
© IEEE – Trial Version 1.00 – May 2001 3–1

CHAPTER 3
SOFTWARE DESIGN

Guy Tremblay
Département d’informatique

Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville

Montréal, Québec, Canada, H3C 3P8
tremblay.guy@uqam.ca

Table of Contents

1. Introduction..1
2. Definition of Software Design1
3. Breakdown of Topics for Software Design..................2
4. Breakdown Rationale...7
5. Matrix of Topics vs. Reference Material8
6. Recommended References for Software Design........10
Appendix A – List of Further Readings.............................13
Appendix B – References Used to Write and Justify the

Knowledge Area Description16

1. INTRODUCTION

This chapter presents a description of the Software Design
knowledge area for the Guide to the SWEBOK (Stone Man
version). First, a general definition of the knowledge area is
given. A breakdown of topics is then presented for the
knowledge area along with brief descriptions of the various
topics. These topic descriptions are also accompanied by
references to material that provide more detailed
presentation and coverage of these topics. The
recommended references are then briefly described,
followed by a number of suggestions for further readings.
It is important to stress that various constraints had to be
satisfied by the resulting Knowledge Area (KA) description
to satisfy the requirements set forth for these descriptions
(see Appendix A of the whole Guide to the SWEBOK).
Among the major constraints were that the KA description
had to describe “generally accepted” knowledge not
specific to any application domains or development
methods and had to be compatible with typical breakdowns
found in the literature. For those interested, Section 4
presents a more detailed Breakdown Rationale explaining
how the various requirements for the KA description were
met. A final note concerning the requirements was that the
KA description had to suggest a list of “Recommended

references” with a reasonably limited number of entries.
Satisfying this requirement meant, sadly, that not all
interesting references could be included in the recom-
mended references list, thus the list of further readings.

2. DEFINITION OF SOFTWARE DESIGN

According to the IEEE definition [IEE90], design is both
“the process of defining the architecture, components,
interfaces, and other characteristics of a system or
component” and “the result of [that] process”. Viewed as a
process, software design is the activity, within the software
development life cycle, where software requirements are
analyzed in order to produce a description of the internal
structure and organization of the system that will serve as
the basis for its construction. More precisely, a software
design (the result) must describe the architecture of the
system, that is, how the system is decomposed and
organized into components and must describe the interfaces
between these components. It must also describe these
components into a level of detail suitable for allowing their
construction.
In a classical software development life cycle such as
ISO/IEC 12207 Software life cycle processes [ISO95b],
software design consist of two activities that fit between
software requirements analysis and software coding and
testing: i) software architectural design – sometimes called
top-level design, where the top-level structure and
organization of the system is described and the various
components are identified; ii) software detailed design –
where each component is sufficiently described to allow for
its coding.
Software design plays an important role in the development
of a software system in that it allows the developer to
produce various models that form a kind of blueprint of the
solution to be implemented. These models can be analyzed
and evaluated to determine if they will allow the various
requirements to be fulfilled. Various alternative solutions
and trade-offs can also be examined and evaluated. Finally,
the resulting models can be used to plan the subsequent

3–2 © IEEE – Trial Version 1.00 – May 2001

development activities, in addition to being used as input
and starting point of the coding and testing activities.
Concerning the scope of the Software Design KA, it is
important to note that not all topics containing the word
“design” in their names will be discussed in the present KA
description. In the terminology of DeMarco [DeM99], the
present KA is concerned mainly with D-design (Decompo-
sition design), as discussed in the above paragraphs
(mapping a system into component pieces). However,
because of its importance within the growing field of
Software Architecture, FP-design (Family Pattern design,
whose goal is to establish exploitable commonalities over a
family of systems) will also be addressed. On the other
hand, I-design (Invention design, usually done by system
analysts with the objective of conceptualizing and spe-
cifying a system to satisfy discovered needs and require-
ments) will not be addressed, since this latter topic should
be considered part of the requirements analysis and
specification activity. Finally, also note that because of the
requirements that the KA description had to include
knowledge not specific to any application domains and the
fact that some topics are better addressed in knowledge
areas of related disciplines (see Appendix D of the whole
Guide), certain specialized areas – for example, User
Interface Design or Real-time Design – are not explicitly
discussed in the present Software Design KA description.
See Section 4 of the present chapter for further details
concerning these and other specialized “design” topics. Of
course, many of the topics included in the present Software
Design KA description may still apply to these specialized
areas.

3. BREAKDOWN OF TOPICS FOR SOFTWARE DESIGN

This section presents the breakdown of the Software
Design Knowledge Area together with brief descriptions of
each of the major topics. Appropriate references are also
given for each of the topic. Figure 1 gives a graphical
presentation of the top-level decomposition of the
breakdown for the Software Design Knowledge Area. The
detailed breakdown is presented in the following pages.
Note: The numbers in the reference keys, e.g., [Bud94:8,
Pre97:23], indicate specific chapter(s) of the reference. In
the case of Mar94, e.g., [Mar94:D], the letters indicates
specific entries of the encyclopedia: “D” = Design; “DR” =
Design Representation; “DD” = Design of Distributed
systems”. Note also that, contrary to the matrix presented in
Section 5, only the appropriate chapter (or part) number,
not the specific sections or pages, have been indicated.

I. Software Design Basic Concepts

This first section introduces a number of concepts and
notions which form an underlying basis to the understanding
of the role and scope of Software Design.

 General design concepts: Software is not the only field
where design is involved. In the general sense, design

can be seen as a form of problem-solving [Bud94:1]. For
example, the notion of wicked problem – a problem that
has no definitive solution – is interesting for under-
standing the limits of design [Bud94:1]. A number of
notions and concepts are also interesting to understand
design in its general sense: goals, constraints,
alternatives, representations, and solutions [SB93].

 The context of software design: To understand the role
and place of software design, it is important to
understand the context in which software design fits,
i.e., the software development life cycle. Thus, the
major characteristics of software requirements analysis
vs. software design vs. software construction vs. testing
must be understood [ISO95b, LG01:11, Mar94:D,
Pfl98:2, Pre97:2].

 The software design process: Software design is
generally considered a two steps process: architectural
design describes how the system is decomposed and
organized into components (the software architecture),
whereas detailed design describes the specific behavior
of these components [DT97:7, FW83:I, ISO95b,
LG01:13, Mar94:D]. The output of this process is a set
of models and artifacts that record the major decisions
that have been taken [Bud94:2, IEE98, LG01:13,
Pre97:13].

 Enabling techniques for software design: According to
the Oxford dictionary, a principle is “a basic truth or a
general law […] that is used as a basis of reasoning or a
guide to action”. Such principles for software design,
called enabling techniques in [BMR+96], are key notions
considered fundamental to many different software
design approaches, concepts and notions that form a kind
of foundation for many of those approaches. Some of the
key notions are the following [BCK98:6, BMR+96:6,
IEE98, Jal97:5,6, LG01:1,3, Pfl98: 5, Pre97:13,23]:
- Abstraction: “the process of forgetting information so

that things that are different can be treated as if they
are the same” [LG01]. In the context of software
design, two key abstraction mechanisms are
abstraction by parameterization and by specification,
which in turn lead to three major kinds of abstraction:
procedural abstraction, data abstraction and control
(iteration) abstraction [BCK98:6, LG01:1,3,5,6
Jal97:5, Pre97:13].

- Coupling and cohesion: whereas coupling measures
the strength of the relationships that exist between
modules, cohesion measures how the elements
making up a module are related [BCK98:6, Jal97:5,
Pfl98:5, Pre97:13].

- Decomposition and modularization: the operation of
decomposing a large system into a number of smaller
independent ones, usually with the goal of placing
different functionalities or responsibilities in different
components [BCK98:6, BMR+96:6, Jal97:5, Pfl98:5,
Pre97:13].

