain knowledge. The requirements engineer needs
to acquire or to have available knowledge about the
application domain. This enables them to infer tacit
knowledge that the stakeholders do not articulate,
assess the trade-offs that will be necessary between
conflicting requirements and sometimes to act as a
‘user’ champion.

� System stakeholders (see 3.1.2). Many systems have
proven unsatisfactory because they have stressed the
requirements for one group of stakeholders at the
expense of others. Hence, systems are delivered that
are hard to use or which subvert the cultural or political
structures of the customer organisation. The
requirements engineer needs to identify represent and
manage the ‘viewpoints’ of many different types of
stakeholder [Kot00].

� The operational environment. Requirements will be
derived from the environment in which the software
will execute. These may be, for example, timing
constraints in a real-time system or interoperability
constraints in an office environment. These must be
actively sought because they can greatly affect system
feasibility, cost, and restrict design choices [Tha97].

� The organizational environment. Many systems are
required to support a business process and this may be
conditioned by the structure, culture and internal
politics of the organisation. The requirements engineer
needs to be sensitive to these since, in general, new
software systems should not force unplanned change to
the business process.

3.2.2 Elicitation techniques

When the requirements sources have been identified the
requirements engineer can start eliciting requirements from
them. This subtopic concentrates on techniques for getting
human stakeholders to articulate their requirements. This is
a very difficult area and the requirements engineer needs to
be sensitized to the fact that (for example) users may have
difficulty describing their tasks, may leave important
information unstated, or may be unwilling or unable to
cooperate. It is particularly important to understand that
elicitation is not a passive activity and that even if
cooperative and articulate stakeholders are available, the
requirements engineer has to work hard to elicit the right
information. A number of techniques will be covered, but
the principal ones are [Gog93]:

� Interviews. Interviews are a ‘traditional’ means of
eliciting requirements. It is important to understand the
advantages and limitations of interviews and how they
should be conducted.

� Scenarios. Scenarios are valuable for providing context
to the elicitation of users’ requirements. They allow the
requirements engineer to provide a framework for
questions about users’ tasks by permitting ‘what if?’
and ‘how is this done?’ questions to be asked. There is
a link to 3.3.2. (conceptual modeling) because recent
modeling notations have attempted to integrate
scenario notations with object-oriented analysis
techniques.

� Prototypes. Prototypes are a valuable tool for clarifying
unclear requirements. They can act in a similar way to
scenarios by providing a context within which users
better understand what information they need to
provide. There is a wide range of prototyping
techniques, which range from paper mock-ups of
screen designs to beta-test versions of software
products. There is a strong overlap with the use of
prototypes for requirements validation (3.5.2).

� Facilitated meetings. The purpose of these is to try to
achieve a summative effect whereby a group of people
can bring more insight to their requirements than by
working individually. They can brainstorm and refine
ideas that may be difficult to surface using (e.g.)
interviews. Another advantage is that conflicting
requirements are surfaced early on in a way that lets
the stakeholders recognise where there is conflict. At
its best, this technique may result in a richer and more
consistent set of requirements than might otherwise be
achievable. However, meetings need to be handled
carefully (hence the need for a facilitator) to prevent a
situation where the critical abilities of the team are
eroded by group loyalty, or the requirements reflecting
the concerns of a few vociferous (and perhaps senior)
people to the detriment of others.

� Observation. The importance of systems’ context
within the organizational environment has led to the
adaptation of observational techniques for
requirements elicitation. The requirements engineer
learns about users’ tasks by immersing themselves in
the environment and observing how users interact with
their systems and each other. These techniques are
relatively new and expensive but are instructive
because they illustrate that many user tasks and
business processes are too subtle and complex for their
actors to describe easily.

© IEEE – Trial Version 1.00 – May2001 2–11

Table 3 shows the elicitation techniques links to common themes in other KAs.

Links to common themes
Quality The quality of requirements elicitation has a direct effect on product quality.

The critical issues are to recognise the relevant sources, to strive to avoid
missing important requirements and to accurately report the requirements.

Measurement Very little work on measurement of requirements elicitation has been carried
out.

Table 3 Elicitation techniques links to other KAs

3.3 Requirements analysis

This subtopic is concerned with the process of analysing
requirements to:
� detect and resolve conflicts between requirements;
� discover the bounds of the system and how it must

interact with its environment;
� elaborate system requirements to software

requirements.
The traditional view of requirements analysis was to reduce
it to conceptual modeling using one of a number of analysis
methods such as SADT or OOA. While conceptual
modeling is important, we include the classification of
requirements to help inform trade-offs between
requirements (requirements classification), and the process
of establishing these trade-offs (requirements negotiation)
[Dav93].

3.3.1 Requirements classification

There is a strong overlap between requirements
classification and requirements attributes (3.6.2).
Requirements can be classified on a number of dimensions.
Examples include:
� Whether the requirement is functional or non-

functional (see 2.1).
� Whether the requirement is derived from one or more

high-level requirements, an emergent property (see
2.1), or at a high level and imposed directly on the
system by a stakeholder or some other source.

� Whether the requirement is on the product or the
process. Requirements on the process constrain, for
example, the choice of contractor, the development
practices to be adopted, and the standards to be
adhered to.

� The requirement priority. In general, the higher the
priority, the more essential the requirement is for
meeting the overall goals of the system. Often
classified on a fixed point scale such as mandatory,
highly desirable, desirable, optional. Priority often has
to be balanced against cost of development and
implementation.

� The scope of the requirement. Scope refers to the
extent to which a requirement affects the system and
system components. Some requirements, particularly
certain non-functional ones, have a global scope in that
their satisfaction cannot be allocated to a discrete
component. Hence a requirement with global scope
may strongly affect the system architecture and the
design of many components, one with a narrow scope
may offer a number of design choices with little impact
on the satisfaction of other requirements.

� Volatility/stability. Some requirements will change
during the life cycle of the software and even during
the development process itself. It is useful if some
estimate of the likelihood of a requirement changing
can be made. For example, in a banking application,
requirements for functions to calculate and credit
interest to customers’ accounts are likely to be more
stable than a requirement to support a particular kind
of tax-free account. The former reflect a fundamental
feature of the banking domain (that accounts can earn
interest), while the latter may be rendered obsolete by a
change to government legislation. Flagging
requirements that may be volatile can help the software
engineer establish a design that is more tolerant of
change.

Other classifications may be appropriate, depending upon
the development organization’s normal practice and the
application itself.

3.3.2 Conceptual modeling

The development of models of the problem is fundamental
to requirements analysis (see 2.3). The purpose is to aid
understanding of the problem rather than to initiate design
of the solution. Hence, conceptual models comprise models
of entities from the problem domain configured to reflect
their real-world relationships and dependencies.
There are several kinds of models that can be developed.
These include data and control flows, state models, event
traces, user interactions, object models and many others.
The factors that influence the choice of model include:
� The nature of the problem. Some types of application

demand that certain aspects be analysed particularly
rigorously. For example, control flow and state models

2–12 © IEEE – Trial Version 1.00 – May 2001

are likely to be more important for real-time systems
than for an information system.

� The expertise of the requirements engineer. It is often
more productive to adopt a modeling notation or
method that the requirements engineer has experience
with. However, it may be appropriate or necessary to
adopt a notation that is better supported by tools,
imposed as a process requirement (see 3.3.1), or
simply ‘better’

� The process requirements of the customer. Customers
may impose a particular notation or method on the
requirements engineer. This can conflict with the
previous factor.

� The availability of methods and tools. Notations or
methods that are poorly supported by training and tools
may not reach widespread acceptance even if they are
suited to particular types of problem.

Note that in almost all cases, it is useful to start by building
a model of the system context. The system context provides
an understanding between the intended system and its
external environment. This is crucial to understanding the
system’s context in its operational environment and to
identify its interfaces to the environment.
The issue of modeling is tightly coupled with that of
methods. For practical purposes, a method is a notation (or
set of notations) supported by a process that guides the
application of the notations. Methods and notations come
and go in fashion. Object-oriented notations are currently in
vogue but the issue of what is the ‘best’ notation is seldom
clear. There is little empirical evidence to support claims
for the superiority of one notation over another.
Formal modeling using notations based upon discrete
mathematics and which are tractable to logical reasoning
have made an impact in some specialized domains. These
may be imposed by customers or standards or may offer
compelling advantages to the analysis of certain critical
functions or components.
This topic does not seek to ‘teach’ a particular modeling
style or notation but rather to provide guidance on the
purpose and intent of modeling.

