
© IEEE – Trial Version 1.00 – May 2001 4–1

CHAPTER 4

SOFTWARE CONSTRUCTION

Terry Bollinger
The MITRE Corporation

1820 Dolley Madison Blvd.,
W534 McLean, VA, 22102, USA

terry@mitre.org

Philippe Gabrini, Louis Martin
Department of Computer Science
Université du Québec à Montréal

C.P. 8888, Succ. Centre-Ville
Montréal, Québec, H3C 3P8, Canada

{gabrini.philippe, martin.louis}@uqam.ca

Table of Contents

1. Introduction... 1
2. Definition of the Software Construction Knowledge

Area .. 1
3. Breakdown of Topics for Software Construction 5
4. Matrix of Topics vs. Reference Material 12
5. Recommended References for Software

Construction.. 13
Appendix A – List of Further Readings............................ 14
Appendix B – A proposed Alternate Breakdown for a

Software Construction Knowledge Area 15

1. INTRODUCTION

Techniques of software construction are largely craft-based.
As we come to understand the techniques better, we can
explain them in terms of principles that can be explained as
part of engineering knowledge. This description will
therefore describe the underlying engineering principles in
some detail and treat the specific craft-based techniques
more briefly, usually just by naming them.

1.1. Annotated table of contents

This chapter is laid out as follows:
1. Introduction - This provides the road map to explain

the overall structure of the chapter.
2. Definition - This defines Software Construction and

provides links to other Knowledge Areas.
3. Principles of Organization - This explains the first

and most important method chosen to break the
subject matter into smaller sections, using four
principles of software construction. The subject matter
proper appears in section 5.

4. Styles of Construction - This explains a second and
less important method chosen to break down the
subject matter in each of section 5 into even smaller
subsections, using three styles/methods of software
construction.

5. Synthesis – This section contains 4 sub-sections, one
for each of the four principles (the major dissection);
each section contains 3 sub-sub-sections, one for each
of the three styles of construction (the minor
dissection).

6. Selected References
7. Additional References
8. Standards
9. References to Justify this Knowledge Area
10. Matrix of Reference Material versus Topics

2. DEFINITION OF THE SOFTWARE CONSTRUCTION
KNOWLEDGE AREA

The Guide to the Swebok places the chapter on
Construction after the one on Design and before the one on
Testing. This does not imply either that the design stage
must be complete before construction starts or that the
construction stage must be complete before testing starts. In
some development styles – such as the classic waterfall -
design, construction, and testing are meant to proceed in
that order. In others – such as the spiral method -
development proceeds in successive steps, where each step
consists of a predefined quantity of design, construction,
and testing.
An important part of software engineering is to make a
rational choice of development style for a given software
project.
Software construction is linked to all other KAs, perhaps
most strongly to Design, and Testing. This is because the
construction process consumes the output of the Design

4–2 © IEEE – Trial Version 1.00 – May 2001

process (KA3) and itself provides one of the inputs to the
Testing process (KA5).
Software construction is a fundamental act of software
engineering: the construction of working, meaningful
software through a combination of coding, validation, and
testing (unit testing) by a programmer. Far from being a
simple mechanistic “translation” of good design into
working software, software construction burrows deeply
into difficult issues of software engineering. It requires the
establishment of a meaningful dialog1 between a person
and a computer – a “communication of intent” that must
reach from the slow and fallible human to a fast and
unforgivingly literal computer. Such a dialog requires that
the computer perform activities for which it is poorly
suited, such as understanding implicit meanings and
recognizing the presence of nonsensical or incomplete
statements. On the human side, software construction
requires that developers be logical, precise, and thorough so
that their intentions can be accurately captured and
understood by the computer. The relationship works only
because each side possesses certain capabilities that the
other lacks. In the symbiosis that is software construction,
the computer provides astonishing reliability, retention, and
(once the need has been explained) speed of performance.
Meanwhile, the human being provides creativity and
insight into how to solve new, difficult problems, plus the
ability to express those solutions with sufficient precision
to be meaningful to the computer.

2.1. Software Construction and Software Design

Software construction is closely related to software design
(see Knowledge Area Description for Software Design).
Software design analyzes software requirements in order to
produce a description of the internal structure and
organization of a system that will serve as a basis for its
construction. Software design methods are used to express
a global solution as a set of smaller solutions and can be
applied repeatedly until the resulting parts of the solution
are small enough to be handled with confidence by a single
developer. It is at this point – that is, when the design
process has broken the larger problem up into easier-to-
handle chunks – that software construction is generally
understood to begin. This definition also recognizes the
distinction that while software construction necessarily
produces executable software, software design does not
necessarily produce any executable products at all.
In practice, however, the boundary between design and
construction is seldom so clearly defined. Firstly, software
construction is influenced by the scale or size of the

1 Some reviewers have commented that it is improper even to suggest

that computers “understand programs” or “speak languages”.
However we prefer to retain the language of metaphor to illuminate
the material; the reader will understand that such language is
metaphorical as opposed to literal.

software product being constructed. Very small projects in
which the design problems are already “construction size”
may neither require nor need an explicit design phase, and
very large projects may require a much more interactive
relationship between design and construction as different
prototyping alternatives are proposed, tested, and discarded
or used. Secondly, many of the techniques of software
design also apply to software construction, since dividing
problems into smaller parts is just as much a part of
construction as it is design. Thirdly, effective design
techniques always contain some degree of guessing or
approximation in how they define their sub-problems. A
few of the resulting approximations will turn out to be
wrong, and will require corrective actions during software
construction. (While another seemingly obvious solution
would be to remove guessing and approximation altogether
from design methods, that would contradict the premise
that the original problem was too large and complex to be
solved in one step. Effective design techniques instead
acknowledge risk, work to reduce it, and help make sure
that effective alternatives will be available when some
choices eventually prove wrong.)
Design and construction both require sophisticated problem
solving skills, although the two activities have somewhat
different emphases. In design the emphasis is on how to
partition a complex problem effectively, while in
construction the emphasis is on finding a complete and
executable solution to a problem. When software
construction techniques do become so well-defined that
they can be applied mechanistically, the proper route for
the software engineer is to automate those techniques and
move on to new problems, ones whose answers are not so
well defined. This trend toward automation of well-defined
tasks began with the first assemblers and compilers, and it
has continued unabated as new generations of tools and
computers have made increasingly powerful levels of
construction automation possible. Projects that do contain
highly repetitive, mechanistic software construction steps
should examine their designs, processes, and tools sets
more closely for ways to automate such needlessly
repetitive steps out of existence.

