
© IEEE – Trial Version 1.00 – May 2001 7–1

CHAPTER 7

SOFTWARE CONFIGURATION MANAGEMENT

John A. Scott and David Nisse
Lawrence Livermore National Laboratory

7000 East Avenue
P.O. Box 808, L-632

Livermore, CA 94550, USA
(925) 423-7655
scott7@llnl.gov

Table of Contents

1 Introduction... 1
2 Definition of the SCM Knowledge Area 1
3 Breakdown of Topics for SCM................................... 2
4 Breakdown Rationale.. 10
5 Matrix of Topics vs. Reference Material 10
6 Recommended References for SCM......................... 11
Appendix A – List of Further Readings............................ 13
Appendix B – References Used to Write and Justify the

Knowledge Area Description 14
Appendix C – Rationale Details 16

1 INTRODUCTION

This paper presents an overview of the knowledge area of
software configuration management (SCM) for the Guide
to the Software Engineering Body of Knowledge
(SWEBOK) project. A breakdown of topics is presented for
the knowledge area along with a succinct description of
each topic. References are given to materials that provide
more in-depth coverage of the key areas of software
configuration management. Important knowledge areas of
related disciplines are also identified.
Keywords
Software configuration management, software
configuration identification, software configuration control,
software configuration status accounting, software
configuration auditing, software release management.

Acronyms
CCB Configuration Control Board
CM Configuration Management
DBMS Database Management System
FCA Functional Configuration Audit
PCA Physical Configuration Audit

SCI Software Configuration Item
SCR Software Change Request
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCSA Software Configuration Status Accounting
SDD Software Design Description
SQA Software Quality Assurance
SRS Software Requirements Specification

2 DEFINITION OF THE SCM KNOWLEDGE AREA

A system can be defined as a collection of components
organized to accomplish a specific function or set of
functions [IEEE 610]. The configuration of a system is the
function and/or physical characteristics of hardware,
firmware, software or a combination thereof as set forth in
technical documentation and achieved in a product
[Buckley]. It can also be thought of as a collection of
specific versions of hardware, firmware, or software items
combined according to specific build procedures to
accomplish a particular purpose. Configuration
management (CM), then, is the discipline of identifying the
configuration of a system at distinct points in time for the
purpose of systematically controlling changes to the
configuration and maintaining the integrity and traceability
of the configuration throughout the system life cycle
[Bersoff, (3)]. CM is formally defined [IEEE 610] as:

“A discipline applying technical and administrative
direction and surveillance to: identify and document the
functional and physical characteristics of a
configuration item, control changes to those
characteristics, record and report change processing and
implementation status, and verify compliance with
specified requirements.”

The concepts of configuration management apply to all
items to be controlled although there are some differences
in implementation between hardware CM and software
CM.

7–2 © IEEE – Trial Version 1.00 – May 2001

This chapter presents a breakdown of the key software
configuration management (SCM) concepts along with a
succinct description of each concept. The concepts are
generally accepted in that they cover the areas typically
addressed in texts and standards. The descriptions cover the
primary activities of SCM and are only intended to be
sufficient for allowing the reader to select appropriate
reference material according to the reader’s needs. The
SCM activities are: the management of the software
configuration management process, software configuration
identification, software configuration control, software
configuration status accounting, software configuration
auditing, and software release management and delivery.
Figure 1 shows a stylized representation of these activities

Mgmt. &
Planning

SCMP

Configuration Identification

Control Status
Accounting

Release
Processing

Auditing
Management

Development
Team

Coordination of Change Activities (“Code Management”)

Authorization of Changes
 (Should changes be made?)

Project Management
 Product Assurance
 Development Team

Status for:

Supports
 Customer
 Maintenance Team

Physical &
 Functional
 Completeness

Figure 1. SCM Activities
Following the breakdown of SCM topics, key references
for SCM are listed along with a cross-reference of topics
that each listed reference covers. Finally, topics in related
disciplines that are important to SCM are identified.

3 BREAKDOWN OF TOPICS FOR SCM

Breakdown of Topics

An outline of the breakdown of topics is shown below in
Figure 2. Following the chart, a brief description of each
breakdown topic is provided. The breakdown covers the
concepts and activities of SCM. The variety of SCM tools
and tool systems now available, as well as the variety of
characteristics of the projects to which they are applied,
may make the implementation of these concepts and the
nature of the activities appear quite different from project to
project. However, the underlying concepts and types of
activities still apply.

I. Management of the SCM Process

Software configuration management is a supporting
software life cycle process [ISO/IEC 12207] that benefits
project and line management, development and
maintenance activities, assurance activities, and the
customers and users of the end product. From a
management perspective, SCM controls the evolution and
integrity of a product by identifying its elements, managing
and controlling change, and verifying, recording and
reporting on configuration information. From the

developer’s perspective, SCM facilitates the development
and change implementation activities. A successful SCM
implementation requires careful planning and management.
This, in turn, requires an understanding of the
organizational context for, and the constraints placed upon,
the design and implementation of the SCM process.

I.A Organizational Context for SCM

To plan an SCM process for a project, it is necessary to
understand the organizational structure and the
relationships among organizational elements. SCM
interacts with several other activities or organizational
elements.
SCM, like other processes such as software quality
assurance and software verification and validation (V&V),
is categorized as a supporting life cycle process. The
organizational elements responsible for these processes
may be structured in various ways. Although the
responsibility for performing certain SCM tasks might be
assigned to other organizations, such as the development
organization, the overall responsibility for SCM typically
rests with a distinct organizational element or designated
individual.
Software is frequently developed as part of a larger system
containing hardware and firmware elements. In this case,
SCM activities take place in parallel with hardware and
firmware CM activities and must be consistent with system
level CM. Buckley [5] describes SCM within this context.
Note that firmware contains hardware and software and,
therefore, both hardware and software CM concepts are
applicable.
SCM is closely related to the software quality assurance
(SQA) activity. The goals of SQA can be characterized
[Humphrey] as monitoring the software and its
development process, ensuring compliance with standards
and procedures, and ensuring that product, process, and
standards defects are visible to management. SCM
activities help in accomplishing these SQA goals. In some
project contexts, e.g. see [IEEE 730], specific SQA
requirements prescribe certain SCM activities.
SCM might also interface with an organization’s quality
assurance activity on issues such as records management
and non-conforming items. Regarding the former, some
items under SCM control might also be project records
subject to provisions of the organization’s quality assurance
program. Managing non-conforming items is usually the
responsibility of the quality assurance activity, however,
SCM might assist with tracking and reporting on software
items that fall in this category.
Perhaps the closest relationship is with the software
development and maintenance organizations. The
environment for software engineering includes such things
as the:
� software life cycle model and its resulting plans and

schedules,

© IEEE – Trial Version 1.00 – May 2001 7–3

� project strategies such as concurrent or distributed
development activities,

� software reuse processes,
� development and target platforms, and

� software development tools.