3.3.3 Architectural design and requirements allocation

At some point the architecture of the solution must be
derived. Architectural design is the point at which
requirements engineering overlaps with software or
systems design and illustrates how impossible it is to
cleanly decouple both tasks [Som01]. This subtopic is
closely related to topic 2, in Chapter 3 (software

architecture). In many cases, the requirements engineer acts
as system architect because the process of analysing and
elaborating the requirements demands that the subsystems
and components that will be responsible for satisfying the
requirements be identified. This is requirements allocation
– the assignment of responsibility for satisfying
requirements to subsystems.
Allocation is important to permit detailed analysis of
requirements. Hence, for example, once a set of
requirements have been allocated to a component, they can
be further analysed to discover requirements on how the
component needs to interact with other components in
order to satisfy the allocated requirements. In large
projects, allocation stimulates a new round of analysis for
each subsystem. As an example, requirements for a
particular braking performance for a car (braking distance,
safety in poor driving conditions, smoothness of
application, pedal pressure required, etc.) may be allocated
to the braking hardware (mechanical and hydraulic
assemblies) and an anti-lock braking system (ABS). Only
when a requirement for an anti-lock system has been
identified, and the requirements are allocated to it can the
capabilities of the ABS, the braking hardware and emergent
properties (such as the car weight) be used to identify the
detailed ABS software requirements.
Architectural design is closely identified with conceptual
modeling. The mapping from real-world domain entities to
computational components not always obvious, so
architectural design is identified as a separate sub-topic.
The requirements of notations and methods are broadly the
same for conceptual modeling and architectural design.

3.3.4 Requirements negotiation

Another name commonly used for this subtopic is ‘conflict
resolution’. It is concerned with resolving problems with
requirements where conflicts occur; between two
stakeholders’ requiring mutually incompatible features, or
between requirements and resources or between capabilities
and constraints, for example [Kot00, Som97]. In most
cases, it is unwise for the requirements engineer to make a
unilateral decision so it is necessary to consult with the
stakeholder(s) to reach a consensus on an appropriate trade-
off. It is often important for contractual reasons that such
decisions are traceable back to the customer. We have
classified this as a requirements analysis topic because
problems emerge as the result of analysis. However, a
strong case can also be made for counting it as part of
requirements validation.

© IEEE – Trial Version 1.00 – May2001 2–13

Table 4 shows the requirements negotiation links to common themes in other KAs.

Links to common themes
Quality The quality of the analysis directly affects product quality. In principle, the

more rigorous the analysis, the more confidence can be attached to the software
quality.

Measurement Part of the purpose of analysis is to quantify required properties. This is
particularly important for constraints such as reliability or safety requirements
where suitable measures need to be identified to allow the requirements to be
quantified and verified.

Table 4 Requirements negotiation links to other KAs

3.4 Software requirements specification

This topic is concerned with the structure, quality and
verifiability of the requirements document. This may take
the form of two documents, or two parts of the same
document with different readership and purposes (see 2.5):
the requirements definition document and the software
requirements specification. The topic stresses that
documenting the requirements is the most fundamental
precondition for successful requirements handling.

3.4.1 The system requirements definition document

This document (sometimes known as the user requirements
document or concept of operations) records the system
requirements. It defines the high-level system requirements
from the domain perspective. Its readership includes
representatives of the system users/customers (marketing
may play these roles for market-driven software) so it must
be couched in terms of the domain. It must list the system
requirements along with background information about the
overall objectives for the system, its target environment and
a statement of the constraints, assumptions and non-
functional requirements. It may include conceptual models
designed to illustrate the system context, usage scenarios,
the principal domain entities, and data, information and
workflows.

3.4.2 The software requirements specification (SRS)

The benefits of the SRS include:
� It establishes the basis for agreement between the

customers and contractors or suppliers (in market-
driven projects, these roles may be played by
marketing and development divisions) on what the
software product is to do and as well as what it is not
expected do. For non-technical readership, the SRS is
often accompanied by the requirements definition
document.

� It forces a rigorous assessment of requirements before
design can begin and reduces later redesign.

� It provides a realistic basis for estimating product
costs, risks and schedules.

� Organisations can use a SRS to develop their own
validation and verification plans more productively.

� Provides an informed basis for transferring a software
product to new users or new machines.

� Provides a basis for software enhancement

3.4.3 Document structure and standards

Several recommended guides and standards exist to help
define the structure of requirements documentation. These
include IEEE P1233/D3 guide, IEEE Std. 1233 guide, IEEE
std. 830-1998, ISO/IEC 12119-1994. IEEE std 1362-1998
concept of operations (ConOps) is a recent standard for a
requirements definition document.

3.4.4 Document quality

This is one area where measures can be usefully employed
in requirements engineering. There are tangible attributes
that can be measured. Moreover, the quality of the
requirements document can dramatically affect the quality
of the product.
A number of quality indicators have been developed that
can be used to relate the quality of an SRS to other project
variables such as cost, acceptance, performance, schedule,
reproducibility etc. Quality indicators for individual SRS
statements include imperatives, directives, weak phrases,
options and continuances. Indicators for the entire SRS
document include size, readability, specification depth and
text structure [Dav93, Ros98, Tha97].
There is a strong overlap with 3.5.1 (the conduct of
requirements reviews). Table 5 shows the document quality
links to common themes in other KAs.

2–14 © IEEE – Trial Version 1.00 – May 2001

Links to common themes
Quality The quality of the requirements documents dramatically affects the quality of

the product.
Measurement Quality attributes of requirements documents can be identified and measured.

See 3.4.4.

Table 5 Document quality links to other KAs

3.5 Requirements validation

It is normal for there to be one or more formally scheduled
points in the requirements engineering process where the
requirements are validated. The aim is to pick up any
problems before resources are committed to addressing the
requirements. Requirements validation is concerned with
the process of examining the requirements document to
ensure that it defines the right system (i.e. the system that
the user expects) [Kot00]. There are four important
subtopics.

3.5.1 The conduct of requirements reviews.

Perhaps the most common means of validation is by
inspection or formal reviews of the requirements
document(s). A group of reviewers is constituted with a
brief to look for errors, mistaken assumptions, lack of
clarity and deviation from standard practice. The
composition of the group that conducts the review is
important (at least one representative of the customer
should be included for a customer-driven project, for
example) and it may help to provide guidance on what to
look for in the form of checklists.
Reviews may be constituted on completion of the system
requirements definition document, the software
requirements specification document, the baseline
specification for a new release, etc.

3.5.2 Prototyping.

Prototyping is commonly employed for validating the
requirements engineer’s interpretation of the system
requirements, as well as for eliciting new requirements. As
with elicitation, there is a range of prototyping techniques
and a number of points in the process when prototype
validation may be appropriate. The advantage of prototypes
is that they can make it easier to interpret the requirements

engineer’s assumptions and give useful feedback on why
they are wrong. For example, the dynamic behaviour of a
user interface can be better understood through an animated
prototype than through textual description or graphical
models. There are also disadvantages, however. These
include the danger of users’ attention being distracted from
the core underlying functionality by cosmetic issues or
quality problems with the prototype. For this reason,
several people recommend prototypes that avoid software –
such as flip-chart-based mockups. Prototypes may be costly
to develop. However, if they avoid the wastage of resources
caused by trying to satisfy erroneous requirements, their
cost can be more easily justified.

3.5.3 Model validation.

The quality of the models developed during analysis should
be validated. For example, in object models, it is useful to
perform a static analysis to verify that communication paths
exist between objects that, in the stakeholders domain,
exchange data. If formal specification notations are used, it
is possible to use formal reasoning to prove properties of
the specification (e.g. completeness).

3.5.4 Acceptance tests.

An essential property of a system requirement is that it
should be possible to validate that the finished product
satisfies the requirement. Requirements that can’t be
validated are really just ‘wishes’. An important task is
therefore planning how to verify each requirement. In most
cases, this is done by designing acceptance tests.
Identifying and designing acceptance test may be difficult
for non-functional requirements (see 2.1). To be validated,
they must first be analysed to the point where they can be
expressed quantitatively.

Table 6 shows the acceptance tests links to common themes in other KAs.

Links to common themes
Quality Validation is all about quality - the quality of the requirements.
Measurement Measurement is important for acceptance tests and definitions of how

requirements are to be verified.