© IEEE – TrialVersion 1.00 – May 2001

Software Design

I. Software Design
Basic Concepts

II. Key Issues in
Software Design

III. Software
Structure and
Architecture

V. Software
Design Notations

VI. Software Design
Strategies and

Methods

General design
concepts

Concurrency

The context of
software design

Enabling techniques
for software design

The software design
process

Control and handling
of events

Architectural
structures and

viewpoints

Structural
descriptions
(static view)

General Strategies

Distribution

Interactive systems

Exception handling

Persistence

Design patterns
(micro-architecture)

Architectural styles
and patterns (macro-

architecture)

Families of programs
and frameworks

Behavior
descriptions

(dynamic view) Object-oriented
design

Function-oriented
design

Data-structrure
centered design

IV. Software Design
Quality Analysis and

Evaluation

Quality attributes

Measures

Quality analysis and
evaluation tools

Software design reviews

Static analysis

Simulation and
prototyping

Function-oriented
(structured) design

measures

Object-oriented design
measures

Other methods

Figure 1 Breakdown of the Software Design KA

- Encapsulation/information hiding: deals with

grouping and packaging the elements and internal
details of an abstraction and making those details
inaccessible [BCK98:6, BMR+96:6, Jal97:6, Pfl98:5,
Pre97:13, 23].

- Separation of interface and implementation: involves
defining a component by specifying a public
interface, known to the clients, separate from the
details of how the component is realized [BCK98:6,
Bos00:10, LG01:1,9].

- Sufficiency, completeness and primitiveness: deals
with ensuring that a software component captures all
the important characteristics of an abstraction, and
nothing more [BMR+96:6, LG01:5].

II. Key Issues in Software Design

A number of key issues must be dealt with when designing
software systems. Some of these are really quality concerns
that must be addressed by all systems, for example, perfor-
mance. Another important issue is how to decompose,
organize and package the software components. This is so
fundamental that it must be addressed, in one way or
another, by all approaches to design; this is discussed in the
Enabling techniques and in the Software Design Strategies

topics. On the other hand, there are also other issues that
“deal with some aspect of the system’s behaviour that is not
in the application domain, but which addresses some of the
supporting domains” [Bos00]. Such issues, which often
cross-cut the system’s functionality, have been referred to as
aspects: “[aspects] tend not to be units of the system’s func-
tional decomposition, but rather to be properties that affect
the performance or semantics of the components in systemic
ways” [KLM+97]. A number of these major, cross-cutting
issues are the following (presented in alphabetical order):

 Concurrency: how to decompose the systems into
processes, tasks and threads and deal with related
efficiency, atomicity, synchronization and scheduling
issues [Bos00:5, Mar94:DD, Mey97:30, Pre97:21].

 Control and handling of events: how to organize the flow
of data and the flow of control, how to handle reactive
and temporal events through various mechanisms, e.g.,
implicit invocation and call-backs [BCK98:5, Mey97:32,
Pfl98:5].

 Distribution: how the software is distributed on the
hardware, how the components communicate, how
middleware can be used to deal with heterogeneous
systems [BCK98:8, BMR+96:2, Bos00:5, Mar94:DD,
Mey97:30, Pre97:28].

3–4 © IEEE – Trial Version 1.00 – May 2001

 Error and exception handling and fault tolerance: how
to prevent and tolerate faults and deal with exceptional
conditions [LG01:4, Mey97:12, Pfl98:5].

 Interactive systems: which approach to use to interact
with users [BCK98:6, BMR+96:2.4, Bos00:5, LG01:13,
Mey97:32].
(Note: this topic is not about the specifications of the details
of the user interface, which would be considered the task of
the UI design, a topic beyond the scope of the current KA.)

 Persistence: how long-lived data is to be handled
[Bos00:5, Mey97:31].

III. Software Structure and Architecture

In its strict sense, “a software architecture is a description
of the subsystems and components of a software system
and the relationships between them” [BMR+96:6]. An
architecture thus attempts to define the internal structure –
“the way in which something is constructed or organized”
(Oxford dictionary) – of the resulting software. During the
mid-90s, however, Software Architecture started to emerge
as a broader discipline involved with studying software
structures and architectures in a more generic way [SG96].
This gave rise to a number of interesting notions involved
with the design of software at different levels of abstrac-
tion. Some of these notions can be useful during the archi-
tectural design (e.g., architectural style) as well as during
the detailed design (e.g., lower-level design patterns) of a
specific software system. But they can also be useful for
designing generic systems, leading to the design of families
of systems (aka. product lines). Interestingly, most of these
notions can be seen as attempts to describe, and thus reuse,
generic design knowledge.

 Architectural structures and viewpoints: Different high-
level facets of a software design can and should be
described and documented. These facets are often called
views: “a view represents a partial aspect of a software
architecture that shows specific properties of a software
system” [BMR+96]. These different views pertain to
different issues associated with the design of software,
for example, the logical view (satisfying the functional
requirements) vs. the process view (concurrency issues)
vs. the physical view (distribution issues) vs. the
development view (how the design is broken down into
implementation units). Other authors use different
terminologies, e.g., behavioral vs. functional vs. struc-
tural vs. data modeling views. The key idea is that a
software design is a multi-faceted artifact produced by
the design process and generally composed of relatively
independent and orthogonal views [BCK98:2,
BMR+96:6, BRJ99:31, Bud94:5, IEE98].

 Architectural styles (macro-architectural patterns): An
architectural style is “a set of constraints on an
architecture [that] define a set or family of architectures
that satisfy them” [BCK98:2]. An architectural style can
thus be seen as a meta-model that can provide the high-
level organization (the macro-architecture) of a

software system. A number of major styles have been
identified by various authors. These styles can
(tentatively) be organized as follows [BCK98:5,
BMR+96:1,6, Bos00:6, BRJ99:28, Pfl98:5]:
- General structure (e.g., layers, pipes and filters,

blackboard);
- Distributed systems (e.g., client-server, three-tiers,

broker);
- Interactive systems (e.g., Model-View-Controller,

Presentation-Abstraction-Control);
- Adaptable systems (e.g., micro-kernel, reflection);
- Other styles (e.g., batch, interpreters, process

control, rule-based).
 Design patterns (micro-architectural patterns):

Described succinctly, a pattern is “a common solution
to a common problem in a given context”
[JBR99:p. 447]. Whereas architectural styles can be
seen as patterns describing the high-level organization
of software systems, thus their macro-architecture, other
design patterns can be used to describe details at a
lower, more local level, thus describing their micro-
architecture. A wide range of patterns have been
discussed in the literature. Such design patterns can
(tentatively) be categorized as follows [BCK98:13,
BMR+96:1, BRJ99:28]:
- Creational patterns: e.g., builder, factory, prototype,

singleton.
- Structural patterns: e.g., adapter, bridge, composite,

decorator, façade, flyweight, proxy.
- Behavioral patterns: e.g., command, interpreter,

iterator, mediator, memento, observer, state,
strategy, template, visitor.

 Families of programs and frameworks: One possible
approach to allow the reuse of software designs and
components is to design families of systems – also
known as software product lines – which can be done
by identifying the commonalities among members of
such families and by using reusable and customizable
components to account for the variability among the
various members of the family [BCK98:15, Bos00:7,10,
Pre97:26].
In the field of OO programming, a key related notion is
that of framework [BMR+96:6, Bos00:11, BRJ99:28]: a
framework is a partially complete software subsystem
which can be extended by appropriately instantiating
some specific plug-ins (also known as hot spots).

IV. Software Design Quality Analysis and Evaluation

A whole knowledge area is dedicated to Software Quality
(see chapter 11). Here, we simply mention a number of
topics more specifically related with software design.