2.2. The Role of Tools in Construction

In software engineering, a tool is a hardware or software
device that is used to support performing a process. An
effective tool is one that provides significant improvements
in productivity and/or quality. This is a very inclusive
definition, however, since it encompasses general-purpose
hardware devices such as computers and peripherals that
are part of an overall software-engineering environment.
Software construction tools are a more specific category of
tools that are both software-based and used primarily
within the construction process. Common examples of
software construction tools include compilers, version
control systems, debuggers, code generators, specialized

© IEEE – Trial Version 1.00 – May 2001 4–3

editors, tools for path and coverage analysis, test
scaffolding and documentation tools.
The best software construction tools bridge the gap
between methodical computer efficiency and forgetful
human creativity. Such tools allow creative minds to
express their thoughts easily, but also enforce an
appropriate level of rigor. Good tools also improve
software quality by allowing people to avoid repetitive or
precise work for which a computer is better suited.

2.3. The Role of Integrated Evaluation in Construction

Another important theme of software engineering is the
evaluation of software products. This includes such diverse
activities as peer review of code and test plan, testing,
software quality assurance, and measures2 (see Knowledge
Area Description for Testing and Knowledge Area
Description for Software Quality Analysis). Integrated
evaluation means that a process (in this case a development
process) includes explicit continuous or periodic internal
checks to ensure that it is still working correctly. These
checks usually consist of evaluations of intermediate work
products such as documents, designs, source code, or
compiled modules, but they may also look at characteristics
of the development process itself. Examples of product
evaluations include design reviews, module compilations,
and unit tests. An example of process-level evaluation
would be periodic re-assessment of a code library to ensure
its accuracy, completeness, and self-consistency.
Integrated evaluation in software engineering has yet to
reach the stage achieved in hardware engineering where the
evaluation is built into the components themselves, e.g.
integrated self-test logic and built-in error recovery in
complex integrated circuits. Such features were first added
to integrated circuits when it was realized the circuits had
become so complex that the assumption of perfect start-to-
finish reliability was no longer tenable. As with integrated
circuits, the purpose of integrated checking in software
processes is to ensure that they can operate for long periods
without generating nonsensical or hazardously misleading
answers.
Historically, software construction has tended to be one of
the software engineering steps in which developers were
particularly prone to omitting checks on the process. While
nearly all developers practice some degree of informal
evaluation when constructing software, it is all too common
for them to skip needed evaluation steps because they are
too confident about the reliability and quality of their own
software constructions. Nonetheless, a wide range of
automated, semi-automated, and manual evaluation
methods have been developed for use in the software
construction phase.

2 The word metrics is commonly used by software developers to denote

the activity that practitioners in other branches of engineering refer to
as measurement.

The simplest and best-known form of software construction
evaluation is the use of unit testing after completion of each
well-defined software unit. Automated techniques such as
compile-time checks and run-time checks help verify the
basic integrity of software units, and manual techniques
such as code reviews can be used to search for more
abstract classes of errors. Tools for extracting
measurements of code quality and structure can also be
used during construction, although such measurement tools
are more commonly applied during integration of large
suites of software units. When collecting measurements, it
is important that the measurements collected be relevant to
the goals of the development process.

2.4. The Role of Standards in Construction

All forms of successful communication require a common
language. Standards are in many ways best understood as
agreements by which both concepts and technologies can
become part of the shared “language” of a broader
community of users. In many cases, standards are selected
by a customer or by an organization. Project managers
should consider the use of additional standards selected to
be suitable to the specific characteristics of the project.
Software construction is particularly sensitive to the
selection of standards, which directly affects such
construction-critical issues as programming languages,
databases, communication methods, platforms, and tools.
Although such choices are often made before construction
begins, it is important that the overall software
development process take the needs of construction into
account when standards are selected.

2.5. Manual and Automated Construction/The
Spectrum of Construction Techniques

Manual Construction

Manual construction means solving complex problems in a
language that a computer can execute. Practitioners of
manual construction need a rich mix of skills that includes
the ability to break complex problems down into smaller
parts, a disciplined formal-proof-like approach to problem
analysis, and the ability to “forecast” how constructions
will change over time. Expert manual constructors
sometimes use the skills of advanced logicians; they always
need to apply the skills they have within a complex,
changing environment such as a computer or network.
It would be easy to directly equate manual construction to
coding in a programming language, but it would also be an
incomplete definition. An effective manual construction
process should result in code that fully and correctly
processes data for its entire problem space, anticipates and
handles all plausible (and some implausible) classes of
errors, runs efficiently, and is structured to be resilient and
easy-to-change over time. An inadequate manual
construction process will in contrast result in code like an

4–4 © IEEE – Trial Version 1.00 – May 2001

amateurish painting, with critical details missing and the
entire construction stitched together poorly.

Automated Construction

While no form of software construction can be fully
automated, much or all of the overall coordination of the
software construction process can be moved from people to
the computer – that is, overall control of the construction
process can be largely automated. Automated construction
thus refers to software construction in which an automated
tool or environment is primarily responsible for overall
coordination of the software construction process. This
removal of overall process control can have a large impact
on the complexity of the software construction process,
since it allows human contributions to be divided up into
much smaller, less complex “chunks” that require different
problem solving skills to solve. Automated construction is
also reuse-intensive construction, since by limiting human
options it allows the controlling software to make more
effective use of its existing store of effective software
problem solutions. Of course, automated construction is not
necessarily low cost; sometimes the cost of setting up the
machinery is higher than the cost saved in its use.
In its most extreme form, automated construction consists
of two related but distinct activities: (1) configuring a
baseline system, which means configuring a predefined set
of options that provide a workable solution in a typical
business context and (2) implementing exceptions in the
context of the product’s usage. This may include resetting
parameters, constructing additional software chunks,
building interfaces, and moving data from existing legacy
systems and other data sources to the new system. For
example, an accounting application for small businesses
might lead users through a series of questions that will
result in a customized installation of the application. When
compared to using manual construction for the same type of
problem, this form of automated construction “swallows”
huge chunks of the overall software engineering process
and replaces them with automated selections that are
controlled by the computer. Toolkits provide a less extreme
example in which developers still have a great deal of
control over the construction process, but that process has
been greatly constrained and simplified by the use of
predefined components with well-defined relationships to
each other.
Automated construction is necessarily tool-intensive
construction, since the objective is to move as much of the
overall software development process as possible away
from the human developer and into automated processes.
Automated construction tools tend to take the form of
program generators and fully integrated environments that
can more easily provide automated control of the
construction process. To be effective in coordinating
activities, automated construction tools also need to have
easy, intuitive interfaces.