Software Configuration Management

Management
of the SCM

Process

Software
Configuration
Identification

Software
Configuration

Control

Software
Configuration

Status
Accounting

Software
Configuration

Auditing

Software
Release

Management
and Delivery

Organizational
Context for

SCM
Constraints and
Guidance for

SCM
Planning for

SCM

Software
Configuration
Management

Plan

SCM
Organization and
Responsabilities

SCM Resources
and Schedules

Tool Selection
and

Implementation
Vendor/

Subcontractor
Control

Interface Control

Surveillance of
Software

Configuration
Management
SCM Measures

and
Measurement

In-Process
Audits of SCM

Identifying
Items to be
Controlled

Requesting,
Evaluating and

Approving
Software
Changes

Software
Configuration

Software
Configuration

Items
Software

Configuration
Item

Relationships
Software
Versions

Baselines

Acquiring
Software

Configuration
Items

Software
Library

Software
Configuration
Control Board

Software Change
Request Process

Implementing
Software
Changes

Deviations and
Waivers

Software
Configuration

Status
Information

Software
Configuration

Status
Reporting

Software
Functional

Configuration
Audit

Software
Physical

Configuration
Audit

In-Process
Audits of a
Software
Baseline

Software
Building

Software
Release

Management

Figure 2 Breakdown of SCM Topics

This environment is also the environment within which
many of the software configuration control tasks are
conducted. Frequently, the same tools support
development, maintenance and SCM purposes.

I.B Constraints and Guidance for SCM

Constraints affecting, and guidance for, the SCM process
come from a number of sources. Policies and procedures
set forth at corporate or other organizational levels might
influence or prescribe the design and implementation of the
SCM process for a given project. In addition, the contract
between the acquirer and the supplier might contain

provisions affecting the SCM process. For example, certain
configuration audits might be required or it might be
specified that certain items be placed under configuration
management. When software products to be developed
have the potential to affect the public safety, external
regulatory bodies may impose constraints. For example, see
[USNRC]. Finally, the particular software life cycle model
chosen for a software project and the tools selected to
implement the software affect the design and
implementation of the SCM process [Bersoff, (4)].
Guidance for designing and implementing an SCM process
can also be obtained from ‘best practice’ as reflected in the

7–4 © IEEE – Trial Version 1.00 – May 2001

standards on software engineering issued by the various
standards organizations. Moore [31] provides a roadmap to
these organizations and their standards. Best practice is also
reflected in process improvement and process assessment
models such as the Software Engineering Institute’s
Capability Maturity Model (SEI/CMM) [Paulk] and the
International Organization for Standardization’s Software
Process Improvement and Capability determination project
(ISO SPICE) [El Emam].

I.C Planning for SCM

The planning of an SCM process for a given project should
be consistent with the organizational context, applicable
constraints, commonly accepted guidance, and the nature of
the project (e.g., size and criticality). The major activities
covered are Software Configuration Identification,
Software Configuration Control, Software Configuration
Status Accounting, Software Configuration Auditing, and
Software Release Management and Delivery. In addition,
issues such as organization and responsibilities, resources
and schedules, tool selection and implementation, vendor
and subcontractor control, and interface control are
typically considered. The results of the planning activity are
recorded in a Software Configuration Management Plan
(SCMP). The SCMP is typically subject to SQA review and
audit.

I.C.1 SCM Organization and Responsibilities

To prevent confusion about who will perform given SCM
activities or tasks, organizations to be involved in the SCM
process need to be clearly identified. Specific
responsibilities for given SCM activities or tasks also need
to be assigned to organizational entities, either by title or
organizational element. The overall authority and reporting
channels for SCM should also be identified, although this
might be accomplished in the project management or
quality assurance planning.

I.C.2 SCM Resources and Schedules

The planning for SCM identifies the staff and tools
involved in carrying out SCM activities and tasks. It
addresses schedule questions by establishing necessary
sequences of SCM tasks and identifying their relationships
to the project schedules and milestones established in the
project management planning. Any training requirements
necessary for implementing the plans and training new staff
members are also specified.

I.C.3 Tool Selection and Implementation

Different types of tool capabilities, and procedures for their
use, support the SCM activities. Depending on the
situation, these tool capabilities can be made available with
some combination of manual tools, automated tools
providing a single SCM capability, automated tools
integrating a range of SCM (and, perhaps other)
capabilities, or integrated tool environments that serve the
needs of multiple participants in the software development

process (e.g., SCM, development, V&V). Automated tool
support becomes increasingly important, and increasingly
difficult to establish, as projects grow in size and as project
environments get more complex. These tool capabilities
provide support for:
� the SCM Library,
� the software change request (SCR) and approval

procedures,
� code (and related work products) and change

management tasks,
� reporting software configuration status and collecting

SCM measurements,
� software auditing,
� managing and tracking software documentation,
� performing software builds, and
� managing and tracking software releases and their

distribution.
The use of tools in these areas increases the potential for
obtaining product and process measurements to be used for
project management and process improvement purposes.
Royce [37] describes seven core measures of value in
managing software processes. Information available from
the various SCM tools relates to Royce’s Work and
Progress management indicator and to his quality indicators
of Change Traffic and Stability, Breakage and Modularity,
Rework and Adaptability, and MTBF (mean time between
failures) and Maturity. Reporting on these indicators can be
organized in various ways, such as by software
configuration item or by type of change requested. Details
on specific goals and measures for software processes are
described in [Grady].
Figure 3 shows a representative mapping of tool
capabilities and procedures to the SCM Activities.

Planning

SCMP

Control

Management

Development
Team

Status
Accounting

Release
Processing

Auditing

Change
Implementation

Change
Evaluation &

Approval

Release
Authorization
& Preparation

Audit
Procedures

Configuration Identification

Code Mgmt
Systems

Baselines,
Libraries,

SCRs

CCBs DBMS, Code Mgmt Systems

Figure 3 Characterization of SCM Tools and Related
Procedures

In this example, code management systems support the
operation of software libraries by controlling access to
library elements, coordinating the activities of multiple
users, and helping to enforce operating procedures. Other
tools support the process of building software and release

© IEEE – Trial Version 1.00 – May 2001 7–5

documentation from the software elements contained in the
libraries. Tools for managing software change requests
support the change control procedures applied to controlled
software items. Other tools can provide database
management and reporting capabilities for management,
development, and quality assurance activities. As
mentioned above, the capabilities of several tool types
might be integrated into SCM systems, which, in turn, are
closely coupled to various other software activities.
The planning activity assesses the SCM tool needs for a
given project within the context of the software engineering
environment to be used and selects the tools to be used for
SCM. The planning considers issues that might arise in the
implementation of these tools, particularly if some form of
culture change is necessary. An overview of SCM systems
and selection considerations is given in [Dart, (7)], a recent
case study on selecting an SCM system is given in [Midha],
and [Hoek] provides a current web-based resource listing
web links to various SCM tools.