Table 6 Acceptance tests links to other KAs

© IEEE – Trial Version 1.00 – May2001 2–15

3.6 Requirements management

Requirements management is an activity that spans the
whole software life cycle. It is fundamentally about change
management and the maintenance of the requirements in a
state that accurately mirrors the software to be, or that has
been, built [Kot00, Lou95].
There are 3 subtopics concerned with requirements
management.

3.6.1 Change management

Change management is central to the management of
requirements. This subtopic describes the role of change
management, the procedures that need to be in place and
the analysis that should be applied to proposed changes. It
has strong links to the configuration management
knowledge area.

3.6.2 Requirements attributes

Requirements should consist not only of a specification of
what is required, but also of ancillary information that helps
manage and interpret the requirements. This should include
the various classification dimensions of the requirement
(see 3.3.1) and the verification method or acceptance test
plan. It may also include additional information such as a
summary rationale for each requirement, the source of each
requirement and a change history. The most fundamental
requirements attribute, however, is an identifier that allows
the requirements to be uniquely and unambiguously

identified. A naming scheme for generating these IDs is an
essential feature of a quality system for a requirements
engineering process.

3.6.3 Requirements tracing

Requirements tracing is concerned with recovering the
source of requirements and predicting the effects of
requirements. Tracing is fundamental to performing impact
analysis when requirements change. A requirement should
be traceable backwards to the requirements and
stakeholders that motivated it (from a software requirement
back to the system requirement(s) that it helps satisfy, for
example). Conversely, a requirement should be traceable
forwards into requirements and design entities that satisfy it
(for example, from a system requirement into the software
requirements that have been elaborated from it and on into
the code modules that implement it).
The requirements trace for a typical project will form a
complex directed acyclic graph (DAG) of requirements. In
the past, development organizations either had to write
bespoke tools or manage it manually. This made tracing a
short-term overhead on a project and vulnerable to
expediency when resources were short. In most cases, this
resulted in it either not being done at all or being performed
poorly. The availability of modern requirements
management tools has improved this situation and the
importance of tracing (and requirements management in
general) is starting to make an impact in software quality.

Table 7 shows the requirements tracing links to common themes in other KAs.

Links to common themes
Quality Requirements management is a level 2 key practice area in the software CMM

and this has boosted recognition of its importance for quality.
Measurement Mature organizations may measure the number of requirements changes and

use quantitative measures of impact assessment.

Table 7 Requirements tracing links to other KAs

4 BREAKDOWN RATIONALE

The criterion mentioned below are the criterion described
in Appendix A of the Guide: Knowledge Area Description
Specifications for the Trial Version of the Guide to the
SWEBOK.
Criterion (a): Number of topic breakdowns
One breakdown provided
Criterion (b): Reasonableness
The breakdown is reasonable in that it covers the areas
discussed in most requirements engineering texts and
standards.

Criterion (c): Generally accepted
The topic breakdowns (shown in Table 1) are generally
accepted in that they cover areas typically in texts and
standards.
At level A.1 the breakdown is identical to that given in
most requirements engineering texts, apart from process
improvement. Requirements engineering process
improvement is an important emerging area in requirements
engineering. We believe this topic adds great value to any
the discussion of the requirements engineering as its
directly concerned with process quality assessment.
At level A.2 the breakdown is identical to that given in
most requirements engineering texts. At level A.3 the

2–16 © IEEE – Trial Version 1.00 – May 2001

breakdown is similar to that discussed in most texts. We
have incorporated a reasonably detailed section on
requirement characterization to take into account the most
commonly discussed ways of characterizing requirements.
A.4 the breakdown is similar to that discussed in most
texts, apart from document quality assessment. We believe
this an important aspect of the requirements specification
document and deserves to be treated as a separate sub-
section. In A.5 and A.6 the breakdown is similar to that
discussed in most texts.
Criterion (d): No specific domains have been assumed
No specific domains have been assumed
Criterion (e): Compatible with various schools of thought
Requirements engineering concept at the process level are
general mature and stable.
Criterion (f): Compatible with industry, literature and
standards
The breakdown used here has been derived from literature
and relevant standards to reflect a consensus of opinion.
Criterion (g): As inclusive as possible
The inclusion of the requirements engineering process A.1
sets the context for all requirements engineering topics.
This level is intended to capture the mature and stable
concepts in requirements engineering. The subsequent
levels all relate to level 1 but are general enough to allow
more specific discussion or further breakdown.

Criterion (h): Themes of quality, tools, measurement and
standards
The relationship of requirements engineering product
quality assurance, tools and standards is provided in the
breakdown.
Criterion (i): 2 to 3 levels, 5 to 9 topics at the first level
The proposed breakdown satisfies this criterion.
Criterion (j): Topic names meaningful outside the guide
The topic names satisfy this criterion
Criterion (k): Version 0.1 of the description
Criterion (l): Text on the rationale underlying the proposed
breakdowns
This document provides the rationale

5 MATRIX OF TOPICS VS. REFERENCE MATERIAL FOR
SOFTWARE REQUIREMENTS

In Table B.1 shows the topic/reference matrix. The table is
organized according to requirements engineering topics in
section 3. A ‘X’ indicates that the topic is covered to a
reasonable degree in the reference. A ‘X’ in appearing in
main topic but not the sub-topic indicates that the main
topic is reasonably covered (in general) but the sub-topic is
not covered to any appreciable depth. This situation is quite
common in most software engineering texts, where the
subject of requirements engineering is viewed in the large
context of software engineering.

TOPIC R

EF
ER

EN
C

E

[B
ry

94
]

[D
av

93
]

[G
og

93
]

[K
ot

98
]

[L
ou

95
]

[P
fl9

8]

[R
os

98
]

[S
om

96
]

[S
om

97
]

[T
ha

97
]

Requirements engineering process X X X X
Process models X X X
Process actors X X X
Process support X
Process improvement X X
Requirements elicitation X X X X X
Requirements sources X X X X X
Elicitation techniques X X X X X
Requirements analysis X X X
Requirements classification X X X
Conceptual modeling X X X
Architectural design and requirements allocation X X
Requirements negotiation X

© IEEE – Trial Version 1.00 – May2001 2–17

TOPIC R

EF
ER

EN
C

E

[B
ry

94
]

[D
av

93
]

[G
og

93
]

[K
ot

98
]

[L
ou

95
]

[P
fl9

8]

[R
os

98
]

[S
om

96
]

[S
om

97
]

[T
ha

97
]

Requirement specification X X X X X X X
The requirements definition document X X X X X X
The software requirements specification (SRS) X X X X X X
Document structure X X X X X
Document quality X X X X
Requirements validation X X X
The conduct of requirements reviews X X
Prototyping X X X
Model validation X X X
Acceptance tests X
Requirements management X X X
Change management X
Requirement attributes X
Requirements tracing X

Table B.1 Topics and their references
Key Reference
[Byr94] [Byrne 1994]
[Dav93] [Davis 1993]
[Gog93] [Goguen and Linde 1993]
[Kot00] [Kotonya and Sommerville 2000]
[Lou95] [Loucopoulos and Karakostas 1995]
[Pfl98] [Pfleeger 1998]
[Ros98] [Rosenberg 1998]
[Som01] [Sommerville 2001]
[Som97] [Sommervelle and Sawyer 1997]
[Tha97] [Thayer and Dorfman 1997]

6 RECOMMENDED REFERENCES FOR SOFTWARE
REQUIREMENTS

[Byrne 1994]. Byrne, E., “IEEE Standard 830:
Recommended Practice for Software Requirements
Specification,” IEEE International Conference on
Requirements Engineering, IEEE Computer Society Press,
April 1994, p. 58.
Describes the IEEE Standard 830-1993 for requirements
specification.
[Davis 1993]. Davis, A.M., Software Requirements:
Objects, Functions and States. Prentice-Hall, 1993.