Moving Towards Automation

An important goal of software engineering is to move
construction continually towards higher levels of
automation. That is, when selection from a simple set of
options is all that is really required to make software work
for a business or system, then the goal of software
engineers should continually be to make their systems
come as close to that level of simplicity as possible. This
not only makes software more accessible, but also makes it
safer and more reliable by removing opportunities for error.
The concept of moving towards higher levels of
construction automation permeates nearly every aspect of
software construction. When simple selections from a list
of options will not suffice, software engineers often can
still develop application specific tool kits (that is, sets of
reusable parts designed to work with each other easily) to
provide a somewhat lesser level of control. Even fully
manual construction reflects the theme of automation, since
many coding techniques and good programming practices
are intended to make code modification easier and more
automated. For example, even a concept as simple as
defining a constant at the beginning of a software module
reflects the automation theme, since such constants
“automate” the appropriate insertion of new values for the
constant in the event that changes to the program are
necessary. Similarly, the concept of class inheritance in
object-oriented programming helps automate and enforce
the conveyance of appropriate sets of methods into new,
closely related or derived classes of objects.

2.6. Construction Languages

Construction languages include all forms of
communication by which a human can specify an
executable problem solution to a computer. The simplest
type of construction language is a configuration language,
in which developers choose from a limited set of predefined
options to create new or custom installations of software.
The text-based configuration files used in both Windows
and Unix operating systems are examples, and the menu-
style selection lists of some program generators are another.
Toolkit languages are used to build applications out of
toolkits (integrated sets of application-specific reusable
parts), and are more complex than configuration languages.
Toolkit languages may be explicitly defined as application
programming languages (e.g., scripts), or may simply be
implied by the collected set of interfaces of a toolkit. As
described below, programming languages are the most
flexible type of construction languages, but they also
contain the least information about both application areas
and development processes, and so require the most
training and skill to use effectively.

2.7. Programming Languages

Since the fundamental task of software construction is to
communicate intent unambiguously between two very

© IEEE – Trial Version 1.00 – May 2001 4–5

different types of entities (people and computers), the
interface between the two is most commonly expressed as
languages. Programming languages are more literal than
natural languages, since no computer yet built has sufficient
context and understanding of the natural world to recognize
invalid language statements and constructions that would
be caught immediately in a natural language. As will be
discussed below, programming languages can also borrow
from other non-linguistic human skills such as spatial
visualization. The particular requirements of an application
domain can give rise to the development or use of a
specialized, domain-specific language such as lex, yacc,
PHP, TCL, or TK.
Programming languages are often created in response to the
needs of particular application fields, but the quest for more
universal or encompassing programming language is
ongoing. As in many relatively young disciplines, such
quests for universality are as likely to lead to short-lived
fads as they are to genuine insights into the fundamentals of
software construction. For this very reason, it is important
that software construction not be tied too greatly on any
programming language or programming methodology.
Adherence to suitable programming language standards,
and avoiding proprietary feature sets helps avoid language
obsolescence.

3. BREAKDOWN OF TOPICS FOR SOFTWARE
CONSTRUCTION3

3.1. Principles of Organization

The first and most important method of breaking the
subject of software construction into smaller units is to
recognize the four principles that most strongly affect the
way in which software is constructed, namely
� Reduction of Complexity
� Anticipation of Diversity
� Structuring for Validation
� Use of External Standards
These are discussed below.

3.1.1. Reduction of Complexity

This principle of organization reflects the relatively limited
ability of people to work with complex systems that have
many parts or interactions. A major factor in how people
convey intent to computers is the severely limited ability of
people to “hold” complex structures and information in
their working memory, especially over long periods of
time. This need for simplicity in the human-to-computer
interface leads to one of the strongest drivers in software
construction: reduction of complexity. The need to reduce

3 An alternate, more traditional, breakdown is presented in Appendix B.

complexity applies to essentially every aspect of the
software construction, and is particularly critical to the
process of self-verification and testing of software
constructions.
There are three main techniques for reducing complexity
during software construction:

3.1.1.1 Removal of Complexity

Although trivial in concept, one obvious way to reduce
complexity during software construction is to remove
features or capabilities that are not absolutely required. This
may or may not be the right way to handle a given
situation, but certainly the general principle of parsimony –
that is, of not adding capabilities that clearly will never be
needed when constructing software – is valid.

3.1.1.2 Automation of Complexity

A much more powerful technique for removal of
complexity is to automate the handling of it. That is, a new
construction language is created in which features that were
previously time-consuming or error-prone for a human to
perform are migrated over to the computer in the form of
new software capabilities. The history of software is replete
with examples of powerful software tools that raised the
overall level of development capability of people by
allowing them to address a new set of problems. Operating
systems are one example of this principle, since they
provide a rich construction language by which efficient use
of underlying hardware resources can be greatly simplified.
Visual construction languages similarly provide automation
of the construction of software that otherwise could be very
laborious to build.

3.1.1.3 Localization of Complexity

If complexity can neither be removed nor automated, the
only remaining option is to localize complexity into small
“units” or “modules” that are small enough for a person to
understand in their entirety, and (perhaps more importantly)
sufficiently isolated that meaningful assertions can be made
about them. This might even lead to components that can
be re-used. However, one must be careful, as arbitrarily
dividing a very long sequence of code into small “modules”
does not help, because the relationships between the
modules become extremely complex and difficult to
predict. Localization of complexity has a powerful impact
on the design of programming languages, as demonstrated
by the growth in popularity of object-oriented methods that
seek to strictly limit the number of ways to interface to a
software module, even though that might end up making
components more dependent. Localization is also a key
aspect of good design of the broader category of
construction languages, since new feature that are too hard
to find and use are unlikely to be effective as tools for
construction. Classical design admonitions such as the goal
of having “cohesion” within modules and to minimize
“coupling” are also fundamentally localization of
complexity techniques, since they strive to make the

4–6 © IEEE – Trial Version 1.00 – May 2001

number and interaction of parts within a module easy for a
person to understand.