I.C.4 Vendor/Subcontractor Control

A software project might acquire or make use of purchased
software products, such as compilers. The planning for
SCM considers if and how these items will be taken under
configuration control (e.g., integrated into the project
libraries) and how changes or updates will be evaluated and
managed.
Similar considerations apply to subcontracted software. In
this case, the SCM requirements to be imposed on the
subcontractor’s SCM process as part of the subcontract and
the means for monitoring compliance also need to be
established. The latter includes consideration of what SCM
information must be available for effective compliance
monitoring.

I.C.5 Interface Control

When a software item will interface with another software
or hardware item, a change to either item can affect the
other. The planning for the SCM process considers how the
interfacing items will be identified and how changes to the
items will be managed and communicated. The SCM role
may be part of a larger system-level process for interface
specification and control and may involve interface
specifications, interface control plans, and interface control
documents. In this case, SCM planning for interface control
takes place within the context of the system level process.
A discussion of the performance of interface control
activities is given in [Berlack].

I.D Software Configuration Management Plan

The results of SCM planning for a given project are
recorded in a Software Configuration Management Plan
(SCMP). The SCMP is a ‘living document’ that serves as a
reference for the SCM process. It is maintained (i.e.,
updated and approved) as necessary during the software life
cycle. In implementing the plans contained in the SCMP, it
is typically necessary to develop a number of more

detailed, subordinate procedures that define how specific
requirements will be carried out during day-to-day
activities.
Guidance for the creation and maintenance of an SCMP,
based on the information produced by the planning activity,
is available from a number of sources, such as [IEEE 828
and IEEE 1042]. This reference provides requirements for
the information to be contained in an SCMP. It also defines
and describes six categories of SCM information to be
included in an SCMP:
1. Introduction (purpose, scope, terms used)
2. SCM Management (organization, responsibilities,

authorities, applicable policies, directives, and
procedures)

3. SCM Activities (configuration identification,
configuration control, etc.)

4. SCM Schedules (coordination with other project
activities)

5. SCM Resources (tools, physical, and human
resources)

6. SCMP Maintenance

I.E Surveillance of Software Configuration Management

After the SCM process has been implemented, some degree
of surveillance may be conducted to ensure that the
provisions of the SCMP are properly carried out (e.g., see
[Buckley]). There are likely to be specific SQA
requirements for ensuring compliance with specified SCM
processes and procedures. This could involve an SCM
authority ensuring that the defined SCM tasks are
performed correctly by those with the assigned
responsibility. The software quality assurance authority, as
part of a compliance auditing activity, might also perform
this surveillance.
The use of integrated SCM tools that have capabilities for
process control can make the surveillance task easier. Some
tools facilitate process compliance while providing
flexibility for the developer to adapt procedures. Other
tools enforce process, leaving the developer less flexibility.
Surveillance requirements and the level of developer
flexibility to be provided are important considerations in
tool selection.

I.E.1 SCM Measures and Measurement

SCM measures can be designed to provide specific
information on the evolving product or to provide insight
into the functioning of the SCM process. A related goal of
monitoring the SCM process is to discover opportunities
for process improvement. Quantitative measurements
against SCM process measures provide a good means for
monitoring the effectiveness of SCM activities on an
ongoing basis. These measurements are useful in
characterizing the current state of the process as well as in
providing a basis for making comparisons over time.
Analysis of the measurements may produce insights leading

7–6 © IEEE – Trial Version 1.00 – May 2001

to process changes and corresponding updates to the
SCMP.
The software libraries and the various SCM tool
capabilities provide sources for extracting information
about the characteristics of the SCM process (as well as
providing project and management information). For
example, information about the processing time required
for various types of changes would be useful in an
evaluation of the criteria for determining what levels of
authority are optimal for authorizing certain types of
changes.
Care must be taken to keep the focus of the surveillance on
the insights that can be gained from the measurements, not
on the measurements themselves.
I.E.2 In-process Audits of SCM
Audits can be carried out during the development process
to investigate the current status of specific elements of the
configuration or to assess the implementation of the SCM
process. In-process auditing of SCM provides a more
formal mechanism for monitoring selected aspects of the
process and may be coordinated with the SQA auditing
function.

II. Software Configuration Identification

The software configuration identification activity identifies
items to be controlled, establishes identification schemes
for the items and their versions, and establishes the tools
and techniques to be used in acquiring and managing
controlled items. These activities provide the basis for the
other SCM activities.

II.A Identifying Items to be Controlled

A first step in controlling change is to identify the software
items to be controlled. This involves understanding the
software configuration within the context of the system
configuration, selecting software configuration items,
developing a strategy for labeling software items and
describing their relationships, and identifying the baselines
to be used, along with the procedure for a baseline’s
acquisition of the items.

II.A.1 Software Configuration

A software configuration is the set of functional and
physical characteristics of software as set forth in the
technical documentation or achieved in a product [IEEE
610]. It can be viewed as a part of an overall system
configuration.

II.A.2 Software Configuration Item

A software configuration item (SCI) is an aggregation of
software that is designated for configuration management
and is treated as a single entity in the SCM process [IEEE
610]. A variety of items, in addition to the code itself, are
typically controlled by SCM. Software items with potential
to become SCIs include plans, specifications and design
documentation, testing materials, software tools, source and

executable code, code libraries, data and data dictionaries,
and documentation for installation, maintenance, operations
and software use.
Selecting SCIs is an important process that must achieve a
balance between providing adequate visibility for project
control purposes and providing a manageable number of
controlled items. A list of criteria for SCI selection is given
in [Berlack].

II.A.3 Software Configuration Item Relationships

The structural relationships among the selected SCIs, and
their constituent parts, affect other SCM activities or tasks,
such as software building or analyzing the impact of
proposed changes. Proper tracking of these relationships is
also important for supporting traceability verifications. The
design of the identification scheme for SCIs should
consider the need to map the identified items to the
software structure as well as the need to support the
evolution of the software items and their relationships.

II.A.4 Software Versions

Software items evolve as a software project proceeds. A
version of a software item is a particular identified and
specified item. It can be thought of as a state of an evolving
item [Conradi]. A revision is a new version of an item that
is intended to replace the old version of the item. A variant
is a new version of an item that will be added to the
configuration without replacing the old version. The
management of software versions in various software
engineering environments is a current research topic; for
example, see [Conradi], [Estublier], and [Sommerville,
(39)].

II.A.5 Baseline

A software baseline is a set of software items formally
designated and fixed at a specific time during the software
life cycle. The term is also used to refer to a particular
version of a software item that has been agreed upon. In
either case, the baseline can only be changed through
formal change control procedures. A baseline, together with
all approved changes to the baseline, represents the current
approved configuration.
Commonly used baselines are the functional, allocated,
developmental, and product baselines; e.g. see [Berlack].
The functional baseline corresponds to the reviewed system
requirements. The allocated baseline corresponds to the
reviewed software requirements specification and software
interface requirements specification. The developmental
baseline represents the evolving software configuration at
selected times during the software life cycle. Change
authority for this baseline typically rests primarily with the
development organization, but may be shared by other
organizations (e.g., SCM or Test). The product baseline
corresponds to the completed software product delivered
for system integration. The baselines to be used for a given
project, along with their associated levels of authority

© IEEE – Trial Version 1.00 – May 2001 7–7

needed for change approval, are typically identified in the
SCMP.