 Quality attributes: Various attributes are generally
considered important for obtaining a design of good

© IEEE – Trial Version 1.00 – May 2001 3–5

quality, e.g., various “ilities” (e.g., maintainability,
portability, testability, traceability), various “nesses”
(e.g., correctness, robustness), including “fitness of pur-
pose” [BMR+96:6, Bos00:5, Bud97:4, Mar94:D,
Mey97:3, Pfl98:5]. An interesting distinction is the one
between quality attributes discernable at run-time (e.g.,
performance, security, availability, functionality,
usability), those not discernable at run-time (e.g.,
modifiability, portability, reusability, integrability and
testability) and those related with the intrinsic qualities
of the architecture (e.g., conceptual integrity,
correctness and completeness, buildability) [BCK98:4].

 Quality analysis and evaluation tools: There exists a
variety of tools and techniques that can help ensure the
quality of a design. These can be decomposed into a
number of categories:
- Software design reviews: informal or semi-formal,

often group-based, techniques to verify and ensure
the quality of design artifacts, e.g., architecture
reviews [BCK98:10], design reviews and inspections
[Bud94:4, FW83:VIII, Jal97:5,7, LG01:14, Pfl98:5],
scenario-based techniques [BCK98:9, Bos00:5],
requirements tracing [DT97:6, Pfl98:10].

- Static analysis: formal or semi-formal static (non-
executable) analysis that can be used to evaluate a
design, e.g., fault-tree analysis or automated cross-
checking [Jal97:5, Pfl98:5].

- Simulation and prototyping: dynamic techniques to
evaluate a design, e.g., performance simulation or
feasibility prototype [BCK98:10, Bos00:5, Bud94:4,
Pfl98:5].

 Measures: Formal measures (a.k.a. metrics) can be used
to estimate, in a quantitative way, various aspects of the
size, structure or quality of a design. Most measures that
have been proposed generally depend on the approach
used for producing the design. These measures can thus
be classified in two broad categories:
- Function-oriented (structured) design measures:

these measures are used for designs developed using
the structured design approach, where the emphasis
is mostly on functional decomposition. The structure
of the design is generally represented as a structure
chart (sometimes called a hierarchical diagram), on
which various measures can be computed [Jal97:5,7,
Pre97:18].

- Object-oriented design measures: these measures are
used for designs based on object-oriented
decomposition. The overall structure of the design is
often represented as a class diagram, on which
various measures can be defined [Jal97:6,7,
Pre97:23]. Measures can also be defined on pro-
perties of the internal content of each class.

V. Software Design Notations

A large number of notations and languages exist to
represent software design artifacts. Some are used mainly
to describe the structural organization of a design, whereas
others are used to represent the behavior of such software
systems. Note that certain notations are used mostly during
architectural design whereas others are useful mainly
during detailed design, although some can be used in both
steps. In addition, some notations are used mostly in the
context of certain specific methods (see section VI). Here,
we categorize them into notations for describing the
structural (static) view vs. the behavioral (dynamic) view.
 Structural descriptions (static view): These notations,

mostly (but not always) graphical, can be used to
describe and represent the structural aspects of a
software design, that is, to describe what the major
components are and how they are interconnected (static
view).
- Architecture Description Languages (ADL): textual,

often formal, languages used to describe an
architecture in terms of components and connectors
[BCK98:12];

- Class and object diagrams: diagrams used to show a
set of classes (and objects) and their relationships
[BRJ99:8,14, Jal97:5-6];

- Component diagrams: used to show a set of
components (“physical and replaceable part of a
system that conforms to and provides the realization
of a set of interfaces” [BRJ99]) and their
relationships [BRJ99:12,31]

- CRC Cards: used to denote the name of components
(class), their responsibilities and the names of their
collaborating components [BRJ99:4, BMR+96];

- Deployment diagrams: used to show a set of
(physical) nodes and their relationships and, thus, to
model the physical aspects of a system [BRJ99:30];

- Entity-Relationship Diagrams (ERD): used to define
conceptual models of data stored in information
systems [Bud94:6, DT97:4, Mar94:DR];

- Interface Description Languages (IDL):
programming-like languages used to define the
interface (name and types of exported operations) of
software components [BCK98:8, BJR99:11];

- Jackson structure diagrams: used to describe the
structure of data in terms of sequence, selection and
iteration [Bud94.6, Mar94:DR];

- Structure charts: used to describe the calling structure
of programs (which procedure/module calls/is called
by which other) [Bud94:6, Jal97:5, Mar94:DR,
Pre97:14];

 Behavioral descriptions (dynamic view): These notations
and languages are used to describe the dynamic behavior
of systems and components. Such notations include

3–6 © IEEE – Trial Version 1.00 – May 2001

various graphical notations (e.g., activity diagrams,
DFD, sequence diagrams, state transition diagrams) as
well as some textual notations (e.g., formal specification
languages, pseudo-code and PDL). Many of these
notations are useful mostly, but not exclusively, during
detailed design.
- Activity diagrams: used to show the flow of control

from activity (“ongoing non-atomic execution within
a state machine”) to activity [BRJ99:19];

- Collaboration diagrams: used to show the interactions
that occur among a group of objects, where the
emphasis is on the objects, their links and the
messages they exchange on these links [BRJ99:18];

- Data flow diagrams: used to show the flow of data
among a set of processes [Bud94:6, Mar94:DR,
Pre97:14];

- Decision tables and diagrams: used to represent
complex combination of conditions and actions
[Pre97:14];

- Flowcharts and structured flowcharts: used to
represent the flow of control and the associated
actions to be performed [FW83:VII, Mar94:DR,
Pre97:14];

- Formal specification languages: textual languages
that use basic notions from mathematics (e.g., logic,
set, sequence) to rigorously and abstractly define the
interface and behavior of software components, often
in terms of pre/post-conditions: [Bud94:14, DT97:5,
Mey97:11];

- Pseudo-code and Program Design Languages (PDL):
structured, programming-like languages used to
describe, generally at the detailed design stage, the
behavior of a procedure or method [Bud94:6,
FW83:VII, Jal97:7, Pre97:12,14];

- Sequence diagrams: used to show the interactions
among a group of objects, with the emphasis on the
time-ordering of messages [BRJ99:18];

- State transition and statechart diagrams: used to show
the flow of control from state to state in a state
machine [BRJ99:24, Bud94:6, Mar94:DR, Jal97:7].

VI. Software Design Strategies and Methods

Various general strategies can be used to help guide the
design process [Bud94:8, Mar94:D]. By contrast with
general strategies, methods are more specific in that they
generally suggest and provide i) a set of notations to be
used with the method; ii) a description of the process to be
used when following the method; iii) a set of heuristics that
provide guidance in using the method [Bud97:7]. Such
methods are useful as a means of transferring knowledge
and as a common framework for teams of developers
[Bud97:7]. In the following paragraphs, a number of
general strategies are first briefly mentioned, followed by a
number of methods.

 General strategies: Some often cited examples of
general strategies useful in the design process are
divide-and-conquer and stepwise refinement [FW83:V],
top-down vs. bottom-up strategies [Jal97:5, LG01:13],
data abstraction and information hiding [FW83:V], use
of heuristics [Bud94:7], use of patterns and pattern
languages [BMR+96:5], use of an iterative and
incremental approach [Pfl98:2].

 Function-oriented (structured) design [DT97:5,
FW83:V, Jal97:5, Pre97:13-14]: This is one of the
classical approach to software design, where the
decomposition is centered around the identification of
the major systems functions and their elaboration and
refinement in a top-down manner. Structured design is
generally used after structured analysis has been
performed, thus producing, among other things,
dataflow diagrams and associated processes
descriptions. Various strategies (e.g., transformation
analysis, transaction analysis) and heuristics (e.g., fan-
in/fan-out, scope of effect vs. scope of control) have
been proposed to transform a DFD into a software
architecture generally represented as a structure chart.

 Object-oriented design [DT97:5, FW83:VI, Jal97:6,
Mar94:D, Pre97:19,21]: Numerous software design
methods based on objects have been proposed. The field
evolved from the early object-based design of the mid-
1980’s (noun = object; verb = method; adjective =
attribute) through object-oriented design, where
inheritance and polymorphism play a key role, and to
the field of component-based design, where meta-
information can be defined and accessed (e.g., through
reflection). Although object-oriented design’s deep
roots stem from the concept of data abstraction, the
notion of responsibility-driven design has also been
proposed as an alternative approach to object-oriented
design.