Provides a way of categorizing software requirements
techniques--objects, functions, and states. The author takes
an analytical approach by helping the reader analyze
which technique is best, rather than imposing one specific
technique. Discussion of a wide variety of techniques and
their uses is augmented with application illustration using
three case studies.
[Goguen and Linde 1993]. Goguen, J., and C. Linde,
“Techniques for Requirements Elicitation,” International
Symposium on Requirements Engineering, San Diego,
California: IEEE Computer Society Press, January 1993,
pp. 152-164.
This paper is an attempt to address the failings of
traditional requirements practice, particularly in eliciting
requirements. The paper explores a different paradigm for
understanding requirements engineering: the process is
seen essentially as a social process, in which requirements
emerge and evolve from the discourse between users and
developers. The paper describes a number of techniques for
requirements elicitation and examines their strengths and
weaknesses.
[Kotonya and Sommerville 2000]. Kotonya, G., and I.
Sommerville, Requirements Engineering: Processes and
Techniques. John Wiley and Sons, 2000.
Introduces requirements engineering to undergraduate and
graduate students in computer science, software
engineering, and systems engineering. Part I is process-
oriented and describes different activities in the

2–18 © IEEE – Trial Version 1.00 – May 2001

requirements engineering process. Part II focuses on
requirements engineering techniques, covering the use of
structured methods, viewpoint-oriented approaches, and
specification of non- functional requirements and of
interactive systems. A final chapter presents a case study
illustrating a viewpoint-oriented approach. Includes
chapter key points and exercises.
[Loucopoulos and Karakostas 1995]. Loucopoulos, P., and
V. Karakostas, System Requirements Engineering.
McGraw-Hill, 1995.
It provides software professionals with a practical
framework for a formal requirements engineering (RE)
process. Readers will exchange their RE problem-solving
skills in chapters that help them accurately assess the
nature of the problems and implement effective solutions.
[Pfleeger 1998]. Pfleeger, S.L., Software Engineering-
Theory and Practice. Prentice-Hall, Chap. 4, 1998.
Applies concepts to two common examples: one that
represents a typical information system, and one that
represents a real-time system. This work features an
associated web page containing examples from literature
and links to web pages for relevant tool and method
vendors.
[Rosenberg 1998] . Rosenberg, L., T.F. Hammer and L.L.
Huffman, “Requirements, testing and metrics”, 16th
Annual Pacific Northwest Software Quality Conference,
Oregon, October 1998.
This paper addresses the issue of evaluating the quality of a
requirements document. The authors describe a tool
developed to parse requirements documents. The
Automated Requirements Measurement (ARM) software
scans a file containing the text of the requirements
specification. The tool searches each line of text for specific
words and phrases based on seven quality indicators. ARM
has been applied to 56 NASA requirements documents.
[Sommerville 2001]. Sommerville, I. Software Engineering
(6th edition), Addison-Wesley, pp. 63-97,
97-147, 2001.
A textbook that presents a general introduction to software
engineering, for students in undergraduate and graduate
courses and software engineers in commerce and industry.
It doesn’t describe commercial design methods or CASE
systems, but paints a broad picture of software engineering
methods and tools.
[Sommerville 1997]. Sommerville, I., and P. Sawyer,
Requirements engineering: A Good Practice Guide. John
Wiley and Sons, Chap. 1-2, 1997.
Presents guidelines which reflect good practice in
requirements engineering, based on the authors’
experience in research and in software and systems
development. The guidelines range from common sense tips
to complex new methods, and can be used in any order,
which suits the reader’s problems, goals and budget.
Guidelines are consistent with ISO 9000 and CMM, are

ranked with cost and benefit analysis, include
implementation advice, and can be combined and applied
to suit an organization’s needs.
[Thayer and Dorfman 1997]. Thayer, R.H., and M.
Dorfman, Software Requirements Engineering (2nd Ed).
IEEE Computer Society Press, pp. 176-205, 389-404, 1997.
A new edition of the comprehensive collection of original
and reprinted articles describing the current best practices
in requirement engineering focused primarily on software
systems but also including hardware and people systems.
The 35 papers introduce current issues and basic
terminology, and cover the phases of software requirements
engineering including elicitation, analysis, specification,
verification, and management. Specific discussions feature
descriptions of the process developers and users use to
review and articulate needs and constraints on
development, examine software requirements and
documentation, and supply details on management
planning and control. Lacks an index.

© IEEE – Trial Version 1.00 – May2001 2–19

APPENDIX A – LIST OF FURTHER READINGS

[Ardis 1997]. Ardis, M., “Formal Methods for
Telecommunication System Requirements: A survey of
Standardized Languages,” Annals of Software Engineering,
3, N. Mead, ed., 1997.
[Berzins, et al. 1997]. Berzins, V., et al., “A Requirements
Evolution Model for Computer Aided Prototyping,” Ninth
IEEE International Conference on Software Engineering
and Knowledge Engineering, Skokie, Illinois: Knowledge
Systems Institute, June 1997, pp. 38-47.
[Beyer and Holtzblatt 1995]. Beyer, H., and Holtzblatt, K.,
“Apprenticing with the Customer,” Communications of the
ACM, 38, 5 (May 1995), pp.45-52.
[Bruno and Agarwal 1995]. Bruno, G., and R. Agarwal,
“Validating Software Requirements Using Operational
Models,” Second Sympoium on Software Quality
Techniques and Acquisition Criteria, Florence, Italy, May
1995.
[Bucci, et al. 1994]. Bucci, G., et al., “An Object-Oriented
Dual Language for Specifying Reactive Systems,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, pp. 6-15.
[Bustard and Lundy 1995]. Bustard, D., and P. Lundy,
“Enhancing Soft Systems Analysis with Formal Modeling,”
Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.
[Chechik and Gannon 1994]. Chechik, M., and J. Gannon,
“Automated Verification of Requirements
Implementation,” ACM Software Engineering Notes,
Proceedings of the International Symposium on Software
Testing and Analysis, Special Issue (October 1994), pp. 1-
15.
[Chung and Nixon 1995]. Chung, L., and B. Nixon,
“Dealing with Non-Functional Requirements: Three
Experimental Studies of a Process-Oriented Approach,”
Seventeenth IEEE International Conference on Software
Engineering, IEEE Computer Society Press, 1995.
[Ciancarini, et al. 1997]. Ciancarini, P., et al., “Engineering
Formal Requirements: An Analysis and Testing Method for
Z Documents,” Annals of Software Engineering, 3, N.
Mead, ed., 1997.
[Crespo 1994]. Crespo, R., “We Need to Identify the
Requirements of the Statements of Non-Functional
Requirements,” International Workshop on Requirements
Engineering: Foundations of Software Quality, June 1994.
[Curran, et al. 1994]. Curran, P., et al., “BORIS-R
Specification of the Requirements of a Large-Scale
Software Intensive System,” Conference on Requirements
Elicitation for Software-Based Systems, July 1994.
[Darimont and Souquieres 1997]. Darimont, R., and J.
Souquieres, “Reusing Operational Requirements: A
Process-Oriented Approach,” IEEE International

Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1997.
[Davis and Hsia 1994]. Davis, A., and P. Hsia, “Giving
Voice to Requirements Engineering: Guest Editors’
Introduction,” IEEE Software, 11, 2 (March 1994), pp. 12-
16.
[DeFoe 1994]. DeFoe, J., “Requirements Engineering
Technology in Industrial Education,” IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, p. 145.
[Demirors 1997]. Demirors, E., “A Blackboard Framework
for Supporting Teams in Software Development,” Ninth
IEEE International Conference on Software Engineering
and Knowledge Engineering, Skokie, Illinois: Knowledge
Systems Institute, June 1997, pp. 232-239.
[Diepstraten 1995]. Diepstraten, M., “Command and
Control System Requirements Analysis and System
Requirements Specification for a Tactical System,” First
IEEE International Conference on Engineering of Complex
Computer Systems, IEEE Computer Society Press,
November 1995.
[Dobson and Strens 1994] Dobson, J., and R. Strens,
“Organizational Requirements Definition for Information
Technology,” IEEE International Conference on
Requirements Engineering, IEEE Computer Society Press,
April 1994, pp. 158-165.
[Duffy, et al. 1995]. Duffy, D., et al., “A Framework for
Requirements Analysis Using Automated Reasoning,”
Seventh International Conference on Advanced Information
Systems Engineering (CAiSE ‘95), Springer-Verlag, 1995.
[Easterbrook and Nuseibeh 1995]. Easterbrook, S., and B.
Nuseibeh, “Managing Inconsistencies in an Evolving
Specification,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1995.
[Edwards, et al 1995]. Edwards, M., et al., “RECAP: A
Requirements Elicitation, Capture, and Analysis Process
Prototype Tool for Large Complex Systems,” First IEEE
International Conference on Engineering of Complex
Computer Systems, IEEE Computer Society Press,
November 1995.
[El Emam and Madhavji 1995a]. El Emam, K., and N.
Madhavji, “Requirements Engineering Practices in
Information Systems Development: A Multiple Case
Study,” Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.
[Fairley and Thayer 1997]. Fairley, R., and R. Thayer, “The
Concept of Operations: The Bridge From Operational
Requirements to Technical Specifications,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.
[Fickas and Feather 1995]. Fickas, S., and M. Feather,
“Requirements Monitoring in Dynamic Environments,”
Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.

