
0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 5 5

feature

undergraduate SE degree programs. We can view
SE 2004 as SWEBOK’s education counterpart.

Both SE 2004 and SWEBOK are important
milestones resulting from participants’ exten-
sive real-world experience and working-group
discussions. Both heavily emphasize the “engi-
neering” in software engineering.1–3 This fo-
cus influences the contents of a typical SE
course as well as the students’ understanding
of what SE entails. However, SE has an im-
portant social dimension that’s easily squeezed
out by the omnipresent engineering attitude.
Here, I discuss how this limited conception of
SE contributes to five assumptions that can
trap SE educators:

■ An SE course needs an industrial project.
■ SE is like other branches of engineering.
■ Planning in SE is poorly done relative to

other fields.

■ The user interface is part of low-level design.
■ SWEBOK represents the state of the practice.

The traps idea isn’t highly original. Several
authors have published similar articles on the
myths of formal methods, requirements engi-
neering, and SE programs.4 In the latter case, the
authors discuss whether the new SE degree pro-
grams are a silver bullet. The traps I discuss fo-
cus on a typical SE course’s content and how it
represents SE to beginning students. My aim is
both to provoke discussion and to highlight the
challenges these traps present to SE educators.

Context
My teaching situation partly determines and

bounds the traps I discuss. Typically, Dutch uni-
versities don’t offer separate computer science
(CS) and SE degrees. They have a three-year
bachelor’s program and a two-year master’s

Reflections on Software
Engineering Education

I
n recent years, the SE community has focused on organizing our ex-
isting knowledge and finding ways to transform it into a curriculum.
These efforts produced SWEBOK (the Guide to the Software Engineer-
ing Body of Knowledge; www.swebok.org) and Software Engineering

2004 (http://sites.computer.org/ccse). SWEBOK reflects a widely agreed-upon
view of what a software engineer who has a bachelor’s degree and four
years’ experience should know. SE 2004 offers curriculum guidelines for

educational principles and practices

Hans van Vliet, Vrije Universiteit Amsterdam

The “engineering”
focus in software
engineering
education leaves
instructors
vulnerable to
several traps. It also
misleads students as
to SE’s essential
human and social
dimensions.

program in CS. Most students enroll in the
bachelor’s program right after high school. The
program doesn’t have much specialization and
usually has one general SE course. Typically,
this course includes theory and project work.
The master’s program generally contains a se-
ries of more specialized SE courses.

The Vrije Universiteit rates its SE course’s
theoretical and practical parts at 4 and 8
ECTS credits, respectively. (In the European
Credit Transfer System, 1 ECTS amounts to
approximately 28 study hours; a full year is 60
ECTS.) The course lasts 12 weeks. Students
are scheduled to take it in the second year of
their bachelor’s program, which means they
have little maturity in CS or SE when they en-
roll. The course is compulsory for students in
CS, AI, and information science. Typically,
150 to 200 students enroll each year.

In terms of SE 2004, we follow a CS-first
approach: students aren’t introduced to SE in
a serious way until the second year. Our
course’s content strongly resembles that of SE
2004’s proposed SE201 course, presenting
SE’s basic principles and concepts.

Software education traps
At one time or another, I’ve fallen into most

of the traps discussed here, as have many col-
leagues with whom I’ve discussed SE educa-
tion over the years.

Trap 1: An SE course needs an industrial project
The idea behind this assumption is that we

should prepare students for “the real world,”
which is complex, full of inconsistencies, and
ever changing. The real world also involves
participants from different domains and has
political and cultural aspects. To meet this
challenge, we might base projects on real in-
dustry examples5 or introduce obstacles and
dirty tricks into student exercises.6 The ques-
tion is, how helpful is this?

Student overload. Prior to their second year,
students usually have taken courses on pro-
gramming, data structures, computer organi-
zation, and so on. In such courses, instructors
typically structure the work clearly and give
students unambiguous problems. And too of-
ten, the problems have only one right answer.
In the SE course, students are suddenly over-
whelmed with many new topics. Of course, it
might be possible to gently introduce some SE

principles in other introductory courses. In
practice, this isn’t easy in a CS environment.

So, at the start of our SE course, students
aren’t familiar with requirements engineering
(RE) and don’t know how to

■ write unambiguous requirements or elicit
them from stakeholders from other domains,

■ prioritize requirements,
■ relate requirements to effort (to them, all

requirements are equal, regardless of their
content), or

■ document requirements.

Last but not least, students don’t (yet) appre-
ciate RE’s value. For example, only a few years
ago, I asked students to write a requirements
document as their first task. In response, one
student complained, “How can I possibly
write down what the system does when I
haven’t programmed the damned thing yet?”