 Data-structure centered design [FW83:III,VII,
Mar94:D]: Although less popular in North America
than in Europe, there has been some interesting work
(e.g., Jackson, Warnier-Orr) on designing a program
starting from the data structures it manipulates rather
than from the function it performs. The structures of the
input and output data are first described (e.g., using
Jackson structure diagrams) and then the control
structure of the program is developed based on these
data structure diagrams. Various heuristics have been
proposed to deal with special cases, for example, when
there is mismatch between the input and output
structures.

 Other methods: Although software design based on
functional decomposition or on object-oriented
approaches are probably the most well-known methods
to software design, other interesting approaches,
although probably less “mainstream”, do exist, e.g.,
formal and rigorous methods [Bud94:14, DT97:5,

© IEEE – Trial Version 1.00 – May 2001 3–7

Mey97:11, Pre97:25], transformational methods
[Pfl98:2].

4. BREAKDOWN RATIONALE

This section explains the rationale behind the breakdown of
topics for the Software Design KA. This is done informally
by going through a number of the requirements described in
the “Knowledge Area Description Specifications for the
Stone Man Version of the Guide to the SWEBOK” (see
Appendix A of the whole Guide) and by trying to explain
how these requirements influenced the organization and
content of the Software Design KA description.
First and foremost, the breakdown of topics must describe
“generally accepted” knowledge, that is, knowledge for
which there is a “widespread consensus”. Furthermore, and
this is clearly where this becomes difficult, such knowledge
must be “generally accepted” today and expected to be so
in a 3 to 5 years timeframe. This latter requirement first
explains why elements related with software architecture
(see below), including notions related with architectural
styles have been included, even though these are relatively
recent topics that might not yet be generally accepted.
The need for the breakdown to be independent of specific
application domains, life cycle models, technologies,
development methods, etc., and to be compatible with the
various schools within software engineering, is particularly
apparent within the “Software Design Strategies and
Methods” section. In that section, numerous approaches
and methods have been included and references given. This
is also the case in the “Software Design Notations”, which
incorporates pointers to many of the existing notations and
description techniques for software design artifacts.
Although many of the design methods use specific design
notations and description techniques, many of these
notations are generally useful independently of the
particular method that uses them. Note that this is also the
approach used in many software engineering books,
including the recent UML series of books by Booch,
Jacobson and Rumbaugh, which describe “The Unified
Modeling Language” apart from “The Unified Software
Development Process”.
One point worth mentioning about UML is that although
“UML” (Unified Modeling Language) is not explicitly
mentioned in the Design Notations section, many of its
elements are indeed present, for example: class and object
diagrams, collaboration diagrams, deployment diagrams,
sequence diagrams, statecharts.
The specifications document also specifically asked that the
breakdown be as inclusive as possible and that it includes
topics related with quality and measurements. Thus, a
certain number of topics have been included in the list of
topics even though they may not yet be fully considered as
generally accepted. For example, although there are a
number of books on measures and metrics, design measures
per se are rarely discussed in detail and few “mainstream”

software engineering books formally discuss this topic. But
they are indeed discussed in some books and may become
more mainstream in the coming years. Note that although
those measures can sometimes be categorized into high-
level (architectural) design vs. component-level (detailed)
design, the way such measures are defined and used gene-
rally depend on the approach used for producing the design,
for example, structured vs. object-oriented design. Thus,
the measures sub-topics have been divided into function-
(structured-) vs. object-oriented design. As the software
engineering field matures and classes of software designs
evolve, the measures appropriate to each class will become
more apparent.
Similarly, there may not yet be a generally accepted list of
basic principles and concepts (what was called here the
“enabling techniques”: see next paragraph for the choice of
these terms) on which all authors and software engineers
would agree. Only those that seemed the most commonly
cited in the literature were included.
As required by the KA Description Specifications, the
breakdown is at most three levels deep and use topic names
which, based on our survey of the existing literature and on
the various reviewers’ comments, should be meaningful
when cited outside Guide to the SWEBOK. One possible
exception might be the use of the terms “enabling
techniques”, taken from [BMR+96]. In the current context,
the term “concept” seemed too general, not specific
enough, whereas the term “principle”, sometimes used in
the literature for some of these notions, sounded too strong
(see the definition provided in Section 3).
The rationale for the section “Key Issues in Software
Design” is that a number of reviewers of an earlier version
suggested that certain topics, not explicitly mentioned in
that previous version, be added, e.g., concurrency and
multi-threading, exception handling. Although some of
these aspects are addressed by some of the existing design
methods, it seemed appropriate that these key issues be
explicitly identified and that more specific references be
given for them, thus the addition of this new section.
However, like for the enabling techniques, there does not
seem to yet be a complete consensus on what these issues
should be, what aspects they should really be addressing,
especially since some of those that have been indicated may
also be addressed by other topics (e.g., quality). Thus, this
section should be seen as a tentative and prototype
description that could yet be improved: the author of the
Software Design KA Description would gladly welcome
any suggestions that could improve and/or refine the con-
tent of this section.
In the KA breakdown, as mentioned earlier, an explicit
“Software Architecture” section has been included. Here,
the notion of “architecture” is to be understood in the large
sense of defining the structure, organization and interfaces
of the components of a software system, by opposition to
producing the “detailed design” of the specific components.
This is what really is at the heart of Software Design. Thus,

3–8 © IEEE – Trial Version 1.00 – May 2001

the “Software Architecture” section includes topics which
pertain to the macro-architecture of a system – what is now
becoming known as “Architecture” per se, including
notions such as “architectural styles” and “family of
programs” – as well as topics related with the micro-
architecture of the smaller subsystems – for example,
lower-level design patterns which can be used at the
detailed design state. Although some of these topics are
relatively new, they should become much more generally
accepted within the 3-5 years timeframe expected from the
Guide to the SWEBOK specifications. By contrast, note
that no explicit “Detailed Design” section has been
included: topics relevant to detailed design can implicitly
be found in many places: the “Software Design Notations”
and “Software Design Strategies and Methods” sections,
“Software Architecture” (design patterns), as well as in
“The software design process” subsection.
The “Software Design Strategies and Methods” section has
been divided, as is done in many books discussing software
design, in a first section that presents general strategies,
followed by subsequent sections that present the various
classes of approaches (data-, function-, object-oriented or
other approaches). For each of these approaches, numerous
methods have been proposed and can be found in the
software engineering literature. Because of the limit on the
number of references, mostly general references have been
given, pointers that can then be used as starting point for
more specific references.
Another issue, alluded to in the introduction but worth
explaining in more detail, is the exclusion of a number of
topics which contain the word “design” in their name and
which, indeed, pertain to the development of software
systems. Among these are the followings: User Interface
Design, Real-time Design, Database Design, Participatory
Design, Collaborative Design. The first two topics were
specifically excluded, in the Straw Man document
[BDA+98], from the Software Design KA: User Interface
Design was considered to be a related discipline (see the
Relevant knowledge areas of related disciplines, where
both Computer Science and Cognitive Sciences can be
pertinent for UI Design) whereas Real-time Design was
considered a specialized sub-field of software design, thus
did not have to be addressed in this KA description. The
third one, Database Design, can also be considered a rele-
vant (specialized) knowledge area of a related discipline
(Computer Science). Note that issues related with user-
interfaces and databases still have to be dealt with during
the software design process, which is why they are
mentioned in the “Key Issues in Software Design” section.
However, the specific tasks of designing the details of the
user interface or database structure are not considered part
of Software Design per se. Note also that UI Design is not
really part of design for an additional reason: UI Design

deals with specifying the external view of the system, not
its internal structure and organization, thus should really be
considered part of requirements specification.
As for the last two topics – Participatory and Collaborative
Design –, they are more appropriately related with the
Requirements Engineering KA, rather than Software
Design. In the terminology of DeMarco (DeM99), these
latter two topics belong more appropriately to I-Design
(invention design, done by system analysts) rather than D-
design (decomposition design, done by designers and
coders) or FP-design (family pattern design, done by
architecture groups). It is mainly D-design and FP-design,
with a major emphasis on D-design, that can be considered
as generally accepted knowledge related with Software
Design.
Finally, concerning standards, there seems to be few
standards that directly pertain to the design task or work
product per se. However, standards having some indirect
relationships with various issues of Software Design do
exist, e.g., OMG standards for UML or CORBA. Since the
need for the explicit inclusion of standards in the KA
breakdown has been put aside (“Proposed changes to the
[…] specifications […]”, Dec. 1999), a few standards
having a direct connection with the Software Design KA
were included in the Recommended references section. A
number of standards related with design in a slightly more
indirect fashion were also added to the list of further
readings. Finally, additional standards having only an
indirect yet not empty connection with design were simply
mentioned in the general References section. As for topics
related with tools, they are now part of the Software
Development Methods and Tools KA.