II.A.6 Acquiring Software Configuration Items

Software configuration items are placed under SCM control
at different times; i.e. they are incorporated into a particular
baseline at a particular point in the software life cycle. The
triggering event is the completion of some form of formal
acceptance task, such as a formal review. Figure 4
characterizes the growth of baselined items as the life cycle
proceeds. This figure is based on a waterfall model for
purposes of illustration only; the subscripts used in the
figure indicate versions of the evolving items. The software
change request (SCR) is described in section III.A.

SRSA SRSB

SDDA

SRSC

SDDB

CodeA

Test
PlansA

SRSD

SDDC

CodeB

Test
PlansB

User
ManualA

Regression
Test DBA

Requirements
 Review

Design
 Review

Test Readiness
 Review

Acceptance

SCR control
of SRS mods

SCR control
of SRS, SDD
mods

SCR control
of SRS, SDD
Code, Test
Plans

Figure 4 Acquisition of Items

Following the acquisition of an SCI, changes to the item
must be formally approved as appropriate for the SCI and
the baseline involved, as defined in the SCMP. Following
the approval, the item is incorporated into the software
baseline according to the appropriate procedure.
II.B Software Library
A software library is a controlled collection of software and
related documentation designed to aid in software
development, use, and maintenance [IEEE 610]. It is also
instrumental in software release and delivery activities.
Several types of libraries might be used, each
corresponding to a particular level of maturity of the
software item. For example a working library could support
coding and a project support library could support testing,
whereas a master library could be used for finished
products. An appropriate level of SCM control (associated
baseline and level of authority for change) is associated
with each library. Security, in terms of access control and
the backup facilities, is a key aspect of library management.
A model of a software library is described in [Berlack].
The tool(s) used for each library must support the SCM
control needs for that library, both in terms of controlling
SCIs and controlling access to the library. At the working
library level, this is a code management capability serving

developers, maintainers and SCM. It is focused on
managing the versions of software items while supporting
the activities of multiple developers. At higher levels of
control, access is more restricted and SCM is the primary
user.
These libraries are also an important source of information
for measurements of work and progress.

III. Software Configuration Control

Software configuration control is concerned with managing
changes during the software life cycle. It covers the process
for determining what changes to make, the authority for
approving certain changes, support for the implementation
of those changes, and the concept of formal deviations and
waivers from project requirements. Information derived
from these activities is useful in measuring change traffic,
breakage, and aspects of rework.

III.A. Requesting, Evaluating and Approving Software
Changes

The first step in managing changes to controlled items is
determining what changes to make. The software change
request process (see Figure 5) provides formal procedures
for submitting and recording change requests, evaluating
the potential cost and impact of a proposed change, and
accepting, modifying or rejecting the proposed change.
Requests for changes to software configuration items may
be originated by anyone at any point in the software life
cycle and may include a suggested solution and requested
priority. One source of change requests is the initiation of
corrective action in response to problem reports. Regardless
of the source, the type of change (e.g. defect or
enhancement) usually recorded on the SCR.

Need for
Change

Change
 identified for
controlled item

SCR generated
or updated

SCR evaluated incomplete

Preliminary
Investigation

CCB Review

Assign to
 Software
 Engineer

Schedule,
 design, test,
complete change

Approved

Rejected Inform
Requester

‘Emergency Path’
usually also exists.

Changes can be
implemented with
change process
performed afterward

complete
Figure 5 Flow of a Change Control Process

This provides an opportunity for tracking defects and
collecting change activity measurements by change type.
Once an SCR is received, a technical evaluation (also
known as an impact analysis) is performed to determine the
extent of modifications that would be necessary should the
change request be accepted. A good understanding of the
relationships among software (and possibly, hardware)
items is important for this task. Finally, an established

7–8 © IEEE – Trial Version 1.00 – May 2001

authority, commensurate with the affected baseline, the SCI
involved, and the nature of the change, will evaluate the
technical and managerial aspects of the change request and
either accept, modify, reject or defer the proposed change.

III.A.1. Software Configuration Control Board

The authority for accepting or rejecting proposed changes
rests with an entity typically known as a Configuration
Control Board (CCB). In smaller projects, this authority
actually may reside with the responsible leader or an
assigned individual rather than a multi-person board. There
can be multiple levels of change authority depending on a
variety of criteria, such as the criticality of the item
involved, the nature of the change (e.g., impact on budget
and schedule), or the current point in the life cycle. The
composition of the CCBs used for a given system varies
depending on these criteria (an SCM representative would
always be present). All stakeholders, appropriate to the
level of the CCB, are represented. When the scope of
authority of a CCB is strictly software, it is known as a
software configuration control board (SCCB). The
activities of the CCB are typically subject to SQA audit or
review.

III.A.2 Software Change Request Process

An effective SCR process requires the use of supporting
tools and procedures ranging from paper forms and a
documented procedure to an electronic tool for originating
change requests, enforcing the flow of the change process,
capturing CCB decisions, and reporting change process
information. A link between this tool capability and the
problem reporting system can facilitate the tracking of
solutions for reported problems. Change process
descriptions and supporting forms (information) are given
in a variety of references, e.g. [Berlack] and [IEEE 1042].
Typically, change management tools are tailored to local
processes and tool suites and are often locally developed.
The current trend is towards integration of these kinds of
tools within a suite referred to as a software engineering
environment.

III.B. Implementing Software Changes

Approved change requests are implemented using the
defined software procedures in accordance with the
applicable schedule requirements. Since a number of
approved change requests might be implemented
simultaneously, it is necessary to provide a means for
tracking which change requests are incorporated into
particular software versions and baselines. As part of the
closure of the change process, completed changes may
undergo configuration audits and SQA verification. This
includes ensuring that only approved changes were made.
The change request process described above will typically
document the SCM (and other) approval information for
the change.
The actual implementation of a change is supported by the
library tool capabilities that provide version management

and code repository support. At a minimum, these tools
provide check-in/out and associated version control
capabilities. More powerful tools can support parallel
development and geographically distributed environments.
These tools may be manifested as separate specialized
applications under control of an independent SCM group.
They may also appear as an integrated part of the software
development environment. Finally, they may be as
elementary as a rudimentary change control system
provided with an operating system.

III.C. Deviations and Waivers

The constraints imposed on a software development effort
or the specifications produced during the development
activities might contain provisions that cannot be satisfied
at the designated point in the life cycle. A deviation is an
authorization to depart from a provision prior to the
development of the item. A waiver is an authorization to
use an item, following its development, that departs from
the provision in some way. In these cases, a formal process
is used for gaining approval for deviations to, or waivers of,
the provisions.