The problem isn’t limited to RE. Design,
testing, configuration management, quality as-
surance, and so on all face the same issues.
Combining an introduction to all these topics
with a real-life case simply asks for too much.
Additionally, the students aren’t mature
enough to appreciate the importance of many
SE topics. On one hand, many issues sound
obvious: pay attention to documentation, ap-
ply configuration control, test thoroughly, and
so on. On the other hand, our students have
difficulty appreciating issues—such as team
organization and cost estimation—that soft-
ware professionals know from the trenches.

Simplify (when possible). In my SE textbook,7 I
use a swimming-lessons analogy. Around 1900,
Amsterdam schoolchildren typically learned to
swim on the school playground, practicing
proper movements while lying on wooden
benches. In contrast, my father grew up in the
countryside and learned to swim the hard way.
His father simply tied a rope around his mid-
dle, threw him into the river, and shouted:
“Swim.” Nowadays, swimming lessons start
off gently, in a toddler pool with Mama and
plenty of flotation devices. Gradually, the
amount of floating material is reduced and the
pool gets deeper.

I favor a similar approach. In my SE
course, I view my students as toddlers on the
SE playground. I concentrate on (at most) a
few issues in an orchestrated environment.

5 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

In the SE
course,
students

are suddenly
overwhelmed

with many
new topics.

While I cover all the requisite course topics—
and tell my favorite anecdotes—the class proj-
ect highlights only a few targeted issues. In
later years and other courses, students will
confront additional real-life aspects. I’ve often
noticed that students’ appreciation for my ini-
tial SE course comes only years after they’ve
suffered through it.

Design is one key SE issue that instructors
can address in an orchestrated way—and
that’s also a major hurdle for most students.
Design is “wicked”8 because of the following:

■ It has no definite formulation. We can’t
neatly separate the design process from the
preceding or subsequent phases because
they all overlap and influence each other.

■ There is no stopping rule. No criterion exists
to tell us when we’ve reached the solution.

■ Solutions aren’t true or false. Design in-
volves trade-offs between potentially con-
flicting concerns. Stakeholders in the design
process might define different acceptable
solutions rather than one best solution.

The latter point, in particular, opens up in-
teresting project possibilities. An instructor
might ask different student groups to design
the same system but with different priorities
(with respect to quality requirements or re-
quirements priorities, for example). The
groups might later collectively study and dis-
cuss the different designs. (My colleague and I
have reported on experiences with this ap-
proach at the software architecture level.9)

An interesting and often-applied option is to
have a dual program, in which students spend,
say, half a year in industry and half a year at
school. This reduces the pressure on the univer-
sity to include “real-life” course elements while
also increasing the likelihood that students will
appreciate typical SE topics. Unfortunately,
that’s not an option for all instructors (yours
truly included), mainly because of university
systems that target full-time students who enter
the university right after high school.

Trap 2: SE is like other branches of engineering
All SE texts discuss the similarities between

SE and other engineering branches—as well, of
course, as the differences (interesting examples
compare SE with bridge design10 and high-
pressure steam engines11). The overall message,
however, is that the similarities prevail.

Engineering’s limits. Although the engineering
metaphor is useful, there’s a downside to it.
Our field uses numerous engineering words:
building software, requirements, specification,
process, maintenance, and so on. Altogether,
this induces a model of how we view the soft-
ware development practice; the engineering
metaphor plays an active role in our thought
processes.12 For example, we generally charac-
terize the RE process as follows:

■ Information (the requirements) flows from
A (the user) to B (the software engineer).

■ Good communication doesn’t involve any
frictions or blockages.

■ Good reception of the information in-
volves only extraction.

The underlying model is that requirements ex-
ist somewhere; we just have to capture them.
Thus, it’s a documentation issue. If we run into
problems, there must be a blockage or break-
down in the communication channel: “Why
can’t the users express their real demands?”

But there are other options, such as viewing
RE as an understanding issue. It then becomes
a dialog between parties, with the require-
ments engineer acting as a kind of midwife.
The requirements aren’t something immutable
“out there,” but rather, they’re constructs of
the human mind.13

Social dimensions. Numerous approaches—
such as participatory design, rapid application
design, joint application design, facilitated
workshops, early user involvement, and so
on—try to overcome the traditional, function-
alist view’s disadvantages with respect to RE.
Given the clear assignments students are ac-
customed to from earlier courses, they often
perceive the more open attitude toward RE as
confusing. One student spoke for many others
in labeling it “a badly organized educational
exercise.”