5. MATRIX OF TOPICS VS. REFERENCE MATERIAL

The figure below presents a matrix showing the coverage of
the topics of the Software Design KA by the various
recommended references described in more detail in the
following section. A number in an entry indicates a specific
section or chapter number. A “*” indicates a reference to
the whole document, generally either a journal paper or a
standard. An interval of the form “n1-n2” indicates a
specific range of pages, whereas an interval of the form
“n1:n2” indicates a range of sections. For Mar94, the letters
refer to one of the encyclopedia’s entry: “D” = Design;
“DR” = Design Representation; “DD” = Design of
Distributed systems”.
Note: Only the top two levels of the breakdown have been
indicated in the matrix. Otherwise, especially in the
“Software Design Notations” subsections, this would have
lead to very sparse lines (in an already quite sparse matrix).

© IEEE – Trial Version 1.00 – May 2001 3–9

 B
C

K
98

B
M

R
+96

B
os00

B
R

J99

B
ud94

D
T97

FW
83

IEE98

ISO
95b

Jal97

LG
01

M
ar94

M
ey97

Pfl98

Pre97

SB
93

I. Software Design
Basic Concepts

General design
concepts

 1 *

The context of
software design

 * 11.1 D 2.2 2.2 :
2.7

The software design
process

2.1,
2.4

 2 266-
276

2-22 * * 13.1
13.2

D 13.8

Enabling techniques 6.1 6.3 10.3 * 5.1,
5.2,
6.2

1.1,
1.2,

3.1:3.
3,

77-
85,
5.8,
125-
128,9
.1:9.3

 5.2,
5.5

13.4,
13.5,
23.2

II. Key issues in
software design

Concurrency 5.4.1 DD 30 21.3
Control and events 5.2 32.4,

32.5
5.3

Distribution 8.3,
8.4

2.3 5.4.1 DD 30 28.1

Exception handling 4.3:4.
5

 12 5.5

Interactive systems 6.2 2.4 5.4.1 13.3 32.2
Persistence 5.4.1 31
III. Software
structure and
architecture

Architectural structures
and viewpoints

2.5 6.1 31 5.2 *

Architectural styles
and patterns (macro-
arch.)

5.1,
5.2,
5.4

1.1:
1.3,
6.2

6.3.1 28 5.3

Design patterns
(micro-arch.)

13.3 1.1:
1.3

 28

Families of programs
and frameworks

15.1,
15.3

6.2 7.1,
7.2,

10.2:
10.4,
11.2,
11.4

28 26.4

IV. Software design
quality analysis and
evaluation

Quality attributes 4.1 6.4 5.2.3 4.1:
4.3

 D 3 5.5

Quality analysis and
evaluation

9.1,
9.2,
10.2,
10.3

 5.2.1
5.2.2
5.3,
5.4

 4.4 266-
276

542-
576

 5.5,
7.3

14.1 5.6,
5.7,
10.5

Measures 5.6,
6.5,
7.4

 18.4,
23.4,
23.5

3–10 © IEEE – Trial Version 1.00 – May 2001

 B
C

K
98

B
M

R
+96

B
os00

B
R

J99

B
ud94

D
T97

FW
83

IEE98

ISO
95b

Jal97

LG
01

M
ar94

M
ey97

Pfl98

Pre97

SB
93

V. Software design
notations

Structural descriptions
(static)

8.4,
12.1,
12.2

p.
429

 4, 8,
11,
12,
14,
30,
31

6.3,
6.4,
6.6

 5.3,
6.3

 DR 12.3,
12.4

Behavioral
descriptions (dynamic)

 18,
19,
24

6.2,
6.7:
6.9,

14.2.2
14.3.2

181-
192

485-
490,
506-
513

 5.3,
7.2

 DR 11 14.11
12.5

VI. Software design
strategies and
methods

General strategies 5.1:
5.4

 7.1,
7.2,

8

 304-
320,
533-
539

 5.1.4 13.13 D 2.2

Function-oriented
design

 170-
180

328-
352

 5.4 13.5,
13.6,
14.3:
14.5

OO design 148-
159,
160-
169

420-
436

 6.4 D 19.2,
19.3,
21.1:
21.3

Data-centered design 201-
210,5
14-
532

 D

Other methods 14 181-
192

395-
407

 11 2.2 25.1:
25.3

6. RECOMMENDED REFERENCES FOR SOFTWARE
DESIGN

In this section, we give a brief presentation of each of the
recommended references. Note that few references to
existing standards have been included in this list, for the
reasons explained in Section 4; instead, references to
interesting standards have been included in the list of
further readings. Also note that, because of the constraints
on the size of the recommended references list, few specific
and detailed references have been given for the various
design methods; instead, general software engineering
textbook references have been given. See the list of further
readings in section 7 for more precise and detailed
references on such methods, especially for references to
various OO design methods.
Finally, also note that, both in this section and the follo-
wing, only the author(s) and title of the recommended
reference are given, together with an appropriate key that
then refers to an entry in the general and detailed
References section at the end of the chapter.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice, Addison-Wesley.
A recent and major work on software architecture. It covers
all the major topics associated with software architecture:
what software architecture is, quality attributes,
architectural styles, enabling concepts and techniques
(called unit operations), architecture description languages,
development of product lines, etc. Furthermore, it presents
a number of case studies illustrating major architectural
concepts, including a chapter on CORBA and one on the
WWW. Some sections also address the issue of product
lines design.
[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal. Pattern-oriented Software
Architecture – A System of Patterns, J. Wiley and Sons.
Probably one of the best and clearest introduction to the
notions of software architecture and patterns (both
architectural and lower-level ones). Distinct chapters are
dedicated to architectural patterns, design patterns and
lower-level idioms. Another chapter discusses the
relationships between patterns, software architecture,
methods, frameworks, etc. This chapter also includes an

© IEEE – Trial Version 1.00 – May 2001 3–11

brief presentation of “enabling techniques for software
architecture”, e.g., abstraction, encapsulation, information
hiding, coupling and cohesion, etc.
[Bos00] J. Bosch. Design & Use of Software Architectures
– Adopting and Evolving a Product-line Approach, ACM
Press.
The first part of this book is about the design of software
architectures and proposes a functionality-based approach
coupled with subsequent phases of evaluation and
transformation of the resulting architecture. These
transformations are expressed in terms of different levels of
patterns (architectural styles, architectural patterns and
design patterns) and the impact they have on a number of
key quality factors (performance, maintainability, reliability
and security). The second part of the book is more
specifically about the design of software product lines,
including a whole chapter on OO frameworks.
[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modeling Language User Guide, Addison-Wesley.
A comprehensive and thorough presentation of the various
elements of UML, which incorporates many of the
notations mentioned in the “Software Design Notations”
section.
[Bud94] D. Budgen. Software Design, Addison-Wesley.
One of the few books discussing software design known to
the author of the SD KA description – maybe the only one
– which is neither a general software engineering textbook
nor a book describing a specific software design method.
This is probably the book that comes closest to the spirit of
the present Software Design KA description, as it discusses
topics such as the followings: the nature of design; the
software design process; design qualities; design
viewpoints; design representations; design strategies and
methods (including brief presentations of a number of such
methods, e.g., JSP, SSASD, JSD, OOD, etc.). Worth
reading to find, in a single book, many notions, views and
approaches to/about software design.
[DT97] M. Dorfman and R.H. Thayer (eds.). Software
Engineering, IEEE Computer Society.
This book contains a collection of papers on software
engineering in general. Two chapters deal more specifically
with software design. One of them contains a general
introduction to software design, briefly presenting the
software design process and the notions of software design
methods and design viewpoints. The other chapter contains
an introduction to object-oriented design and a comparison
of some existing OO methods. The following articles are
particularly interesting for Software Design:

 D. Budgen, Software Design: An Introduction, pp. 104-
115.

 L.M. Northrop, Object-Oriented Development, pp. 148-
159.