IV. Software Configuration Status Accounting

Software configuration status accounting (SCSA) is the
recording and reporting of information needed for effective
management of the software configuration. The design of
the SCSA capability can be viewed from an information
systems perspective, utilizing accepted information systems
design techniques.

IV.A. Software Configuration Status Information

The SCSA activity designs and operates a system for the
capture and reporting of necessary information as the life
cycle proceeds. As in any information system, the
configuration status information to be managed for the
evolving configurations must be identified, collected, and
maintained. Various information and measurements are
needed to support the SCM process and to meet the
configuration status reporting needs of management,
software engineering, and other related activities. The types
of information available include the approved configuration
identification as well as the identification and current
implementation status of changes, deviations and waivers.
A partial list of important data elements is given in
[Berlack].
Some form of automated tool support is necessary to
accomplish the SCSA data collection and reporting tasks.
This could be a database capability, such as a relational or
object-oriented database management system. This could
be a stand-alone tool or a capability of a larger, integrated
tool environment.

IV.B. Software Configuration Status Reporting

Reported information can be used by various organizational
and project elements, including the development team, the
maintenance team, project management, and quality

© IEEE – Trial Version 1.00 – May 2001 7–9

assurance activities. Reporting can take the form of ad hoc
queries to answer specific questions or the periodic
production of pre-designed reports. Some information
produced by the status accounting activity during the
course of the life cycle might become quality assurance
records.
In addition to reporting the current status of the
configuration, the information obtained by SCSA can serve
as a basis for various measurements of interest to
management, development, and SCM. Examples include
the number of change requests per SCI and the average
time needed to implement a change request.

V. Software Configuration Auditing

A software audit is an activity performed to independently
evaluate the conformance of software products and
processes to applicable regulations, standards, guidelines,
plans, and procedures [IEEE 1028]. Audits are conducted
according to a well-defined process consisting of various
auditor roles and responsibilities. Consequently, each audit
must be carefully planned. An audit can require a number
of individuals to perform a variety of tasks over a fairly
short period of time. Tools to support the planning and
conduct of an audit can greatly facilitate the process.
Guidance for conducting software audits is available in
various references, such as [Berlack], [Buckley], and [IEEE
1028].
The software configuration auditing activity determines the
extent to which an item satisfies the required functional and
physical characteristics. Informal audits of this type can be
conducted at key points in the life cycle. Two types of
formal audits might be required by the governing contract
(e.g., in contracts covering critical software): the Functional
Configuration Audit (FCA) and the Physical Configuration
Audit (PCA). Successful completion of these audits can be
a prerequisite for the establishment of the product baseline.
Buckley [5] contrasts the purposes of the FCA and PCA in
hardware versus software contexts and recommends careful
evaluation of the need for the software FCA and PCA
before performing them.
V.A. Software Functional Configuration Audit
The purpose of the software FCA is to ensure that the
audited software item is consistent with its governing
specifications. The output of the software verification and
validation activities is a key input to this audit.
V.B. Software Physical Configuration Audit
The purpose of the software PCA is to ensure that the
design and reference documentation is consistent with the
as-built software product.
V.C. In-process Audits of a Software Baseline
As mentioned above, audits can be carried out during the
development process to investigate the current status of
specific elements of the configuration. In this case, an audit
could be applied to sampled baseline items to ensure that
performance was consistent with specification or to ensure

that evolving documentation was staying consistent with
the developing baseline item.
VI. Software Release Management and Delivery
The term “release” is used in this context to refer to the
distribution of a software configuration item outside the
development activity. This includes internal releases as
well as distribution to customers. When different versions
of a software item are available for delivery, such as
versions for different platforms or versions with varying
capabilities, it is frequently necessary to recreate specific
versions and package the correct materials for delivery of
the version. The software library is a key element in
accomplishing release and delivery tasks.

VI.A. Software Building

Software building is the activity of combining the correct
versions of software items, using the appropriate
configuration data, into an executable program for delivery
to a customer or other recipient, such as the testing activity.
For systems with hardware or firmware, the executable is
delivered to the system building activity. Build instructions
ensure that the proper build steps are taken and in the
correct sequence. In addition to building software for new
releases, it is usually also necessary for SCM to have the
capability to reproduce previous releases for recovery,
testing, or additional release purposes.
Software is built using particular versions of supporting
tools, such as compilers. It might be necessary to rebuild an
exact copy of a previously built software item. In this case,
the supporting tools and associated build instructions need
to be under SCM control to ensure availability of the
correct versions of the tools.
A tool capability is useful for selecting the correct versions
of software items for a given target environment and for
automating the process of building the software from the
selected versions and appropriate configuration data. For
large projects with parallel development or distributed
development environments, this tool capability is
necessary. Most software development environments
provide this capability. These tools vary in complexity from
requiring the engineer to learn a specialized scripting
language to graphics-oriented approaches that hide much of
the complexity of an “intelligent” build facility.
The build process and products are often subject to SQA
verification. Outputs of the build process might be needed
for future reference and may become quality assurance
records.

VI.B Software Release Management

Software release management encompasses the
identification, packaging and delivery of the elements of a
product, for example, the executable, documentation,
release notes, and configuration data. Given that product
changes can be occurring on a continuing basis, one issue
for release management is determining when to issue a
release. The severity of the problems addressed by the

7–10 © IEEE – Trial Version 1.00 – May 2001

release and measurements of the fault densities of prior
releases affect this decision [Sommerville, (38)]. The
packaging task must identify which product items are to be
delivered and select the correct variants of those items,
given the intended application of the product. The set of
information documenting the physical contents of a release
is known as a version description document and may exist
in hardcopy or electronic form. The release notes typically
describe new capabilities, known problems, and platform
requirements necessary for proper product operation. The
package to be released also contains loading or upgrading
instructions. The latter can be complicated by the fact that
some current users might have versions that are several
releases old. Finally, in some cases, the release
management activity might be required to track the
distribution of the product to various customers or target
systems. An example would be a case where the supplier
was required to notify a customer of newly reported
problems.
A tool capability is needed for supporting these release
management functions. It is useful to have a connection
with the tool capability supporting the change request
process in order to map release contents to the SCRs that
have been received. This tool capability might also

maintain information on various target platforms and on
various customer environments.

4 BREAKDOWN RATIONALE

One of the primary goals of the Guide to the SWEBOK is
to arrive at a breakdown that is ‘generally accepted’.
Consequently, the breakdown of SCM topics was
developed largely by attempting to synthesize the topics
covered in the literature and in recognized standards, which
tend to reflect consensus opinion. The topic on Software
Release Management and Delivery is an exception since it
has not commonly been broken out separately in the past.
The precedent for this was set by the ISO/IEC 12207
standard [23], which identifies a ‘Release Management and
Delivery’ activity.
There is widespread agreement in the literature on the SCM
activity areas and their key concepts. However, there
continues to be active research on implementation aspects
of SCM. Examples are found in ICSE workshops on SCM
such as [Estublier] and [Sommerville, (39)].