2–20 © IEEE – Trial Version 1.00 – May 2001

[Fields, et al. 1995]. Fields, R., et al., “A Task-Centered
Approach to Analyzing Human Error Tolerance
Requirements,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
1995.
[Ghajar-Dowlatshahi and Varnekar 1994]. Ghajar-
Dowlatshahi, J., and A. Varnekar, “Rapid Prototyping in
Requirements Specification Phase of Software Systems,”
Fourth International Symposium on Systems Engineering,
Sunnyvale, California: National Council on Systems
Engineering, August 1994, pp. 135-140.
[Gibson 1995]. Gibson, M., “Domain Knowledge Reuse
During Requirements Engineering,” Seventh International
Conference on Advanced Information Systems Engineering
(CAiSE ‘95), Springer-Verlag, 1995.
[Goldin and Berry 1994]. Goldin, L., and D. Berry,
“AbstFinder: A Prototype Abstraction Finder for Natural
Language Text for Use in Requirements Elicitation:
Design, Methodology and Evaluation,” IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, pp. 84-93.
[Gotel and Finkelstein 1997]. Gotel, O., and A. Finkelstein,
“Extending Requirements Traceability: Lessons Learned
from an Industrial Case Study,” IEEE International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1997.
[Heimdahl 1996]. Heimdahl, M., “Errors Introduced during
the TACS II Requirements Specification Effort: A
Retrospective Case Study,” Eighteenth IEEE International
Conference on Software Engineering, IEEE Computer
Society Press, 1996.
[Heitmeyer, et al. 1996]. Heitmeyer, C., et al., “Automated
Consistency Checking Requirements Specifications,” ACM
Transactions on Software Engineering and Methodology, 5,
3 (July 1996), pp. 231-261.
[Holtzblatt and Beyer 1995]. Holtzblatt, K., and H. Beyer,
“Requirements Gathering: The Human Factor,”
Communications of the ACM, 38, 5 (May 1995), pp. 31-32.
[Hudlicka 1996]. Hudlicka, E., “Requirements Elicitation
with Indirect Knowledge Elicitation Techniques:
Comparison of Three Methods,” Second IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1996.
[Hughes, et al. 1994]. Hughes, K., et al., “A Taxonomy for
Requirements Analysis Techniques,” IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, pp. 176-179.
[Hughes, et al. 1995]. Hughes, J., et al., “Presenting
Ethnography in the Requirements Process,” Second IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, April 1995.
[Hutt 1994]. Hutt, A., Object-Oriented Analysis and
Design, New York, New York: Wiley, 1994.

[Jackson 1995]. Jackson, M., Software Requirements and
Specifications, Reading, Massachusetts: Addison Wesley,
1995.
[Jackson 1997]. Jackson, M., “The Meaning of
Requirements,” Annals of Software Engineering, 3, N.
Mead, ed., 1997.
[Jones and Britton 1996]. Jones, S., and C. Britton, “Early
Elicitation and Definition of Requirements for an
Interactive Multimedia Information System,” Second IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1996.
[Kirner and Davis 1995]. Kirner, T., and A. Davis,
“Nonfunctional Requirements for Real-Time Systems,”
Advances in Computers, 1996.
[Klein 1997]. Klein, M., “Handling Exceptions in
Collaborative Requirements Acquisition,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, January 1997.
[Kosman 1997]. Kosman, R., “A Two-Step Methodology
to Reduce Requirements Defects,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.
[Krogstie, et al. 1995]. Krogstie, J., et al., “Towards a
Deeper Understanding of Quality in Requirements
Engineering,” Seventh International Conference on
Advanced Information Systems Engineering (CAiSE ‘95),
Springer-Verlag, 1995.
[Lalioti and Theodoulidis 1995]. Lalioti, V., and B.
Theodoulidis, “Visual Scenarios for Validation of
Requirements Specification,” Seventh International
Conference on Software Engineering and Knowledge
Engineering, Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 114-116.
[Leite, et al. 1997]. Leite, J., et al., “Enhancing a
Requirements Baseline with Scenarios,” IEEE International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1997.
[Lerch, et al. 1997]. Lerch, F., et al., “Using Simulation-
Based Experiments for Software Requirements
Engineering,” Annals of Software Engineering, 3, N. Mead,
ed., 1997.
[Leveson, et al. 1994]. Leveson, N., et al., “Requirements
Specification for Process-Control Systems,” IEEE
Transactions on Software Engineering, 20,, 9 (September
1994), pp. 684-707.
[Lutz and Woodhouse 1996]. Lutz, R., and R. Woodhouse,
“Contributions of SFMEA to Requirements Analysis,”
Second IEEE International Conference on Requirements
Engineering, Computer Society Press, April 1996.
[Lutz and Woodhouse 1997]. Lutz,R., and R. Woodhouse,
“Requirements Analysis Using Forward and Backward
Search,” Annals of Software Engineering, 3, N. Mead, ed.,
1997.

© IEEE – Trial Version 1.00 – May2001 2–21

[Macaulay 1996]. Macaulay, L., Requirements
Engineering, London, UK: Springer, 1996.
[Macfarlane and Reilly 1995]. Macfarlane, I., and I. Reilly,
“Requirements Traceability in an Integrated Development
Environment,” Second IEEE International Symposium on
Requirements Engineering, IEEE Computer Society Press,
March 1995.
[Maiden and Rugg 1995]. Maiden, N., et al.,
“Computational Mechanisms for Distributed Requirements
Engineering,” Seventh International Conference on
Software Engineering and Knowledge Engineering, Skokie,
Illinois: Knowledge Systems Institute, June 1995, pp. 8-15.
[Mar 1994]. Mar, B., “Requirements for Development of
Software Requirements,” Fourth International Symposium
on Systems Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994, pp. 39-44.
[Massonet and van Lamsweerde 1997]. Massonet, P., and
A. van Lamsweerde, “Analogical Reuse of Requirements
Frameworks,” IEEE International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1997.
[McFarland and Reilly 1995]. McFarland, I., and I. Reilly,
“Requirements Traceability in an Integrated Development
Environment,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
1995.
[Mead 1994]. Mead, N., “The Role of Software
Architecture in Requirements Engineering,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, p. 242.
[Mostert and von Solms 1995]. Mostert, D., and S. von
Solms, “A Technique to Include Computer Security,
Safety, and Resilience Requirements as Part of the
Requirements Specification,” Journal of Systems and
Software, 31, 1 (October 1995), pp. 45-53.
[Mylopoulos, et al. 1995]. Mylopoulos, J., et al., “Multiple
Viewpoints Analysis of Software Specification Process,”
submitted to IEEE Transactions on Software Engineering.
[Nishimura and Honiden 1992]. Nishimura, K., and S.
Honiden, “Representing and Using Non-Functional
Requirements: A Process-Oriented Approach,” submitted
to IEEE Transactions on Software Engineering, December
1992.
[Nissen, et al. 1997]. Nissen, H., et al., “View-Directed
Requirements Engineering: A Framework and Metamodel,”
Ninth IEEE International Conference on Software
Engineering and Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, June 1997, pp. 366-373.
[O’Brien 1996]. O’Brien, L., “From Use Case to Database:
Implementing a Requirements Tracking System,” Software
Development, 4, 2 (February 1996), pp. 43-47.
[Opdahl 1994]. Opdahl, A., “Requirements Engineering for
Software Performance,” International Workshop on