 A.G. Sutcliffe, Object-Oriented Systems Development:
A Survey of Structured Methods, pp.160-169.

 C. Ashworth, Structured Systems Analysis and Design
Method (SSADM), pp. 170-180.

 R. Vienneau, A Review of Formal Methods, pp. 181-
192.

 J.D. Palmer, Traceability, pp. 266-276.
[FW83] P. Freeman and A.I. Wasserman. Tutorial on
Software Design Techniques, 4th edition, IEEE Computer
Society Press.
Although this is an old book, it is an interesting one
because it allows to better understand the evolution of the
software design field. This book is a collection of papers
where each paper presents a software design technique. The
techniques range from basic strategies like stepwise
refinement to, at the time, more refined methods such as
structured design à la Yourdon and Constantine. An
historically important reference. The following articles are
particularly interesting:

 P. Freeman, Fundamentals of Design, pp. 2-22.
 D.L. Parnas, On the Criteria to be Used in Decomposing

Systems into Modules, pp. 304-309.
 D.L. Parnas, Designing Software for Ease of Extension

and Contraction, pp. 310-320.
 W.P. Stevens, G.J. Myers and L.L. Constantine,

Structured Design, pp. 328-352.
 G. Booch, Object-Oriented Design, pp. 420-436.
 S.H. Caine and E.K. Gordon, PDL – A Tool for

Software Design, pp. 485-490.
 C.M. Yoder and M.L. Schrag, Nassi-Schneiderman

Charts: An Alternative to Flowcharts for Design, pp.
506-513.

 M.A. Jackson, Constructive Methods of Program
Design, pp. 514-532.

 N. Wirth, Program Development by Stepwise
Refinement, pp. 533-539.

 P. Freeman, Toward Improved Review of Software
Design, pp. 542-547.

 M.E. Fagan, Design and Code Inspections to Reduce
Errors in Program Development, pp. 548-576.

[IEE98] IEEE Std 1016-1998. IEEE Recommended
Practice for Software Design Descriptions.
This document describes the information content and
recommended organization that should be used for software
design descriptions. The attributes describing design
entities are briefly described: identification, type, purpose,
function, subordinates, dependencies, interfaces, resources,
processing and data. How these different elements should
be organized is then presented.
[ISO95b] ISO/IEC Std 12207. Information technology –
Software life cycle processes.

3–12 © IEEE – Trial Version 1.00 – May 2001

A detailed description of the ISO/IEC-12207 life cycle
model. Clearly shows where Software Design fits in the
whole software development life cycle.
[Jal97] P. Jalote. An integrated approach to software
engineering, 2nd ed., Springer-Verlag.
A general software engineering textbook with a good
coverage of software design, as three chapters discuss this
topic: one on function-oriented design, one on object-
oriented design, and the other on detailed design. Another
interesting point is that all these chapters have a section on
measures and metrics.
[LG01] B. Liskov and J. Guttag. Program Development in
Java – Abstraction, Specification, and Object-Oriented
Design, Addison-Wesley, 2000.
A Java version of a classic book on the use of abstraction
and specification in software development [LG86]. This
new book still discusses, in a clear and insightful way, the
notions of procedural vs. data vs. control (iteration)
abstractions. It also stresses the importance of appropriate
specifications of these abstractions, although this is now
done rather informally (with stylized pre/post-conditions in
the style of Clu [LG86]). The book also contains a chapter
on design patterns. A very good introduction to some of the
basic notions of design.
[Mar94] J.J. Marciniak. Encyclopedia of Software
Engineering, J. Wiley and Sons.
A general software engineering encyclopedia that contains
(at least) three interesting articles discussing software
design. The first one, “Design” (K. Shumate), is a general
overview of design discussing alternative development
processes (e.g., waterfall, spiral, prototyping), design
methods (structured, data-centered, modular, object-
oriented). Some issues related with concurrency are also
mentioned. The second one discusses the “Design of
distributed systems” (R.M. Adler): communication models,
client-server and services models. The third one, “Design
representation” (J. Ebert), presents a number of approaches
to the representation of design. It is clearly not a detailed
presentation of any method; however, it is interesting in
that it tries to explicitly identify, for each such method, the
kinds of components and connectors used within the
representation.
[Mey97] B. Meyer. Object-Oriented Software Construction
(Second Edition), Prentice-Hall, 2000.
A detailed presentation of the Eiffel OO language and its
associated Design-By-Contract approach, which is based on
the use of formal assertions (pre/post-conditions, invariants,
etc). It introduces the basic concepts of OO design, along
with a discussion of many of the key issues associated with
software design, e.g., user interface, exceptions,
concurrency, persistence.
[Pfl98] S.L. Pfleeger. Software Engineering – Theory and
Practice, Prentice-Hall.

A general software engineering book with one chapter
devoted to design. Briefly presents and discusses some of
the major architectural styles and strategies and some of the
concepts associated with the issue of concurrency. Another
section presents the notions of coupling and cohesion and
also deals with the issue of exception handling. Techniques
to improve and to evaluate a design are also presented:
design by contract, prototyping, reviews. Although this
chapter does not delve into any topic, it can be an
interesting starting point for a number of issues not
discussed in some of the other general software engineering
textbooks.
[Pre97] R.S. Pressman. Software Engineering – A
Practitioner’s Approach (Fourth Edition), McGraw-Hill.
A classic general software engineering textbook (4th
edition!). It contains over 10 chapters that deal with notions
associated with software design in one way or another. The
basic concepts and the design methods are presented in two
distinct chapters. Furthermore, the topics pertaining to the
function-based (structured) approach are separated (part III)
from those pertaining to the object-oriented approach (part
IV). Independent chapters are also devoted to measures
applicable to each of those approaches, a specific section
addressing the measures specific to design. A chapter
discusses formal methods and another presents the Clean-
room approach. Finally, another chapter discusses client-
server systems and distribution issues.
[SB93] G. Smith and G. Browne. Conceptual foundations
of design problem-solving, IEEE Transactions on Systems,
Man and Cybernetics, vol. 23, no. 5 Sep-Oct. 1993, pp.
1209-1219.
A paper that discusses what is design in general. More
specifically, it presents the five basic concepts of design:
goals, constraints, alternatives, representations, and
solutions. The bibliography is a good starting point for
obtaining additional references on design in general.