5 MATRIX OF TOPICS VS. REFERENCE MATERIAL

Table 1. Coverage of the Breakdown Topics by the Recommended References
 Babich Berlack Buckley Conradi Dart Hoek IEEE

828
IEEE/EIA

12207
Midha Moore Paulk Pressman Royce Sommerville

I. Management of the SCM Process
A. Organizational Context for SCM C4 C2 C2 4.2.1
B. Constraints and Guidance for
SCM

 C5 4.1,
4.2.3

 X

C. Planning for SCM C2 6.2.1 C33
1. SCM Organization and
Responsibilities

 C7 C3 4.2

2. SCM Resources and Schedules C7 C3 4.4, 4.5
3. Tool Selection and
Implementation

 C15 C6 C3,
App A

X X C29

4. Vendor/Subcontractor Control C13 C11 4.3.6
5. Interface Control C12 4.3.5

D. SCM Plan C7 C3 4 L2-81
E. Surveillance of SCM L2-87

1. SCM Measures and
Measurement

 C3 202,283-

2. In-Process Audits of SCM C15
II. Software Configuration
Identification

 6.2.2

A. Identifying Items to be Controlled C8 4.3.1 L2-83 C33
1. Software Configuration C4,6 C9
2. Software Configuration Item C4,6 C2 C9
3. Software Configuration Item
Relationships

 C2 C9

4. Software Versions C2 C3,C4,C5 C9
5. Baseline C5 C4 C9
6. Acquiring Software
Configuration Items

 C4

B. Software Library C2,5 C14 C4 4.3.1 L2-82 C33
III. Software Configuration
Control

 6.2.3 L2-84

A. Requesting, Evaluating and
Approving Software Changes

 4.3.2 C9 C33

1. Software Configuration Control
Board

 C9 C9,11 C9

2. Software Change Request
Process

 C9 C9,11 C9

© IEEE – Trial Version 1.00 – May 2001 7–11

 Babich Berlack Buckley Conradi Dart Hoek IEEE
828

IEEE/EIA
12207

Midha Moore Paulk Pressman Royce Sommerville

B. Implementing Software Changes C6 C9 C9,11 4.3.2.4 C9 C33
C. Deviations & Waivers C9 C12
IV. Software Configuration Status
Accounting

 6.2.4 L2-85 C9 C33

A. Software Configuration Status Inf. C10 C13 4.3.3
B. Software Configuration Status
Rptg.

 C10 C13

V. Software Configuration
Auditing

 4.3.4 6.2.5 L2-86 C9,C17

A. Software Functional Configuration
Audit

 C11 C15

B. Software Physical Configuration
Audit

 C11 C15

C. In-Process Audits of a Software
Baseline

 C15

VI. Software Release Management
and Delivery

 6.2.6

A. Software Building C6 C33
B. Software Release Management C33

6 RECOMMENDED REFERENCES FOR SCM

Cross Reference Matrix
Table 1, in Appendix A, provides a cross reference between
the recommended references and the topics of the
breakdown. Note that, where a recommended reference is
also shown in the Further Reading section, the cross
reference reflects the full text rather than just the specific
passage referenced in the Recommended References.
Recommended References
Specific recommendations are made here to provide
additional information on the topics of the SCM
breakdown.
W.A. Babich, Software Configuration Management,
Coordination for Team Productivity, Addison-Wesley,
1986 [1]
Pages 20-43 address the basics of code management.
H.R. Berlack, Software Configuration Management, Wiley
1992 [2]
See pages 101-175 on configuration identification,
configuration control and configuration status accounting,
and pages 202-206 on libraries.
F.J. Buckley, Implementing Configuration Management:
Hardware, Software, and Firmware 2nd edition, IEEE
Computer Society Press, 1996 [5]
See pages 10-19 on organizational context, pages 21-38 on
CM planning, and 228-250 on CM auditing.
R. Conradi and B. Westfechtel, “Version Models for
Software Configuration Management”, ACM Computing
Surveys, vol. 30, no. 2, June 1998 [6]
An in-depth article on version models used in software
configuration management. It defines fundamental concepts
and provides a detailed view of versioning paradigms. The
versioning characteristics of various SCM systems are
discussed.

S.A. Dart, Spectrum of Functionality in Configuration
Management Systems [7]
This report covers features of various CM systems and the
scope of issues concerning users of CM systems. As of this
writing, the report can be found on the Internet at:
http://www.sei.cmu.edu/about/website/search.html
Hoek, “Configuration Management Yellow Pages,” [13]
This web page provides a current compilation of SCM
resources.
http://www.cmtoday.com/yp/configuration_management.ht
ml
IEEE/EIA Std 12207.0-1996, Software Life Cycle
Processes, [20] and IEEE/EIA Std 12207.1-1996, Software
Life Cycle Processes - Life Cycle Data, [21]
These standards provide the ISO/IEC view of software
processes along with specific information on life cycle data
keyed to software engineering standards of other standards
bodies.
IEEE Std.828-1990, IEEE Standard for Software
Configuration Management Plans [17] and IEEE Std.1042-
1987, IEEE Guide to Software Configuration Management
[19]
These standards focus on SCM activities by specifying
requirements and guidance for preparing the SCMP. These
standards reflect commonly accepted practice for software
configuration management.
A.K. Midha, “Software Configuration Management for the
21st Century”, Bell Technical Labs Journal, vol. 2 no. 1,
Winter 1997, pp. 154-165 [30]
This article discusses the characteristics of SCM systems,
assessment of SCM needs in a particular environment, and
the issue of selecting and implementing an SCM system. It
is a current case study on this issue.
J.W. Moore, Software Engineering Standards, A User’s
Road Map, IEEE Computer Society Press, 1998 [31]
Pages 118-119 cover SCM and pages 194-223 cover the
perspective of the 12207 standards.

7–12 © IEEE – Trial Version 1.00 – May 2001

M.C. Paulk, et al., Key Practices of the Capability Maturity
Model, Software Engineering Institute, 1993 [32]
Pages 180-191 cover the SCM key process area of the SEI
CMM.
R.S. Pressman, Software Engineering: A Practitioner’s
Approach, 4th edition, McGraw-Hill, 1997 [36]
Pages 209-226 address SCM in the context of a textbook on
software engineering.
Walker Royce, Software Project Management, A Unified
Framework, Addison-Wesley, 1998 [37]
Pages 188-202 and 283-298 cover measures of interest to
software project management that are closely related to
SCM.
I. Sommerville, Software Engineering, 5th edition, Addison-
Wesley, 1996 [38]
Pages 675-696 cover SCM with an emphasis on software
building and release management.