3.1.2. Anticipation of Diversity

This principle has more to do with how people use software
than with differences between computers and people. Its
motive is simple: There is no such thing as an unchanging
software construction. Any useful software construction
will change in various ways over time, and the anticipation
of change drives nearly every aspect of software
construction. Useful software constructions are
unavoidably part of a changing external environment in
which they perform useful tasks, and changes in that
outside environment trickle in to impact the software
constructions in diverse (and often unexpected) ways. In
contrast, formal mathematical constructions and formulas
can in some sense be stable or unchanging over time, since
they represent abstract quantities and relationships that do
not require direct “attachment” to a working, physical
computational machine. For example, even the software
implementations of “universal” mathematical functions
must change over time due to external factors such as the
need to port them to new machines, and the unavoidable
issue of physical limitations on the accuracy of the software
on a given machine.
Anticipation of the diversity of ways in which software will
change over time is one of the more subtle principles of
software construction, yet it is important for the creation of
software that can endure over time and add value to future
endeavors. Since it includes the ability to anticipate
changes due to design errors in software, it also helps to
make software robust and error-free. Indeed, one handy
definition of “aging” software is that it is software that no
longer has the flexibility to accommodate bug fixes without
breaking.
There are three main techniques for anticipating change
during software construction:

3.1.2.1 Generalization

It is very common for software construction to focus first
on highly specific problems with limited, rather specific
solutions. This is common because the more general cases
often simply are not obvious in the early stages of analysis.
Generalization is the process of recognizing how a few
specific problem cases fit together as part of some broader
framework of problems, and thus can be solved by a single
overarching software construction in place of several
isolated ones. Generalization of functionality is a distinctly
mathematical concept, and not too surprisingly the best
generalizations that are developed are often expressed in
the language of mathematics. Good design is equally an
aspect of generalization, however. For example, software
constructions that use stacks to store data are almost always
more generalized than similar solutions using arrays
behaving as stacks, since fixed sizes immediately place
artificial (and usually unnecessary) constraints on the range
of problem sizes that the construction can solve.

Generalization anticipates diversity because it creates
solutions to entire classes of problems that may not have
even been recognized as existing before. Thus just as
Newton’s general theory of gravity made a small number of
formulas applicable to a much broader range of physics
problems, a good generalization to a number of discrete
software problems often can lead to the easy solution of
many other development problems. For example,
developing an easily customizable graphics user interface
could solve a very broad range of development problems
that otherwise would have required individual, labor-
intensive development of independent solutions.
Anticipating diversity by using generalization is effective
only when the developer finds generalizations that actually
correspond to the eventual uses of the software. Developers
may have no particular interest (or time) to develop the
necessary generalizations under the schedule pressures of
typical commercial projects. Even when the time needed is
available, it is easy to develop the wrong set of
generalizations – that is, to create generalizations that make
the software easier to change, but only in ways that prove
not to correspond to what is really needed.
For these reasons, generalization is both safer and easier if
it can be combined with the next technique of
experimentation. Change experimentation makes
generalization safer by capturing realistic data on which
generalizations will be needed, and makes generalization
easier by providing schedule-conscious projects with
specific data on how generalizations can improve their
products.

3.1.2.2 Experimentation

Experimentation means using early (sometimes very early)
software constructions in as many different user contexts as
possible, and as early in the development process as
possible, for the explicit purpose of collecting data on how
to generalize the construction. To experiment is to
recognize how difficult it is to anticipate all the ways in
which software constructions can change.
Obviously, experimentation is a process-level technique
rather than a code-level technique, since its goal is to
collect data to help guide code-level processes such as
generalization. This means that it is constrained by whether
the overall development process allows it to be used at the
construction level. Construction-level experimentation is
most likely to be found in projects that have incorporated
experimentation into their overall development process.
The Internet-based open source development process that
Linus Torvalds used to create the Linux operating system is
an example of a process that both allowed and encouraged
construction-level use of experimentation. In Torvalds’
approach, individual code constructions were very quickly
incorporated into an overall product and then redistributed
via the Internet, sometimes on the same day. This
encouraged further use, experimentation, and updates to the
individual constructions. Development environments and

© IEEE – Trial Version 1.00 – May 2001 4–7

languages that support the rapid prototyping style of
development also encourage construction-level
experimentation.

3.1.2.3 Localization

Localization means keeping anticipated changes as
localized in a software construction as possible. It is
actually a special case of the earlier principle of
localization of complexity, since change is a particularly
difficult class of complexity. A software construction that
can be changed in a common way by making only one
change at one location within the construction thus
demonstrates good locality for that particular class of
modifications.
Localization is very common in software construction, and
often is used intuitively as the “right way” to construct
software. Objects are one example of a localization
technique, since good object designs localize
implementation changes to within the object. An even
simpler example is using compile-time constants to reduce
the number of locations in a program that must be changed
manually should the constant change. Layered architectures
such as those used in communication protocols are yet
another example of localization, since good layer designs
keep changes from crossing layers.

3.1.3. Structuring for Validation

No matter how carefully a person designs and implements
software, the creative nature of non-trivial software
construction (that is, of software that is not simply a re-
implementation of previously solved problems) means that
mistakes and omissions will occur. Structuring for
validation means building software in such a fashion that
such errors and omissions can be ferreted out more easily
during unit testing and subsequent testing activities. One
important implication of structuring for validation is that
software must generally be modular in at least one of its
major representation spaces, such as in the overall layout of
the displayed or printed text of a program. This modularity
allows both improved analysis and thorough unit-level
testing of such components before they are integrated into
higher levels in which their errors may be more difficult to
identify. As a principle of construction, structuring for
validation generally goes hand-in-hand with anticipation of
diversity, since any errors found as a result of validation
represent an important type of “diversity” that will require
software changes (bug fixes). It is not particularly difficult
to write software that cannot really be validated no matter
how much it is tested. This is because even moderately
large “useful” software components frequently cover such a
large range of outputs that exhaustive testing of all possible
outputs would take eons with even the fastest computers.
Structuring for validation thus becomes one important
constraint for producing software that can be shown to be
acceptably reliable within a reasonable time frame. The
concept of unit testing parallels structuring for validation,
and is used in parallel with the construction process to help

ensure that validation occurs before the overall structure
gets “out of hand” and can no longer be readily validated.