© IEEE – Trial Version 1.00 – May 2001 3–13

APPENDIX A – LIST OF FURTHER READINGS

The following section suggests a list of additional reading
material related with Software Design. A number of
standards are mentioned; additional standards that may be
pertinent or applicable to Software Design, although in a
somewhat less direct way, are also mentioned, although not
further described, in the general References section at the
end of the document.
[Boo94] G. Booch. Object Oriented Analysis and Design
with Applications, 2nd ed.
A classic in the field of OOD. The book introduces a
number of notations that were to become part of UML
(although sometimes with some slight modifications): class
vs. objects diagrams, interaction diagrams, statecharts-like
diagrams, module and deployment, process structure dia-
grams, etc. It also introduces a process to be used for OOA
and OOD, both a higher-level (life cycle) process and a
lower-level (micro-) process. (Note that a third edition of
this book is expected.)
[Cro84] N. Cross (ed.). Developments in Design
Methodology.
This book consists in a series of papers related to design in
general, that is, design in other contexts than software. Still,
many notions and principles discussed in some of these
papers do apply to Software Design, e.g., the idea of design
as wicked-problem solving.
[CY91] P. Coad and E. Yourdon. Object-Oriented Design.
This is yet another classic in the field of OOD – note that
the second author is one of the father of classical Structured
Design. An OOD model developed with their approach
consists of the following four components that attempt to
separate how some of the key issues should be handled:
problem domain, human interaction, task management and
data management.
[DW99] D.F. D’Souza and A.C. Wills. Objects,
Components, and Frameworks with UML – The Catalysis
Approach.
A thorough presentation of a specific OO approach with an
emphasis on component design. The development of static,
dynamic and interaction models is discussed. The notions
of components and connectors are presented and illustrated
with various approaches (Java Beans, COM, Corba); how
to use such components in the development of frameworks
is also discussed. Another chapter discusses various aspects
of software architecture. The last chapter introduces a
pattern system for dealing with both high-level and detailed
design, the latter level touching on many key issues of
design such as concurrency, distribution, middleware,
dialogue independence, etc.
[Fow99] M. Fowler. Refactoring – Improving the Design of
Existing Code.

A book about how to improve the design of some existing
(object-oriented) code. The first chapter is a simple and
illustrative example of the approach. Subsequent chapter
present various categories of strategies, e.g., composing
methods, moving features between objects, organizing data,
simplifying conditional expressions, making methods calls
simpler.
 [FP97] N.E. Fenton and S.L. Pfleeger. Software Metrics –
A Rigorous & Practical Approach (Second Edition).
This book contains a detailed presentation of numerous
software measures and metrics. Although the measures are
not necessarily presented based on the software
development life cycle, many of those measures, especially
those in chapters 7 and 8, are applicable to software design.
[GHJV95] E. Gamma et al. Design Patterns – Elements of
Reusable Object-Oriented Software.
The seminal work on design patterns. A detailed catalogue
of patterns related mostly with the micro-architecture level.
[Hut94] A.T.F. Hutt. Object Analysis and Design –
Description of Methods. Object Analysis and Design –
Comparison of Methods.
These two books describe (first book) and compare (second
book), in an outlined manner, a large number of OO
analysis and design methods. Useful as a starting point for
obtaining additional pointers and references to OOD
methods, not so much as a detailed presentation of those
methods.
[IEE90] IEEE Std 610.12-1990. IEEE Standard Glossary of
Software Engineering Terminology.
This standard is not specifically targeted to Software
Design, which is why it has not been included in the
recommended references. It describes and briefly explains
many of the common terms used in the Software
Engineering field, including many terms from Software
Design.
[ISO91] ISO/IEC Std 9126. Information technology –
Software product evaluation – Quality characteristics and
guidelines for their use.
This standard describes six high-level characteristics that
describe software quality: functionality, reliability,
usability, efficiency, maintainability, portability.
[JBP+91] J. Rumbaugh et al. Object-Oriented Modeling
and Design.
This book is another classic in the field of OOA and OOD.
It was one of the first to introduce the distinctions between
object, dynamic and functional modeling. However,
contrary to [Boo94] whose emphasis is mostly on design,
the emphasis here is slightly more on analysis, although a
number of elements do apply to design too.
[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The
Unified Software Development Process.
A detailed and thorough presentation of the Unified
Software Development Process proposed by the Rational

3–14 © IEEE – Trial Version 1.00 – May 2001

Software Corporation. The notion of architecture plays a
central role in this development process, the process being
said to be architecture-centric. However, the associated
notion of architecture seems to be slightly different from
the traditional purely design-based one: an architecture
description is supposed to contain views not only from the
design model but also from the use-case, deployment and
implementation models. A whole chapter is devoted to the
presentation of the iterative and incremental approach to
software development. Another chapter is devoted to
design per se, whose goal is to produce both the design
model, which includes the logical (e.g., class diagrams,
collaborations, etc.) and process (active objects) views, and
the deployment model (physical view).
[Kru95] P.B. Kruchten. The 4+1 view model of
architecture.
A paper that explains in a clear and insightful way the
importance of having multiple views to describe an
architecture. Here, architecture is understood in the sense
mentioned earlier in reference [JBR99], not in its strictly
design-related way. The first four views discussed in the
paper are the logical, process, development and physical
views, whereas the fifth one (the “+1”) is the use case view,
which binds together the previous views. The views more
intimately related with Software Design are the logical and
process ones.
[Lar98] C. Larman. Applying UML and Patterns – An
introduction to Object-Oriented Analysis and Design.
An introductory book that covers object-oriented analysis
and design, doing so through a case study used throughout
the book. Part IV and VII are dedicated to the design phase.
They introduce a number of patterns to guide the
assignment of responsibilities to classes and objects.
Various issues regarding design are also addressed, e.g.,
multi-tiers architecture, model-view separation. The
patterns of [GHJV95] are also examined in the context of
the case study.
[McC93] S. McConnell. Code Complete.
Although this book is probably more closely related with
Software Construction, it does contain a section on
Software Design with a number of interesting chapters,
e.g., “Characteristics of a High-Quality Routines”, “Three
out of Four Programmers Surveyed Prefer Modules”,
“High-Level Design in Construction”. One of these
chapters (“Characteristics […]”) contains an interesting
discussion on the use of assertions in the spirit of Meyer’s
Design-by-Contract; another chapter (“Three […]”)
discusses cohesion and coupling as well as information
hiding; the other chapter (“High-Level […]”) gives a brief
introduction to some design methodologies (structured
design, OOD).
[otSESC98] Draft recommended practice for information
technology – System design – Architectural description.
Technical Report IEEE P1471/D4.1.

“This recommended practice establishes a conceptual
framework for architectural description. This framework
covers the activities involved in the creation, analysis, and
sustainment of architectures of software-intensive systems,
and the recording of such architectures in terms of architec-
tural descriptions.” (from the Abstract)
[Pet92] H. Petroski. To Engineer is Human – The role of
failure in successful design.
This book is not about software design per se. The author, a
civil engineer, discusses how a designer, an engineer can
and should learn from previous failures and how a design
should be seen as a kind of hypothesis to be tested.
Interestingly, considering that Software Design is only one
out of the 10 knowledge areas for software engineering, the
author “take[s] design and engineering to be virtually
synonymous”.
[PJ00] M. Page-Jones. Fundamentals of Object-Oriented
Design in UML.
Part III of this book (“Principles of object-oriented design”)
addresses a number of the enabling techniques in the
specific context of OO design. This part of the book
contains chapters such as the followings: Encapsulation and
connascence; Domains, encumbrance, and cohesion; Type
conformance and closed behavior; The perils of inheritance
and polymorphism. The book also contains a chapter on the
design of software components.
[Pre95] W. Pree. Design Patterns for Object-Oriented
Software Development.
This book is particularly interesting for its discussion of
framework design using what is called the “hot-spot
driven” approach to the design of frameworks. The more
specific topic of design patterns is better addressed in
[BMR+96].
[Rie96] A.J. Riel. Object-Oriented Design Heuristics.
This book, targeted mainly towards OO design, presents a
large number of heuristics that can be used in software
design. Those heuristics address a wide range of issues,
both at the architectural level and at the detailed design
level.
[SG96] M. Shaw, D. Garlan. Software architecture:
Perspectives on an emerging discipline.
One of the early book on software architecture that
addresses many facets of the topic: architectural styles
(including a chapter with a number of small case studies),
shared information systems, user-interface architectures,
formal specifications, linguistic issues, tools and education.
[Som95] I. Sommerville. Software Engineering (fifth
edition). Addison-Wesley, 1995.
Part Three is dedicated to software design, giving an
overview of a number of topics through the following
chapters: the design process, architectural design, OO
design, functional design. (Note: a sixth edition may
already be available.)