Requirements Engineering: Foundations of Software
Quality, June 1994.
[Pinheiro and Goguen 1996]. Pinheiro,F., and J. Goguen,
“An Object-Oriented Tool for Tracing Requirements,”
IEEE Software, 13, 2 (March 1996), pp. 52-64.
[Playle and Schroeder 1996]. Playle, G., and C. Schroeder,
“Software Requirements Elicitation: Problems, Tools, and
Techniques,” Crosstalk: The Journal of Defense Software
Engineering, 9, 12 (December 1996), pp. 19-24.
[Pohl, et al. 1994]. Pohl, K., et al., “Applying AI
Techniques to Requirements Engineering: The NATURE
Prototype,” IEEE Workshop on Research Issues in the
Intersection Between Software Engineering and Artificial
Intelligence, IEEE Computer Society Press, May 1994.
[Porter, et al. 1995]. Porter, A., et al., “Comparing
Detection Methods for Software Requirements Inspections:
A Replicated Experiment,” IEEE Transactions on Software
Engineering, 21, 6 (June 1995), pp. 563-575.
[Potts and Hsi 1997]. Potts, C., and I. Hsi, “Abstraction and
Context in Requirements Engineering: Toward a
Synthesis,” Annals of Software Engineering, 3, N. Mead,
ed., 1997.
[Potts and Newstetter 1997]. Potts, C., and W. Newstetter.,
“Naturalistic Inquiry and Requirements Engineering:
Reconciling Their Theoretical Foundations,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, January 1997.
[Potts, et al. 1995] Potts, C., et al., “An Evaluation of
Inquiry-Based Requirements Analysis for an Internet
Server,” Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.
[Ramesh, et al. 1995]. Ramesh, B., et al., “Implementing
Requirements Traceability: A Case Study,” Second
International Symposium on Requirements Engineering,
IEEE Computer Society Press, 1995.
[Regnell, et al. 1995]. Regnell, B., et al., “Improving the
Use Case Driven Approach to Requirements Engineering,”
Second IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, April 1995.
[Reubenstein 1994]. Reubenstein, H., “The Role of
Software Architecture in Software Requirements
Engineering,” IEEE International Conference on
Requirements Engineering, Computer Society Press, April
1994, p. 244.
[Robertson and Robertson 1994]. Robertson, J., and S.
Robertson, Complete Systems Analysis, Vols. 1 and 2,
Englewood Cliffs, New Jersey: Prentice Hall, 1994.
[Robinson and Fickas 1994]. Robinson, W., and S. Fickas,
“Supporting Multi-Perspective Requirements Engineering,”
IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, April 1994, pp.
206-215.

2–22 © IEEE – Trial Version 1.00 – May 2001

[Rolland 1994]. Rolland, C., “Modeling and Evolution of
Artifacts,” IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, April 1994, pp.
216-219.
[Schoening 1994]. Schoening, W., “The Next Big Step in
Systems Engineering Tools: Integrating Automated
Requirements Tools with Computer Simulated Synthesis
and Test,” Fourth International Symposium on Systems
Engineering, Sunnyvale, California: National Council on
Systems Engineering, August 1994, pp. 409-415.
[Shekaran 1994]. Shekaran, M., “The Role of Software
Architecture in Requirements Engineering,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, p. 245.
[Siddiqi, et al. 1997]. Siddiqi, J., et al., “Towards Quality
Requirements Via Animated Formal Specifications,”
Annals of Software Engineering, 3, N. Mead, ed., 1997.
[Spanoudakis and Finkelstein 1997]. Spanoudakis, G., and
A. Finkelstein, “Reconciling Requirements: A Method for
Managing Interference, Inconsistency, and Conflict,”
Annals of Software Engineering, 3, N. Mead, ed., 1997.
[Stevens 1994]. Stevens, R., “Structured Requirements,”
Fourth International Symposium on Systems Engineering,
Sunnyvale, California: National Council on Systems
Engineering, August 1994, pp. 99-104.
[van Lamsweerde, et al. 1995] van Lamsweerde, A., et al.,
“Goal-Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learnt,” Second
International Symposium on Requirements Engineering,
IEEE Computer Society Press, 1995.
[White and Edwards 1995]. White, S., and M. Edwards, “A
Requirements Taxonomy for Specifying Complex
Systems,” First IEEE International Conference on
Engineering of Complex Computer Systems, IEEE
Computer Society Press, November 1995.
[Wiley 1999]. Wiley, B., Essential System Requirements:
A Practical Guide to Event-Driven Methods, Addison-
Wesley, 1999.
[Wyder 1996]. Wyder, T., “Capturing Requirements With
Use Cases,” Software Development, 4, 2 (February 1996),
pp. 36-40.
[Yen and Tiao 1997]. Yen, J., and W. Tiao, “A Systematic
Tradeoff Analysis for Conflicting Imprecise
Requirements,” IEEE International Symposium on
Requirements Engineering, Computer Society Press, March
1997.
[Yu 1997]. Yu, E., “Towards Modeling and Reasoning
Support for Early-Phase Requirements Engineering,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, March 1997.
[Zave and Jackson 1996]. Zave, P., and M. Jackson,
“Where Do Operations Come From? A Multiparadigm

Specification Technique,” IEEE Transactions on Software
Engineering, 22, 7 (July 1996), pp. 508-528.

© IEEE – Trial Version 1.00 – May2001 2–23

APPENDIX B – REFERENCES USED TO WRITE AND
JUSTIFY THE DESCRIPTION

[Acosta 1994]. Acosta, R., et al., “A Case Study of
Applying Rapid Prototyping Techniques in the
Requirements Engineering Environment,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, pp. 66-73.
[Alford 1994]. Alford, M., “Attacking Requirements
Complexity Using a Separation of Concerns,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, pp. 2-5.
[Alford 1994]. Alford, M., “Panel Session Issues in
Requirements Engineering Technology Transfer: From
Researcher to Entrepreneur,” IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, p. 144.
[Anderson 1985]. Anderson, T., Software Requirements:
Specification and Testing, Oxford, UK: Blackwell
Publishing, 1985.
[Anderson and Durney 1993]. Anderson, J., and B. Durney,
“Using Scenarios in Deficiency-Driven Requirements
Engineering,” International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993,
pp. 134-141.
[Andriole 1992]. Andriole, S., “Storyboard Prototyping For
Requirements Verification,” Large Scale Systems, 12
(1987), pp. 231-247. 14.[Andriole 1992]
[Andriole 1995]. Andriole, S., “Interactive Collaborative
Requirements Management,” Software Development,
(September 1995).
[Andriole 1996]. Andriole, S.J., Managing Systems
Requirements: Methods, Tools and Cases. McGraw-Hill,
1996.
[Anton and Potts 1998]. Anton, A., and C. Potts, “The Use
of Goals to Surface Requirements for Evolving Systems,”
Twentieth International Conference on Software
Engineering, IEEE Computer Society, 1998.
[Ardis, et al. 1995]. Ardis, M., et al., “A Framework for
Evaluating Specification Methods for Reactive Systems,”
Seventeenth IEEE International Conference on Software
Engineering, IEEE Computer Society Press, 1995.
[Bickerton and Siddiqi 1993]. Bickerton, M., and J. Siddiqi,
“The Classification of Requirements Engineering
Methods,” IEEE International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1993, pp. 182-186.
[Blanchard and Fabrycky 1998]. Blanchard, B. and
Fabrycky, W.J., Systems Engineering Analysis, Prentice
Hall, 1998.
[Blum 1983]. Blum, B., “Still More About Prototyping,”
ACM Software Engineering Notes, 8, 3 (May 1983), pp. 9-
11.