3.1.4. Use of External Standards

A natural language that is spoken by one person would be
of little value in communicating with the rest of the world.
Similarly, a construction language that has meaning only
within the software for which it was constructed can be a
serious roadblock in the long-term use of that software.
Such construction languages therefore should either
conform to external standards such as those used for
programming languages, or provide a sufficiently detailed
internal “grammar” (e.g., documentation) by which the
construction language can later be understood by others.
The interplay between reusing external standards and
creating new ones is a complex one, as it depends not only
on the availability of such standards, but also on realistic
assessments of the long-term viability of such external
standards. With the advent of the Internet as a major force
in software development and interaction, the importance of
selecting and using appropriate external standards for how
to construct software is more apparent than ever before.
Software that must share data and even working modules
with other software anywhere in the world obviously must
“share” many of the same languages and methods as that
other software. The result is that selection and use of
external standards – that is, of standards such as language
specifications and data formats that were not originated
within a software effort – is becoming more important. This
is a complex issue, however, because the selection of an
external standard may need to take account of such
difficult-to-predict issues as the long-term economic
viability of a particular software company or organization
that promotes that standard. Stability of the standard is
especially important. Also, selecting one level of
standardization often opens up an entire new set of
standardization issues. An example of this is the data
description language XML (eXtensible Markup Language).
Selecting XML as an external standard answers many
questions about how to describe data in an application, but
it also raises the issue of whether one of the several
customizations of XML to specific problem domains
should also be used.
Other examples of external standards include API standards
such as mathematics libraries, POSIX and SQL. In addition
there are standards such as ISO/IEC 9126 , IEEE Std 1061,
and IEEE Std 982, which are used in both Design and
Construction.

3.2. Styles of Construction

Section 3.1 explained four principles of organization. A
second and less important method of breaking the subject
of software construction into smaller units is to recognize
three styles/methods of software construction, namely
� Linguistic

4–8 © IEEE – Trial Version 1.00 – May 2001

� Formal
� Visual
The traditional hierarchical taxonomy places the items in a
tree; each item appears in one place only. Such an approach
is not suitable for the items used in software construction
because some of the items naturally belong in more than
one place. In the classification that follows, an individual
construction method may appear in many different places,
rather than in just one. The number of repetitions indicates
its breadth of application, and hence its importance in
software construction as a whole. Modularity is one
example of a construction method that has such broad
impacts.
A good construction language moves detailed, repetitive, or
memory-intensive construction tasks away from people and
into the computer, where such tasks can be performed
faster and more reliably. To accomplish this, construction
languages must present and receive information in ways
that are readily understandable to human senses and
capabilities. This need to rely on human capabilities leads
to three major styles of software construction interfaces
discussed in the subsections below.
Of course, construction languages seldom rely solely on a
single style of construction. Linguistic and formal style in
particular are both heavily used in most traditional
computer languages, and visual styles and models are a
major part of how to make software constructions
manageable and understandable in programming languages.
Relatively new “visual” construction languages such as
Visual Basic and Visual Java provide examples that
combine all three styles, with complex visual interfaces
often constructed entirely through non-textual interactions
with the software constructor. Data processing functionality
behind the interfaces can then be constructed using more
traditional linguistic and formal styles within the same
construction language.

3.2.1. Linguistic

Linguistic construction languages make statements of intent
in the form of sentences that resemble natural languages
such as English or French. In terms of human senses,
linguistic constructions are generally conveyed visually as
text, although they can (and are) also sometimes conveyed
by sound. A major advantage of linguistic construction
interfaces is that they are nearly universal among people. A
disadvantage is the imprecision of ordinary languages such
a English, which makes it hard for people to express needs
clearly with sufficient precision when using linguistic
interfaces to computers. An example of this problem is the
difficulty that most early students of computer science have
learning the syntax of even fairly readable languages such
as Pascal or Ada.
Linguistic construction methods are distinguished in
particular by the use of word-like strings of text to
represent complex software constructions, and the
combination of such word-like strings into patterns that

have a sentence-like syntax. Properly used, each such string
should have a strong semantic connotation that provides an
immediate intuitive understanding of what will happen
when the underlying software construction is executed. For
example, the term “search” has an immediate, readily
understandable semantic meaning in English, yet the
underlying software implementation of such a term in
software can be very complex indeed. The most powerful
linguistic construction methods allow users to focus almost
entirely on the language-like meanings of such term, as
opposed (for example) to frittering away mental efforts on
examining minor variations of what “search” means in a
particular context.
Linguistic construction methods are further characterized
by similar use of other “natural” language skills such as
using patterns of words to build sentences, paragraphs, or
even entire chapters to express software design “thoughts.”
For example, a pattern such as “search table for out-of-
range values” uses word-like text strings to imitate natural
language verbs, nouns, prepositions, and adjectives. Just as
having an underlying software structure that allows a more
natural use of words reduces the number of issues that a
user must address to create new software, an underlying
software structure that also allows use of familiar higher-
level patterns such as sentence further simplifies the
expression process.
Finally, it should be noted that as the complexity of a
software expression increases, linguistic construction
methods begin to overlap unavoidably with visual methods
that make it easier to locate and understand large sequences
of statements. Thus just as most written versions of natural
languages use visual clues such as spaces between words,
paragraphs, and section headings to make text easier to
“parse” visually, linguistic construction methods rely on
methods such as precise indentation to convey structural
information visually.
The use of linguistic construction methods is also limited
by our inability to program computers to understand the
levels of ambiguity typically found in natural languages,
where many subtle issues of context and background can
drastically influence interpretation. As a result, the
linguistic model of construction usually begins to weaken
at the more complex levels of construction that correspond
to entire paragraphs and chapters of text.