© IEEE – Trial Version 1.00 – May 2001 3–15

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.
Designing Object-Oriented Software.
A book that introduced the notion of responsibility-driven
design to OOD. Until then, OOD was often considered
synonymous with data abstraction-based design. Although
it is true that an object does encapsulate data and associated
behavior, focusing strictly on this aspect may not lead,
according to the responsibility-driven design approach, to
the best design.
[Wie98] R. Wieringa. A Survey of Structured and Object-
Oriented Software Specification Methods and Techniques.
An interesting survey article that presents a wide range of
notations and methods for specifying software systems and
components. It also introduces an interesting framework for
comparison based on the kinds of system properties to be
specified: functions, behavior, communication or
decomposition.

3–16 © IEEE – Trial Version 1.00 – May 2001

APPENDIX B – REFERENCES USED TO WRITE AND
JUSTIFY THE KNOWLEDGE AREA DESCRIPTION

[BCK98] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. SEI Series in Software
Engineering. Addison-Wesley, 1998.
[BDA+98] P. Bourque, R. Dupuis, A. Abran, J.W. Moore,
L. Tripp, J. Shyne, B. Pflug, M. Maya, and G. Tremblay.
Guide to the software engineering body of knowledge – a
straw man version. Technical report, Dépt. d’Informatique,
UQAM, Sept. 1998.
[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal. Pattern-oriented Software
Architecture – A System of Patterns. John Wiley & Sons,
1996.
[Boo94] G. Booch. Object Oriented Analysis and Design
with Applications, 2nd ed. The Benjamin/Cummings
Publishing Company, Inc., 1994.
[Bos00] J. Bosch. Design & Use of Software Architecture –
Adopting and Evolving a Product-line Approach. ACM
Press, 2000.
[BRJ99] G. Booch, J. Rumbauch, and I. Jacobson. The
Unified Modeling Language User Guide. Addison-Wesley,
1999.
[Bud94] D. Budgen. Software Design. Addison-Wesley,
1994.
[Cro84] N. Cross (ed.). Developments in Design
Methodology. John Wiley & Sons, 1984.
[CY91] P. Coad and E. Yourdon. Object-Oriented Design.
Yourdon Press, 1991.
[DeM99] T. DeMarco. The Paradox of Software
Architecture and Design. Stevens Prize Lecture, August
1999.
[DT97] M. Dorfman and R.H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997.
[DW99] D.F. D’Souza and A.C. Wills. Objects,
Components, and Frameworks with UML – The Catalysis
Approach. Addison-Wesley, 1999.
[Fow99] M. Fowler. Refactoring – Improving the Design of
Existing Code. Addison-Wesley, 1999.
[FP97] N.E. Fenton and S.L. Pfleeger. Software Metrics –
A Rigorous & Practical Approach (Second Edition).
International Thomson Computer Press, 1997.
[FW83] P. Freeman and A.I. Wasserman. Tutorial on
Software Design Techniques, fourth edition. IEEE
Computer Society Press, 1983.
[GHJV95] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides. Design Patterns – Elements of Reusable Object-
Oriented Software. Professional Computing Series.
Addison-Wesley, 1995.

[Hut94] A.T.F. Hutt. Object Analysis and Design –
Comparison of Methods. Object Analysis and Design –
Description of Methods. John Wiley & Sons, 1994.
[IEE88] IEEE. IEEE Standard Dictionary of Measures to
Produce Reliable Software. IEEE Std 982.1-1988, IEEE,
1988.
[IEE88b] IEEE. IEEE Guide for the Use of Standard
Dictionary of Measures to Produce Reliable Software.
IEEE Std 982.2-1988, IEEE, 1988.
[IEE90] IEEE. IEEE Standard Glossary of Software
Engineering Terminology. IEEE Std 610.12-1990, IEEE,
1990.
[IEE98] IEEE. IEEE Recommended Practice for Software
Design Descriptions. IEEE Std 1016-1998, IEEE, 1998.
[ISO91] ISO/IEC. Information technology – Software
product evaluation – Quality characteristics and guidelines
for their use. ISO/IEC Std 9126: 1991, ISO/IEC, 1991.
[ISO95] ISO/IEC. Open distributed processing – Reference
model. ISO/IEC Std 10746: 1995, ISO/IEC, 1995.
[ISO95b] ISO/IEC. Information technology – Software life
cycle processes. ISO/IEC Std 12207: 1995, ISO/IEC, 1995.
[Jal97] P. Jalote. An Integrated Approach to Software
Engineering, 2nd ed. Springer, 1997.
[JBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.
[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The
Unified Software Development Process. Addison-Wesley,
1999.
[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, and G.
Overgaard. Object-Oriented Software Engineering – A Use
Case Driven Approach. Addison-Wesley, 1992.
[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In ECOOP ‘97 – Object-Oriented
Programming, pages 220-242. LNCS-1241, Springer-
Verlag, 1997.
[Kru95] P.B. Kruchten. The 4+1 view model of
architecture. IEEE Software, 12(6):42–50, 1995.
[Lar98] C. Larman. Applying UML and Patterns – An
introduction to Object-Oriented Analysis and Design.
Prentice-Hall, 1998.
[LG86] B. Liskov and J. Guttag. Abstraction and
Specification in Program Development. The MIT Press,
1986.
[LG01] B. Liskov and J. Guttag. Program Development in
Java – Abstraction, Specification, and Object-Oriented
Design. Addison-Wesley, 2001.
[Mar94] J.J. Marciniak. Encyclopedia of Software
Engineering. John Wiley & Sons, Inc., 1994.
[McCr93] S. McConnell. Code Complete. Microsoft Press,
1993.

© IEEE – Trial Version 1.00 – May 2001 3–17

[Mey97] B. Meyer. Object-Oriented Software Construction
(Second Edition). Prentice-Hall, 1997.
[OMG98] OMG. The common object request broker:
Architecture and specification. Technical Report Revision
2.2, Object Management Group, February 1998.
[OMG99] UML Revision Task Force. OMG Unified
Modeling Language specification, v. 1.3. document ad/99-
06-08, Object Management Group, June 1999.
[otSESC98] Architecture Working Group of the Software
Engineering Standards Committee. Draft recommended
practice for information technology – System design –
Architectural description. Technical Report IEEE
P1471/D4.1, IEEE, December 1998.
[Pet92] H. Petroski. To Engineer is Human – The role of
failure in successful design. Vintage Books, 1992.
[Pfl98] S.L. Pfleeger. Software Engineering – Theory and
Practice. Prentice-Hall, Inc., 1998.
[PJ00] M. Page-Jones. Fundamentals of Object-Oriented
Design in UML. Addison-Wesley, 2000.
[Pre95] W. Pree. Design Patterns for Object-Oriented
Software Development. Addison-Wesley and ACM Press,
1995.
[Pre97] R.S. Pressman. Software Engineering – A
Practitioner’s Approach (Fourth Edition). McGraw-Hill,
Inc., 1997.
[Rie96] A.J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.
[SB93] G. Smith and G. Browne. Conceptual foundations
of design problem-solving. IEEE Trans. on Systems, Man,
and Cybernetics, 23(5):1209–1219, 1993.
[SG96] M. Shaw, D. Garlan. Software architecture:
Perspectives on an emerging discipline. Prentice-Hall,
1996.
[Som95] I. Sommerville. Software Engineering (fifth
edition). Addison-Wesley, 1995.
[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.
Designing Object-Oriented Software. Prentice-Hall, 1990.
[Wie98] R. Wieringa. A Survey of Structured and Object-
Oriented Software Specification Methods and Techniques.
ACM Computing Surveys, 30(4): 459–527, 1998.