© IEEE – Trial Version 1.00 – May 2001 7–13

APPENDIX A – LIST OF FURTHER READINGS

The following set of references was chosen to provide
coverage of all aspects of SCM, from various perspectives
and to varying levels of detail. The author and title are
cited; the complete reference is given in the References
section. Some items overlap with those in the
Recommended References since they cover the full texts
rather than specific passages.
W.A. Babich, Software Configuration Management,
Coordination for Team Productivity [1]
This text is focused on code management issues from the
perspective of the development team.
H.R. Berlack, Software Configuration Management [2]
This textbook provides detailed, comprehensive coverage
of the concepts of software configuration management.
This is one of the more recent texts with this focus.
F.J. Buckley, Implementing Configuration Management:
Hardware, Software, and Firmware [5]
This text presents an integrated view of configuration
management for projects in which software, hardware and
firmware are involved. It is a recent text that provides a
view of software configuration management from a systems
perspective.
J. Estublier, Software Configuration Management, ICSE
SCM-4 and SCM-5 Workshops Selected Papers [10]
These workshop proceedings are representative of current
experience and research on SCM. This reference is
included with the intention of directing the reader to the
whole class of conference and workshop proceedings.
The suite of IEEE/EIA and ISO/IEC 12207 standards, [20]-
[24]
These standards cover software life cycle processes and
address SCM in that context. These standards reflect
commonly accepted practices for software life cycle
processes. Note - the developing ISO/IEC TR 15504
(SPICE99) expands on SCM within the context of the
ISO/IEC 12207 standard.
IEEE Std.1042-1987, IEEE Guide to Software
Configuration Management [19]
This standard provides guidance, keyed to IEEE 828, for
preparing the SCMP.
J.W. Moore, Software Engineering Standards, A User’s
Road Map [31]
This text provides a comprehensive view of current
standards and standards activities in the area of software
engineering.

7–14 © IEEE – Trial Version 1.00 – May 2001

APPENDIX B – REFERENCES USED TO WRITE AND
JUSTIFY THE KNOWLEDGE AREA DESCRIPTION

These references were used in preparing this paper; the
recommended references for SCM are listed in Section 3.1.
1. W.A. Babich, Software Configuration Management:

Coordination for Team Productivity, Addison-Wesley,
Reading, Massachusetts, 1986.

2. H.R. Berlack, Software Configuration Management,
John Wiley & Sons, New York, 1992.

3. E.H. Bersoff, “Elements of Software Configuration
Management,” Software Engineering, M. Dorfman and
R.H. Thayer ed., IEEE Computer Society Press, Los
Alamitos, CA, 1997.

4. E.H. Bersoff and A.M. Davis, “Impacts of Life Cycle
Models on Software Configuration Management,”
Communications of the ACM, Vol. 34, No. 8, August
1991, pp104-118.

5. F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and Firmware,
Second Edition, IEEE Computer Society Press, Los
Alamitos, CA, 1996.

6. R. Conradi and B. Westfechtel, “Version Models for
Software Configuration Management,” ACM
Computing Surveys, Vol. 30, No. 2, June 1998, pp.
232-282.

7. S.A. Dart, Spectrum of Functionality in Configuration
Management Systems, Technical Report CMU/SEI-90-
TR-11, Software Engineering Institute, Carnegie
Mellon University, 1990.

8. S.A. Dart, “Concepts in Configuration Management
Systems,” Proceedings of the Third International
Workshop on Software Configuration Management,
ACM Press, New York, 1991, pp1-18.

9. Khaled El Emam, et al., SPICE, The Theory and
Practice of Software Process Improvement and
Capability Determination, IEEE Computer Society,
Los Alamitos, CA, 1998.

10. J. Estublier, Software Configuration Management,
ICSE SCM-4 and SCM-5 Workshops Selected Papers,
Springer-Verlag, Berlin, 1995.

11. P.H. Feiler, Configuration Management Models in
Commercial Environments, Technical Report
CMU/SEI-91-TR-7, Software Engineering Institute,
Carnegie Mellon University, 1991.

12. R.B. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice-Hall,
Englewook Cliffs, NJ, 1992.

13. Hoek, “Configuration Management Yellow Pages,”
http://www.cs.colorado.edu/users/andre/configuration_
management.html

14. W.S. Humphrey, Managing the Software Process,
Addison-Wesley, Reading, MA, 1989.

15. IEEE Std.610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, IEEE, Piscataway,
NJ, 1990.

16. IEEE Std.730-1998, IEEE Standard for Software
Quality Assurance Plans, IEEE, Piscataway, NJ, 1998.

17. IEEE Std.828-1998, IEEE Standard for Software
Configuration Management Plans, IEEE, Piscataway,
NJ, 1998.

18. IEEE Std.1028-1997, IEEE Standard for Software
Reviews, IEEE, Piscataway, NJ, 1997.

19. IEEE Std.1042-1987, IEEE Guide to Software
Configuration Management, IEEE, Piscataway, NJ,
1987.

20. IEEE/EIA Std 12207.0-1996, Software Life Cycle
Processes, IEEE, Piscataway, NJ, 1996.

21. IEEE/EIA Std 12207.1-1996, Guide for Software Life
Cycle Processes – Life Cycle Data, IEEE, Piscataway,
NJ, 1996.

22. IEEE/EIA Std 12207.2-1996, Guide for Software Life
Cycle Processes – Implementation Considerations,
IEEE, Piscataway, NJ, 1996.

23. ISO/IEC 12207:1995(E), Information Technology -
Software Life Cycle Processes, ISO/IEC, Geneve,
Switzerland, 1995.

24. ISO/IEC TR 15846:1998, Information Technology -
Software Life Cycle Processes - Configuration
Management , ISO/IEC, Geneve, Switzerland, 1998.

25. ISO/DIS 9004-7 (now ISO 10007), Quality
Management and Quality System Elements, Guidelines
for Configuration Management, International
Organization for Standardization, Geneve,
Switzerland, 1993.

26. P. Jalote, An Integrated Approach to Software
Engineering, Springer-Verlag, New York, 1997

27. John J. Marciniak and Donald J. Reifer, Software
Acquisition Management, Managing the Acquisition of
Custom Software Systems, John Wiley & Sons, 1990.

28. J.J. Marciniak, “Reviews and Audits,” Software
Engineering, M. Dorfman and R.H. Thayer ed., IEEE
Computer Society Press, Los Alamitos, CA, 1997.

29. K. Meiser, “Software Configuration Management
Terminology,” Crosstalk, 1995,
http://www.stsc.hill.af.mil/crosstalk/1995/jan/terms.ht
ml, February 1999.

30. A.K. Midha, “Software Configuration Management for
the 21st Century,” Bell Labs Technical Journal, Winter
1997.

31. J.W. Moore, Software Engineering Standards, A
User’s Roadmap, IEEE Computer Society, Los
Alamitos, CA, 1998.

© IEEE – Trial Version 1.00 – May 2001 7–15

32. M.C. Paulk, et al., Key Practices of the Capability
Maturity Model, Version 1.1, Technical Report
CMU/SEI-93-TR-025, Software Engineering Institute,
Carnegie Mellon University, 1993

33. M.C. Paulk, et al., The Capability Maturity Model,
Guidelines for Improving the Software Process,
Addison-Wesley, Reading, Massachusetts, 1995.