3.2.2. Formal

The precision and rigor of formal and logical reasoning
make this style of human thought especially appropriate for
conveying human intent accurately into computers, as well
as for verifying the completeness and accuracy of a
construction. Unfortunately, formal reasoning is not nearly
as universal a skill as natural language, since it requires
both innate skills that are not as universal as language
skills, and also many years of training and practice to use
efficiently and accurately. It can also be argued that certain
aspects of good formal reasoning, such as the ability to

© IEEE – Trial Version 1.00 – May 2001 4–9

realize all the implications of a new assertion on all parts of
a system, cannot be learned by some people no matter how
much training they receive. On the other hand, formal
reasoning styles are often notorious for focusing on a
problem so intently that all “complications” are discarded
and only a very small, very pristine subset of the overall
problem is actually addressed. This kind of excessively
narrow focus at the expense of any complicating issues can
be disastrous in software construction, since it can lead to
software that is incapable of dealing with the unavoidable
complexities of nearly any usable system.
Formal construction methods rely less on intuitive,
everyday meanings of words and text strings, and more on
definitions that are backed up by precise, unambiguous, and
fully formal (or mathematical) definitions. Formal
construction methods are at the heart of most forms of
system programming, where precision, speed, and
verifiability are more important than ease of mapping into
ordinary language. Formal constructions also use precisely
defined ways of combining symbols that avoid the
ambiguity of many natural language constructions.
Functions are an obvious example of formal constructions,
with their direct parallel to mathematical functions in both
form and meaning.
Formal construction techniques also include the wide range
of precisely defined methods for representing and
implementing “unique” computer problems such as
concurrent and multi-threaded programming, which are in
effect classes of mathematical problems that have special
meaning and utility within computers.
The importance of the formal style of programming cannot
be overstated. Just as the precision of mathematics is
fundamental to disciplines such as physics and the hard
science, the formal style of programming is fundamental to
building up a reliable framework of software “results” that
will endure over time. While the linguistic and visual styles
work well for interfacing with people, these less precise
styles can be unsuitable for building the interior of a
software system for the same reason that stained glass
should not be used to build the supporting arches of a
cathedral. Formal construction provides a foundation that
can eliminate entire classes of errors or omissions from
ever occurring, whereas linguistic and visual construction
methods are much more likely to focus on isolated
instances of errors or omissions. Indeed, one very real
danger in software quality assurance is to focus too much
on capturing isolated errors occurring in the linguistic or
visual modes of construction, while overlooking the much
more grievous (but harder to identify and understand)
errors that occur in the formal style of construction.

3.2.3. Visual

Another very powerful and much more universal
construction interface style is visual, in the sense of the
ability to use the same very sophisticated and necessarily
natural ability to “navigate” a complex three-dimensional

world of images, as perceived primarily through the eye
(but also through tactile senses). The visual interface is
powerful not only as a way of organizing information for
presentation to a human, but also as a way of conceiving
and navigating the overall design of a complex software
system. Visual methods are particularly important for
systems that require many people to work on them – that is,
for organizing a software design process – since they allow
a natural way for people to “understand” how and where
they must communicate with each other. Visual methods
are also important for single-person software construction
methods, since they provide ways both to present options to
people and to make key details of a large body of
information “pop out” to the visual system.
Visual construction methods rely much less on the text-
oriented constructions of both linguistic and formal
construction, and instead rely on direct visual interpretation
and placement of visual entities (e.g., “widgets”) that
represent the underlying software. Visual construction
tends to be somewhat limited by the difficulty of making
“complex” statements using only movement of visual
entities on a display. However, it can also be a very
powerful tool in cases where the primary programming task
is simply to build and “adjust” a visual interface to a
program whose detailed behavior was defined earlier.
Some argue that object-oriented languages belong in this
section because the style of reasoning that they encourage
is highly visual. For example, experienced object-oriented
programmers tend to view their designs literally as objects
interacting in spaces of two or more dimensions, and a
plethora of object-oriented design tools and techniques
(e.g., Unified Modeling Language, or UML) actively
encourage this highly visual style of reasoning. Others
argue that object-oriented languages are no more inherently
visual than procedural ones. They remark that SA/SD is a
popular visual notation for procedural systems.
However, object-oriented methods can also suffer from the
lack of precision that is part of the more intuitive visual
approach. For example, it is common for new – and
sometimes not-so-new – programmers in object-oriented
languages to define object classes that lack the formal
precision that will allow them to work reliably over user-
time (that is, long-term system support) and user-space
(e.g., relocation to new environments). The visual intuitions
that object-oriented languages provide in such cases can be
somewhat misleading, because they can make the real
problem of how to define a class to be efficient and stable
over user-time and user-space seem to be simpler than it
really is. A complete object-oriented construction model
therefore must explicitly identify the need for formal
construction methods throughout the object design process.
The alternative can be an object-based system design that,
like a complex stained glass window, looks impressive but
is too fragile to be used in any but the most carefully
designed circumstances.

4–10 © IEEE – Trial Version 1.00 – May 2001

More explicitly visual programming methods such as those
found in Visual C++ and Visual Basic reduce the problem
of how to make precise visual statements by
“instrumenting” screen objects with complex (and formally
precise) objects that lie behind the screen representations.
However, this is done at a substantial loss of generality
when compared to using C++ with explicit training in both
visual and formal construction, since the screen objects are
much more tightly constrained in properties.

3.3. Synthesis

The figure that follows combines the four principles of
organization with the three styles of construction. Read the

diagram by columns to see the principles, by rows to see
the styles.

3.3.1. Reduction in Complexity

3.3.1.1 Linguistic Construction Methods

The main technique for reducing complexity in linguistic
construction is to make short, semantically “intuitive” text
strings and patterns of text stand in for the much more
complex underlying software that “implement” the intuitive
meanings. Techniques that reduce complexity in linguistic
construction include:
� Design patterns
� Software templates

Linguistic
Construction

Methods

Software Construction

Reduction in
Complexity

Structuring for
Validation

Use of External
Standards

Anticipation of
Diversity

Visual Construction
Methods

Formal
Construction

Methods

Linguistic
Construction

Methods

Visual Construction
Methods

Formal
Construction

Methods

Linguistic
Construction

Methods

Visual Construction
Methods

Formal
Construction

Methods

Linguistic
Construction

Methods

Visual Construction
Methods

Formal
Construction

Methods

� Functions, procedures, and code blocks
� Objects and data structures
� Encapsulation and abstract data types
� Objects
� Component libraries and frameworks
� Higher-level and domain-specific languages
� Physical organization of source code
� Files and libraries
� Formal inspections