[Blum 1993]. Blum, B., “Representing Open Requirements
with a Fragment-Based Specification,” IEEE Transaction
on Systems, Man and Cybernetics, 23, 3 (May-June 1993),
pp. 724-736.
[Blyth, et al. 1993a]. Blyth, A., et al., “A Framework for
Modelling Evolving Requirements,” IEEE International
Conference on Computer Software and Applications, IEEE
Computer Society Press, 1993.
[Boehm 1994]. Boehm, B., P. Bose, et al., “Software
Requirements as Negotiated Win Conditions,” Proc. 1st
International Conference on Requirements Engineering
(ICRE), Colorado Springs, Co, USA, (1994), pp.74-83.
[Boehm, et al. 1995]. Boehm, B., et al., “Software
Requirements Negotiation and Renegotiation Aids: A
Theory-W Based Spiral Approach,” Seventeenth IEEE
International Conference on Software Engineering, IEEE
Computer Society Press, 1995.
[Brown and Cady 1993]. Brown, P., and K. Cady,
“Functional Analysis vs. Object-Oriented Analysis: A View
From the Trenches,” Third International Symposium on
Systems Engineering, Sunnyvale, California: National
Council on Systems Engineering, July 1993.
[Byrne 1994]. Byrne, E., “IEEE Standard 830:
Recommended Practice for Software Requirements
Specification,” IEEE International Conference on
Requirements Engineering, IEEE Computer Society Press,
April 1994, p. 58.
[Burns and McDermid 1994]. Burns, A., and J. McDermid,
“Real-Time Safety-Critical Systems: Analysis and
Synthesis,” IEE Software Engineering Journal, 9, 6
(November 1994), pp. 267-281.
[Checkland and Scholes 1990]. Checkland, P., and J.
Scholes, Soft Sysems Methodology in Action. John Wiley
and Sons, 1990.
[Chung 1991a]. Chung, L., “Representation and Utilization
of Nonfunctional Requirements for Information System
Design,” Third International Conference on Advanced
Information Systems Engineering (CAiSE ‘90), Springer-
Verlag, 1991, pp. 5-30.
[Chung 1999]. Chung, L., Nixon, B.A., Yu. E.,
Mylopoulos, J., Non-functional Requirements in Software
Engineering, Kluwer Academic Publishers, 1999.
[Chung, et al. 1995]. Chung, L., et al., “Using Non-
Functional Requirements to Systematically Support
Change,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
1995.
[Connell and Shafer 1989]. Connell, J., and L. Shafer,
Structured Rapid Prototyping, Englewood Cliffs, New
Jersey, 1989.
[Coombes and McDermid 1994]. Coombes, A., and J.
McDermid, “Using Quantitative Physics in Requirements
Specification of Safety Critical Systems” Workshop on

2–24 © IEEE – Trial Version 1.00 – May 2001

Research Issues in the Intersection Between Software
Engineering and Artificial Intelligence, Sorrento, Italy,
May 1994.
[Costello and Liu 1995]. Costello, R., and D. Liu, “Metrics
for Requirements Engineering,” Journal of Systems and
Software, 29, 1 (April 1995), pp. 39-63.
[Curtis 1994]. Curtis, A., “How to Do and Use
Requirements Traceability Effectively,” Fourth
International Symposium on Systems Engineering,
Sunnyvale, California: National Council on Systems
Engineering, August 1994, pp. 57-64.
[Davis 1993]. Davis, A.M., Software Requirements:
Objects, Functions and States. Prentice-Hall, 1993.
[Davis 1995a]. Davis, A., 201 Principles of Software
Development, New York, New York: McGraw Hill, 1995.
[Davis 1995b]. Davis, A., “Software Prototyping,” in
Advances in Computing, 40, M. Zelkowitz, ed., New York,
New York: Academic Press, 1995.
[Davis, et al. 1997]. Davis, A., et al., “Elements Underlying
Requirements Specification,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.
[De Lemos, et al. 1992]. De Lemos, R., et al., “Analysis of
Timeliness Requirements in Safety-Critical Systems,”
Symposium on Formal Techniques in Real-Time and Fault
Tolerant Systems, Nijmegen, The Netherlands: Springer
Verlag, January 1992, pp. 171-192.
[Dobson 1991]. Dobson, J., “A methodology for analysing
human computer-related issues in secure systems,”
International Conference on Computer Security and
Integrity in our Changing World, Espoo, Finland, (1991),
pp. 151-170.
[Dobson, et al. 1992]. Dobson, J., et al., “The ORDIT
Approach to Requirements Identification,” IEEE
International Conference on Computer Software and
Applications, IEEE Computer Society Press, 1992, pp. 356-
361.
[Dorfman and Thayer 1997]. Dorfman, M., and R.H.
Thayer, Software Engineering. IEEE Computer Society
Press, 1997.
[Easterbrook and Nuseibeh 1996]. Easterbrook, S., and B.
Nuseibeh, “Using viewpoints for inconsistency
management,” Software Engineering Journal, 11, 1, 1996,
pp.31-43.
[Ebert 1997]. Ebert, C., “Dealing with Non-Functional
Requirements in Large Software Systems,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.
[El Emam 1997]. EL Amam K., J. Drouin, et al., SPICE:
The theory and Practice of Software Process Improvement
and Capability Determination. IEEE Computer Society
Press, 1997.
[El Emam and Madhavji 1995]. El Emam, K., and N.
Madhavji, “Measuring the Success of Requirements
Engineering,” Second International Symposium on

Requirements Engineering, IEEE Computer Society Press,
1995.
[Fagan 1986]. Fagan, M.E., “Advances in Software
Inspection,” IEEE Transactions on Software Engineering
12, 7, 1986, pp. 744-51.
[Feather 1991]. Feather, M., “Requirements Engineering:
Getting Right from Wrong,” Third European Software
Engineering Conference, Springer Verlag, 1991.
[Fenton 1991]. Fenton, N. E., Software metrics: A rigorous
approach. Chapman and Hall, 1991.
[Fiksel 1991]. Fiksel, J., “The Requirements Manager: A
Tool for Coordination of Multiple Engineering
Disciplines,” CALS and CE ‘91, Washington, D.C., June
1991.
[Finkelstein 1992]. Finkelstein, A., Kramer, J., B. Nuseibeh
and M. Goedicke, “Viewpoints: A framework for
integrating multiple perspectives in systems development,”
International Journal of Software Engineering and
Knowledge Engineering, 2, 10, (1992), pp.31-58.
[Garlan 1994]. Garlan, D., “The Role of Software
Architecture in Requirements Engineering,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, p. 240.
[Gause and Weinberg 1989]. Gause, D.C., and G. M.
Weinberg, Exploring Requirements : Quality Before
Design, Dorset House, 1989.
[Gilb and Graham 1993]. Gilb, T., and D. Graham,
Software Inspection. Wokingham: Addison-Wesley, 1993.
[Goguen and Linde 1993]. Goguen, J., and C. Linde,
“Techniques for Requirements Elicitation,” International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1993, pp. 152-164.
[Gomaa 1995]. Gomaa, H., “Reusable Software
Requirements and Architectures for Families of Systems,”
Journal of Systems and Software, 28, 3 (March 1995), pp.
189-202.
[Grady 1993a]. Grady, J., Systems Requirements Analysis,
New York, New York: McGraw Hill, 1993.
[Graham 1998]. Graham, I., Requirements Engineering and
Rapid Development: An Object-Oriented Approach,
Addison Wesley, 1998.
[Hadden 1997]. Hadden, R., “Does Managing
Requirements Pay Off?,” American Programmer, 10, 4
(April 1997), pp. 10-12.
[Hall 1996]. Hall, A., “Using Formal Methods to Develop
an ATC Information System,” IEEE Software 13, 2, 1996,
pp.66-76.
[Hansen, et al. 1991]. Hansen, K., et al., “Specifying and
Verifying Requirements of Real-Time Systems,” ACM
SIGSOFT Conference on Software for Critical Systems,
December 1991, pp. 44-54.

© IEEE – Trial Version 1.00 – May2001 2–25

[Harel 1988]. Harel, D., “On Visual Formalisms,”
Communications of the ACM, 31, 5 (May 1988), pp. 8-20.
[Harel 1992]. Harel, D., “Biting the Silver Bullet: Towards
a Brighter Future for System Development,” IEEE
Computer, 25, 1 (January 1992), pp. 8-20.
[Harel and Kahana 1992]. Harel, D., and C. Kahana, “On
Statecharts with Overlapping,” ACM Transactions on
Software Engineering and Methodology, 1, 4 (October
1992), pp. 399-421.
[Harwell 1993]. Harwell, R., et al, “What is a
Requirement,” Proc 3rd Ann. Int’l Symp. Nat’l Council
Systems Eng., (1993), pp.17-24.
[Heimdahl and Leveson 1995]. Heimdahl, M., and N.
Leveson, “Completeness and Consistency Analysis of
State-Based Requirements,” Seventeenth IEEE
International Conference on Software Engineering, IEEE
Computer Society Press, 1995.
[Hofmann 1993]. Hofmann, H., Requirements Engineering:
A Survey of Methods and Tools, Technical Report #TR-
93.05, Institute for Informatics, Zurich, Switzerland:
University of Zurich, 1993.
[Honour 1994]. Honour, E., “Requirements Management
Cost/Benefit Selection Criteria,” Fourth International
Symposium on Systems Engineering, Sunnyvale,
California: National Council on Systems Engineering,
August 1994, pp. 149-156.
[Hooks and Stone 1992] Hooks, I., and D. Stone,
“Requirements Management: A Case Study  NASA’s
Assured Crew Return Vehicle,” Second Annual
International Symposium on Requirements Engineering,
Seattle, Washington: National Council on Systems
Engineering, July 1992.
[Hsia, et al. 1997]. Hsia, P. et al., “Software Requirements
and Acceptance Testing,” Annals of Software Engineering,
3, N. Mead, ed., 1997.
[Humphery 1988]. Humphery, W.S., “Characterizing the
Software Process,” IEEE Software 5, 2 (1988), pp. 73-79.
[Humphery 1989]. Humphery, W., Managing the Software
Process, Reading, Massachusetts: Addison Wesley, 1989.
[Hutchings 1995]. Hutchings, A., and S. Knox, “Creating
products customers demand,” Communications of the
ACM, 38, 5, (May 1995), pp. 72-80.
[IEEE 1998a]. IEEE Std 830-1998. IEEE Recommended
Practice for Software Requirements Specifications.
[IEEE 1998b]. IEEE Std 1362-1998. IEEE Guide for
Information Technology – System Definition – Concept of
Operations (ConOps) Document.
[Ince 1994]. Ince, D., ISO 9001 and Software Quality
Assurance. London: McGraw-Hill, 1994.
[Jackson and Zave 1995]. Jackson, M., and P. Zave,
“Deriving Specifications from Requirements: An