34. S.L. Pfleeger, Software Engineering: Theory and
Practice, Prentice Hall, Upper Saddle River, NJ, 1998

35. R.K. Port, “Software Configuration Management
Technology Report, September 1994, “
http://www.stsc.hill.af.mil/cm/REPORT.html,
February 1999.

36. R.S. Pressman, Software Engineering: A Practitioner’s
Approach, McGraw-Hill, New York, 1997.

37. Walker Royce, Software Project Management, A
United Framework, Addison-Wesley, Reading,
Massachusetts, 1998.

38. Sommerville, Software Engineering, Fifth Edition,
Addison-Wesley, Reading, Massachusetts, 1995.

39. Sommerville, Software Configuration Management,
ICSE SCM-6 Workshop, Selected Papers, Springer-
Verlag, Berlin, 1996.

40. USNRC Regulatory Guide 1.169, Configuration
Management Plans for Digital Computer Software
Used in Safety Systems of Nuclear Power Plants, U.S.
Nuclear Regulatory Commission, Washington DC,
1997.

41. J.P. Vincent, et al., Software Quality Assurance,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

42. W.G. Vincenti, What Engineers Know and How They
Know It, The Johns Hopkins University Press,
Baltimore, MD, 1990.

43. D. Whitgift, Methods and Tools for Software
Configuration Management, John Wiley & Sons,
Chichester, England, 1991.

M.C. Paulk, et al., Key Practices of the Capability Maturity
Model [32]
This report describes the key practices that could be
evaluated in assessing software process maturity.
Therefore, the section on SCM key practices provides a
view of SCM from a software process assessment
perspective.
R.S. Pressman, Software Engineering: A Practitioner’s
Approach [36]
This reference and the Sommerville reference address SCM
in the context of a textbook on software engineering.
I. Sommerville, Software Engineering [38]
This reference and the Pressman reference address SCM in
the context of a textbook on software engineering.

J.P. Vincent, et al., Software Quality Assurance [41]
In this text, SCM is described from the perspective of a
complete set of assurance processes for a software
development project.
D. Whitgift, Methods and Tools for Software Configuration
Management [43]
This text covers the concepts and principles of SCM. It
provides detailed information on the practical questions of
implementing and using tools. This text is out of print but
still available in libraries.

7–16 © IEEE – Trial Version 1.00 – May 2001

APPENDIX C – RATIONALE DETAILS

Criterion (a): Number of topic breakdowns
One breakdown is provided.
Criterion (b): Reasonableness
The breakdowns are reasonable in that they cover the areas
typically discussed in texts and standards, although there is
somewhat less discussion of release management as a
separate topic. In response to comments on version 0.5 of
the paper, the tool discussion under ‘Planning for SCM’ has
been expanded. The various tool subheadings used
throughout the text have been removed (so they do not
appear as topics), however, the supporting text has been
retained and incorporated into the next higher level topics.
Criterion (c): Generally Accepted
The breakdowns are generally accepted in that they cover
the areas typically discussed in texts and standards.
At level 1, the breakdown is identical to that given in IEC
12207 (Section 6.2) except that the term “Management of
the Software Configuration Management Process” was
used instead of “Process Implementation” and the term
“Software Configuration Auditing” was used instead of
“Configuration Evaluation.” The typical texts discuss
Software Configuration Management Planning (our topic
A.3); We have expanded this to a “management of the
process” concept in order to capture related ideas expressed
in many of the references that we have used. These ideas
are captured in topics A.1 (organizational context), A.2
(constraints and guidance), and A.4 (surveillance of the
SCM process). A similar comparison can also be made to
[Buckley] except for the addition of “Software Release
Management and Delivery.”
We have chosen to include the word “Software” as a prefix
to most of the configuration topics to distinguish the topics
from hardware CM or system level CM activities. We
would reserve “Configuration Management” for system
purposes and then use HCM and SCM for hardware and
software respectively.
The topic A.1, “Software Configuration Management
Organizational Context,” covers key topics addressed in
multiple texts and articles and it appears within the level 1
headings consistently with the placement used in the
references. This new term on organizational context was
included as a placeholder for capturing three concepts
found in the references. First, [Buckley] discusses SCM in
the overall context of a project with hardware, software,
and firmware elements. We believe that this is a link to a
related discipline of system engineering. (This is similar to
what IEEE 828 discusses under the heading of “Interface
Control”). Second, SCM is one of the product assurance
processes supporting a project, or in IEC 12207
terminology, one of the supporting lifecycle processes. The
processes are closely related and, therefore, interfaces to
them should be considered in planning for SCM. Finally,

some of the tools for implementing SCM might be the same
tools used by the developers. Therefore, in planning SCM,
there should be awareness that the implementation of SCM
is strongly affected by the environment chosen for the
development activities.
The inclusion of the topic “Release Management and
Delivery” is somewhat controversial since the majority of
texts on software configuration management devote little or
no attention to the topic. We believe that most writers
assume the library function of configuration identification
would support release management and delivery but,
perhaps, assume that these activities are the responsibility
of project or line management. The IEC 12207 standard,
however, has established this as a required area for SCM.
Since this has occurred and since this topic should be
recognized somewhere in the overall description of
software activities, “Release Management and Delivery”
has been included.
Criterion (d): No Specific Application Domains
No specific application domains have been assumed.
Criterion (e): Compatible with Various Schools of
Thought
SCM concepts are fairly stable and mature.
Criterion (f): Compatible with Industry, Literature, and
Standards
The breakdown was derived from the literature and from
key standards reflecting consensus opinion. The extent to
which industry implements the SCM concepts in the
literature and in standards varies by company and project.
Criterion (g): As Inclusive as Possible
The inclusion of the level 1 topic on management of SCM
expands the planning concept into a larger area that can
cover all management-related topics, such as surveillance
of the SCM process. For each level 1 topic, the level 2
topics categorize the main areas in various references’
discussions of the level 1 topic. These are intended to be
general enough to allow an open-ended set of subordinate
level 3 topics on specific issues. The level 3 topics cover
specifics found in the literature but are not intended to
provide an exhaustive breakdown of the level 2 topic.
Criterion (h): Themes of Quality and Measurement
The relationship of SCM to product assurance and
measurement is provided for in the breakdowns. The
description also conveys the role of SCM in achieving a
consistent, verified, and validated product.
Criterion (i): 2 to 3 levels, 5 to 9 topics at the first level
The proposed breakdown satisfies this criterion.
Criterion (j): Topic Names Meaningful Outside the
Guide
For the most part, we believe this is the case. Some terms,
such a “Baselines” or “Physical Configuration Audit”

© IEEE – Trial Version 1.00 – May 2001 7–17

require some explanation but they are obviously the terms
to use since appear throughout the literature.
Criterion (k): Topics only sufficiently described to allow
reader to select appropriate material
We believe this has been accomplished. We have not
attempted to provide a tutorial on SCM.
Criterion (l): Text on the Rationale Underlying the
Proposed Breakdowns
This document provides the rationale.