3.3.1.2 Formal Construction Methods

As is the case with linguistic construction methods, formal
construction methods reduce complexity by representing
complex software constructions as simple text strings. The
main difference is that in this case the text strings follow
the more precisely defined rules and syntax of formal
notations, rather than the “fuzzier” rules of natural
language. The reading, writing, and construction of such

expressions requires generally more training, but once
mastered, the use of formal constructions tends to keep the
ambiguity of what is being specified to an absolute
minimum. However, as with linguistic construction, the
quality of a formal construction is only as good as its
underlying implementation. The advantage is that the
precision of the formal definitions usually translates into a
more precise specification for the software beneath it.
� Traditional functions and procedures
� Functional programming
� Logic programming
� Concurrent and real-time programming techniques
� Spreadsheets
� Program generators
� Mathematical libraries of functions

© IEEE – Trial Version 1.00 – May 2001 4–11

3.3.1.3 Visual Construction Methods

Especially when compared to the steps needed to build a
graphical interface to a program using text-oriented
linguistic or formal construction, visual construction can
provide drastic reductions in the total effort required. It can
also reduce complexity by providing a simple way to select
between the elements of a small set of choices.
� Object-oriented programming
� Visual creation and customization of user interfaces
� Visual programming (e.g., visual C++)
� “Style” (visual formatting) aspects of structured

programming
� Integrated development environments supporting

source browsing

3.3.2. Anticipation of Diversity

3.3.2.1 Linguistic Construction Methods

Linguistic construction anticipates diversity both by
permitting extensible definitions of “words,” and also by
supporting flexible “sentence structures” that allow many
different types of intuitively understandable statements to
be made with the available vocabulary. An excellent
example of using linguistic construction to anticipate
diversity is the use of human-readable configuration files to
specify software or system settings. Techniques and
methods that help anticipate diversity include:
� Information hiding
� Embedded documentation (commenting)
� “Complete and sufficient” method sets
� Object-oriented methods
� Creation of “glue languages” for linking legacy

components
� Table-driven software
� Configuration files, internationalization
� Naming and coding styles
� Reuse and repositories
� Self-describing software and hardware (e.g., plug and

play)

3.3.2.2 Formal Construction Methods

Diversity in formal construction is handled in terms of
precisely defined sets that can vary greatly in size. While
mathematical formalizations are capable of very flexible
representations of diversity, they require explicit
anticipation and preparation for the full range of values that
may be needed. A common problem in software
construction is to use a formal technique – e.g., a fixed-
length vector or array – when what is really needed to
accommodate future diversity is a more generic solution
that anticipates future growth – e.g., an indefinite variable-
length vector. Since more generic solutions are often harder

to implement and harder to make efficient, it is important
when using formal construction techniques to try to
anticipate the full range of future versions.
� Functional parameterization
� Macro parameterization
� Generics
� Objects
� Error handling
� Extensible mathematical frameworks

3.3.2.3 Visual Construction Methods

Provided that the total sets of choices are not overly large,
visual construction methods can provide a good way to
configure or select options for software or a system. Visual
construction methods are analogous to linguistic
configuration files in this usage, since both provide easy
ways to specify and interpret configuration information.
� Object classes
� Visual configuration specification
� Separation of GUI design and functionality

implementation (part of design)

3.3.3. Structuring for Validation

3.3.3.1 Linguistic Construction Methods

Because natural language in general is too ambiguous to
allow safe interpretation of completely free-form
statements, structuring for validation shows up primarily as
rules that at least partially constrain the free use of natural
expressions in software. The objective is to make such
constructions as “natural” sounding as possible, while not
losing the structure and precision needed to ensure
consistent interpretations of the source code by both human
users and computers.
� Modular design
� Structured programming
� Style guides
� Stepwise refinement

3.3.3.2 Formal Construction Methods

Since mathematics in general is oriented towards proof of
hypothesis from a set of axioms, formal construction
techniques provide a broad range of techniques to help
validate the acceptability of a software unit. Such methods
can also be used to “instrument” programs to look for
failures based on sets of preconditions.
� Assertion-based programming (static and dynamic)
� State machine logic
� Redundant systems, self-diagnosis, and fail-safe

methods
� Hot-spot analysis and performance tuning

4–12 © IEEE – Trial Version 1.00 – May 2001

� Numerical analysis

3.3.3.3 Visual Construction Methods

Visual construction can provide immediate, active
validation of requests and attempted configurations when
the visual constructs are “instrumented” to look for invalid
feature combinations and warn users immediately of what
the problem is.
� “Complete and sufficient” design of object-oriented

class methods
� Dynamic validation of visual requests in visual

languages

3.3.4. External Standards

3.3.4.1 Linguistic Construction Methods

Traditionally, standardization of programming languages
was one of the first areas in which external standards
appeared. The goal was (and is) to provide standard
meanings and ways of using “words” in each standardized
programming language, which makes it possible both for
users to understand each other’s software, and for the
software to be interpreted consistently in diverse
environments.
� Standardized programming languages (e.g., Ada 95,

C++, etc.)
� Standardized data description languages (e.g., XML,

SQL)
� Standardized alphabet representations (e.g., Unicode)

� Standardized documentation (e.g., JavaDoc)
� Inter-process communication standards (e.g., COM,

CORBA)
� Component-based software
� Foundation classes (e.g., MFC, JFC)

3.3.4.2 Formal Construction Methods

For formal construction techniques, external standards
generally address ways to define precise interfaces and
communication methods between software systems and the
machines they reside on.
� POSIX standards
� Data communication standards
� Hardware interface standards
� Standardized mathematical representation languages

(e.g., MathML)
� Mathematical libraries of functions

3.3.4.3 Visual Construction Methods

Standards for visual interfaces greatly ease the total burden
on users by providing familiar, easily understood “look and
feel” interfaces for those users.
� Object-oriented language standards
� Standardized screen widgets
� Visual Markup Languages

4. MATRIX OF TOPICS VS. REFERENCE MATERIAL

Topics Proposed reference material
Software Construction and Software Design [GLA95] Part III, IV