Example,” Seventeenth IEEE International Conference on
Software Engineering, IEEE Computer Society Press, 1995.
[Jarke and Pohl 1994]. Jarke, M., and K. Pohl,
“Requirements Engineering in 2001: Virtually Managing a
Changing Reality,” IEE Software Engineering Journal, 9, 6
(November 1994), pp. 257-266.
[Jarke, et al. 1993]. Jarke, M., et al., “Theories Underlying
Requirements Engineering: An Overview of NATURE at
Genesis,” IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993,
pp. 19-31.
[Jenkins 1994]. Jenkins, M., “Requirements Capture,”
Conference on Requirements Elicitation for Software-
Based Systems, July 1994.
[Jirotka 1991]. Jirotka, M., Ethnomethodology and
Requirements Engineering, Centre for Requirements and
Foundations Technical Report, Oxford, UK: Oxford
University Computing Laboratory, 1991.
[Kotonya 1999]. Kotonya, G., “Practical Experience with
Viewpoint-oriented Requirements Specification,”
Requirements Engineering, 4, 3, 1999, pp.115-133.
[Kotonya and Sommerville 1996]. Kotonya, G., and I.
Sommerville, “Requirements Engineering with
viewpoints,” Software Engineering, 1, 11, 1996, pp.5-18.
[Kotonya and Sommerville 1998]. Kotonya, G., and I.
Sommerville, Requirements Engineering: Processes and
Techniques. John Wiley and Sons, 1998.
[Lam, et al. 1997a]. Lam, W., et al., “Ten Steps Towards
Systematic Requirements Reuse,” IEEE International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1997.
[Leveson 1986]. Leveson, N.G., “Software safety - why,
what, and how,” Computing surveys, 18, 2, (1986), pp.
125-163.
[Leveson 1995]. Leveson, N.G., Safeware: System Safety
and Computers. Reading, Massachusetts: Addison-Wesley,
1995.
[Loucopulos and Karakostas 1995]. Loucopulos, P., and V.
Karakostas, Systems Requirements Engineering. McGraw-
Hill, 1995.
[Lutz 1993]. Lutz, R., “Analyzing Software Requirements
Errors in Safety-Critical, Embedded Systems,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, January 1993, pp. 126-133.
[Lutz 1996]. Lutz, R., “Targeting Safety-Related Errors
During Software Requirements Analysis,” The Journal of
Systems and Software, 34, 3 (September 1996), pp. 223-
230.
[Maiden and Sutcliffe 1993]. Maiden, N., and A. Sutcliffe,
“Requirements Engineering By Example: An Empirical
Study,” International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993,
pp. 104-111.

2–26 © IEEE – Trial Version 1.00 – May 2001

[Maiden, et al., 1995] Maiden, N., et al., “How People
Categorise Requirements for Reuse: A Natural Approach,”
Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.
[Mazza 1996]. Mazza, C., J. Fairclough, B. Melton, D.
DePablo, A. Scheffer, and R. Stevens, Software
Engineering Standards, Prentice-Hall, 1996.
[Mazza 1996]. Mazza, C., J. Fairclough, B. Melton, D.
DePablo, A. Scheffer, R. Stevens, M. Jones, G. Alvisi,
Software Engineering Guides, Prentice-Hall, 1996.
[Modugno, et al. 1997]. Modugno, F., et al., “Integrating
Safety Analysis of Requirements Specification,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, January 1997.
[Morris, et al. 1994]. Morris, P., et al., “Requirements and
Traceability,” International Workshop on Requirements
Engineering: Foundations of Software Quality, June 1994.
[Paulk 1996]. Paulk, M.C., C.V. Weber, et al., Capability
Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, 1995.
[Pfleeger 1998]. Pfleeger, S.L., Software Engineering-
Theory and Practice. Prentice-Hall, 1998.
[Pohl 1994]. Pohl, K., “The Three Dimensions of
Requirements Engineering: A Framework and Its
Applications,” Information Systems 19, 3 (1994), pp. 243-
258.
[Pohl 1999]. Pohl, K., Process-centered Requirements
Engineering, Research Studies Press, 1999.
[Potts 1993]. Potts, C., “Choices and Assumptions in
Requirements Definition,” International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1993, p. 285.
[Potts 1994]. Potts, C., K. Takahashi, et. al., “Inquiry-based
Requirements Analysis,” IEEE Software, 11, 2, 1994, pp.
21-32.
[Pressman 1997]. Pressman, R.S. Software Engineering: A
Practitioner’s Approach (4 edition). McGraw-Hill, 1997.
[Ramesh et al. 1997]. Ramesh, B., et al., “Requirements
Traceability: Theory and Practice,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.
[Roberston and Robertson 1999]. Robertson, S., and J.
Robertson, Mastering the Requirements Process, Addison
Wesley, 1999.
[Rosenberg 1998] . Rosenberg, L., T.F. Hammer and L.L.
Huffman, “Requirements, testing and metrics, “ 15th
Annual Pacific Northwest Software Quality Conference,
Utah, October 1998.
[Rudd and Isense 1994]. Rudd, J., and S. Isense, “Twenty-
two Tips for a Happier, Healthier Prototype,” ACM
Interactions, 1, 1, 1994.
[Rzepka 1992]. Rzepka, W., “A Requirements Engineering
Testbed: Concept and Status,” 2nd IEEE International

Conference on Systems Integration, IEEE Computer
Society Press, June 1992, pp. 118-126.
[SEI 1995]. A Systems Engineering Capability Model,
Version 1.1, CMU/SEI95-MM-003, Software Engineering
Institute, 1995.
[Siddiqi and Shekaran 1996]. Siddiqi, J., and M.C.
Shekaran, “Requirements Engineering: The Emerging
Wisdom,” IEEE Software, pp.15-19, 1996.
[Sommerville 1996].Sommerville, I. Software Engineering
(5th edition), Addison-Wesley, pp. 63-97, 117-136, 1996.
[Sommerville and Sawyer 1997]. Sommerville, I., and P.
Sawyer, “Viewpoints: Principles, Problems, and a Practical
Approach to Requirements Engineering,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.
[Sommerville, et al. 1993]. Sommerville, I., et al.,
“Integrating Ethnography into the Requirements
Engineering Process,” International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1993, pp. 165-173.
[Sommerville 1997].Sommerville, I., and P. Sawyer,
Requirements engineering: A Good Practice Guide. John
Wiley and Sons, 1997
[Stevens 1998]. Stevens, R., P. Brook, K. Jackson and S.
Arnold, Systems Engineering, Prentice Hall, 1998.
[Thayer and Dorfman 1990]. Thayer, R., and M. Dorfman,
Standards, Guidelines and Examples on System and
Software Requirements Engineering. IEEE Computer
Society, 1990.
[Thayer and Dorfman 1997]. Thayer, R.H., and M.
Dorfman, Software Requirements Engineering (2nd Ed).
IEEE Computer Society Press, 1997.
[White 1993]. White, S., “Requirements Engineering in
Systems Engineering Practice,” IEEE International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1993, pp. 192-193.
[White 1994]. White, S., “Comparative Analysis of
Embedded Computer System Requirements Methods,”
IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, April 1994, pp.
126-134.