[MAZ96] Part IV
[McCO93] Chap. 1, 2, 3

The Role of Tools in Construction [HUN00] Chap. 3
[MAG93] Chap. 4
[MAZ96] Part IV
[McCO93] Chap. 20

The Role of Integrated Evaluation in Construction [HUM97]
[MAG93] Chap. 8
[McCO93] Chap. 31, 32, 33

The Role of Standards in Construction [IEEE]
Manual and Automated Construction / The Spectrum of Construction
Techniques

[HUN00] Chap. 3

Construction Languages [HUN00] Chap. 3

[SET96]
Programming Languages [SET96]
A. Reduction in Complexity
1. Reduction in Complexity (Linguistic) [BEN00] Chap. 2, 3

[KER99] Chap. 2, 3
[McCO93] Chap. 4 to 19

© IEEE – Trial Version 1.00 – May 2001 4–13

Topics Proposed reference material
2. Reduction in Complexity (Formal) [BOO94] Part II and V

[MAG93] Chap. 6
[MEY97] Chap. 6, 10

3. Reduction in Complexity (Visual) [HOR99] Part II
[WAR99] Chap. 1, 2, 3, 4, 5, 10

B. Anticipation of Diversity
1. Anticipation of Diversity (Linguistic) [BOO94] Part VI

[McCO93] Chap. 30
2. Anticipation of Diversity (Formal) [BEN00] Chap. 11, 13, 14

[KER99] Chap. 2, 9
3. Anticipation of Diversity (Visual) [WAR99] Chap. 1, 2, 3, 4, 5, 10
C. Structuring for Validation
1. Structuring for Validation (Linguistic) [BEN00] Chap. 4

[KER99] Chap. 1, 5, 6
[MAG93] Chap. 2, 5, 7
[McCO93] Chap. 23, 24, 25, 26

2. Structuring for Validation (Formal) [MAG93] Chap. 3
[MEY97] Chap. 6, 11

3. Structuring for Validation (Visual) [HOR99] Part IV
[MEY97] Chap. 11

D. Use of External Standards
1. Use of External Standards (Linguistic) http://www.xml.org/

http://www.omg.org/corba/beginners.html
2. Use of External Standards (Formal) Object Constraint Language:

http://www.omg.org/uml/
3. Use of External Standards (Visual) http://www.omg.org/uml/

5. RECOMMENDED REFERENCES FOR SOFTWARE
CONSTRUCTION

[BEN00] Bentley, Jon, Programming Pearls (Second
Edition). Addison-Wesley, 2000. (Chapters 2, 3, 4, 11, 13
14)[BEN00] Bentley, Jon, Programming Pearls (Second
Edition). Addison-Wesley, 2000. (Chapters 2, 3, 4, 11, 13
14)
[BOO94] Booch, Grady, and Bryan, Doug, Software
Engineering with Ada (Third edition).
Benjamin/Cummings, 1994. (Parts II, IV, V)[HOR99]
[KER99] Kernighan, Brian W., and Pike, Rob, The Practice
of Programming. Addison-Wesley, 1999. (Chapters 1, 2, 3,
5, 6, 9)
[MAG93] Maguire, Steve, Writing Solid Code –
Microsoft’s Techniques for Developing Bug-Free C
Software. Microsoft Press, 1993.
[McCO93] McConnell, Steve, Code Complete: A Practical
Handbook of Software Construction. Microsoft Press,
1993.
[MEY97] Meyer, Bertrand, Object-Oriented Software
Construction (Second Edition). Prentice-Hall, 1997.
(Chapters 6, 10, 11)

[SET96] Sethi, Ravi, Programming Languages – Concepts
& Constructs (Second Edition). Addison-Wesley, 1996.
(Parts II, III, IV, V)
[WAR99] Warren, Nigel, and Bishop, Philip, Java in
Practice – Design Styles and Idioms for Effective Java.
Addison-Wesley, 1999. (Chapters 1, 2, 3, 4, 5, 10)

4–14 © IEEE – Trial Version 1.00 – May 2001

APPENDIX A – LIST OF FURTHER READINGS

[BAR98] Barker, Thomas T., Writing Software
Documentation – A Task-Oriented Approach. Allyn &
Bacon, 1998.
[FOW99] Fowler, Martin, Refactoring – Improving the
Design of Existing Code. Addison-Wesley, 1999.
[GLA95] Glass, Robert L., Software Creativity. Prentice-
Hall, 1995.
[HEN97] Henricson, Mats, and Nyquist, Erik, Industrial
Strength C++. Prentice-Hall, 1997.
[HOR99] Horrocks, Ian, Constructing the User Interface
with Statecharts. Addison-Wesley, 1999.
[HUM97] Humphrey, Watts S., Introduction to the
Personal Software Process. Addison-Wesley, 1997.
[HUN00] Hunt, Andrew, and Thomas, David, The
Pragmatic Programmer. Addison-Wesley, 2000.
[MAZ96] Mazza, C., et al., Software Engineering Guides.
Prentice-Hall, 1996. (Part IV)
Standards
IEEE Std 829-1983 (Reaff 1991), IEEE Standard for
Software Test Documentation (ANSI)
IEEE Std 1008-1987 (Reaff 1993), IEEE Standard for
Software Unit Testing (ANSI)
IEEE Std 1028-1988 (Reaff 1993), IEEE Standard for
Software Reviews and Audits (ANSI)
IEEE Std 1063-1987 (Reaff 1993), IEEE Standard for
Software User Documentation (ANSI)
ISO/IEC 12207: 1995 Information technology – Software
Life Cycle Processes and IEEE/EIA 12207.0, 12207.1 and
12207.2 ISO/IEC 14674:1999 Information Technology –
Software Maintenance
ISO/IEC 14674:1999 Information Technology – Software
Maintenance

© IEEE – Trial Version 1.00 – May 2001 4–15

APPENDIX B – A PROPOSED ALTERNATE BREAKDOWN
FOR A SOFTWARE CONSTRUCTION KNOWLEDGE AREA

1. Construction Planning
2. Code Design
3. Data Design and Management
4. Error Processing
5. Source Code Organization
6. Code Documentation
7. Construction Quality Assurance
8. System Integration and Deployment
9. Code Tuning
10. Construction Tools

Source: Adapted from Mc Connell, Steve, “Code
Complete: A Practical Handbook of Software
Construction,” Microsoft Press, 1993.