At a larger scale, a similar tension exists be-
tween the heavyweight, document- and plan-
ning-driven life-cycle models from SE’s engi-
neering realm and the various lightweight
approaches that emphasize software develop-
ment’s human aspects. Combining the virtues
of both is a major challenge. This is true for
the state of the practice and even more so for
the educational environment, where students
are entrenched in the engineering view of the

M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 5 7

Although the
engineering
metaphor
is useful,
there’s a

downside to it.

software development world and are not ma-
ture enough to perceive the limits of that view.

The latter became apparent recently when
several students majoring in multimedia and
culture took our SE course. These students
clashed with the regular CS students, who
held a rather one-sided, traditional view and
failed to see and appreciate the nontechnical
issues involved.

Today, engineers from all disciplines need
social competences, including communication,
organization, and conflict-resolution skills.
Also, technological possibility is no longer the
only driving force behind success. Increasingly,
engineers must weigh competing values such
as those related to economics, quality of life,
and the social and economic impact of job
eliminations.14 We must prepare our students
for this future.

Trap 3: Planning in SE is poorly done relative
to other fields

Many papers on SE and SE education have
quotes like “Approximately 75 percent of all
software projects are either late or can-
celled.”15 In his wonderful book, Death
March, Edward Yourdon quotes the Standish
Group and gurus such as Capers Jones and
Howard Rubin, stating that, “The average
project is likely to be 6 to 12 months behind
schedule and 50 to 100 percent over budget.”
And “the grim reality is that you should ex-
pect that your project will operate under con-
ditions that will almost certainly lead to some
degree of death march behavior on the part of
the project manager and his or her technical
staff.”16 The sometimes explicit, sometimes
implicit message is this: A better software ed-
ucation will help, and might eventually even
do away with most runaway projects. I ques-
tion this connection between SE education
level and planning accuracy.

Findings on other fields’ infrastructure projects.
Looking to other fields can be instructive here.
Engineers are currently building an expensive
high-speed railway connection to carry freight
from Rotterdam’s harbor to Germany (and be-
yond). In 1992, officials estimated total costs
at 2.3 billion euro; by 2000, they raised the es-
timate to 4.7 billion euro. Over the same pe-
riod, the connection’s freight estimates contin-
uously dropped. Many people think the
connection will never make money.

In 2005, the Dutch parliament launched an
inquiry into the project. It first interviewed
Danish economist Bent Flyvbjerg and his coau-
thors Nils Bruzelius and Werner Rothengatter,
who studied over 250 international infrastruc-
ture projects.17 They found that nine out of 10
projects underestimate costs, and almost all
projects overestimate revenues. The combina-
tion makes projects look good and helps en-
sure decision makers’ approval. Now, people
naturally overestimate the good and underesti-
mate the bad, particularly in cases of uncer-
tainty. If you ask people whether they think
more people die of cancer or diabetes, they’ll
most likely say cancer. In fact, it’s diabetes,
which most people consider to be the less dan-
gerous disease. But there are other explana-
tions as well.

Flyvbjerg, Bruzelius, and Rothengatter cite
several well-known projects with spectacular
overruns:

■ Suez Canal (1869): 1,900 percent over
budget

■ Sydney Opera House (1973): 1,400 percent
over budget

■ Concorde (first flight in 1969): 1,100 per-
cent over budget

■ Panama Canal (1913): 200 percent over
budget

■ Brooklyn Bridge (1883): 100 percent over
budget

On railway projects, they found that the aver-
age project overrun is 45 percent. Next come
bridges and tunnels, which have an average
overrun of 34 percent.

The authors dismiss technical explanations
for such project overruns. If it were simply a
matter of technology, then statistically, they
would have also found projects with cost un-
derruns. They didn’t. Likewise, they dismiss
psychological explanations related to estima-
tors’ natural optimism. If that were true, we
could assume that estimators don’t learn from
past mistakes. The conclusion? Estimators in-
tentionally underestimate project costs for
political reasons: the pressure is high, the par-
ties involved have already made a deal, the
project “must be done,” and so on.

Software analogue. Many of the arguments
that hold for infrastructure project cost and
schedule overruns are also valid for software

5 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Today,
engineers
from all

disciplines
need social

competences.

development projects. Educating future soft-
ware engineers to better count function points,
engineer requirements, and approach other
key tasks won’t on its own resolve overrun is-
sues. As Tom DeMarco put it in 1982, “One
chief villain is the policy that estimates shall be
used to create incentives.”18 This is as true to-
day as it was then.

In one interesting software cost-estimation
experiment,19 the authors studied the “winner’s
curse,” which has the following characteristics:

■ Software providers differ in their estimate
optimism: some are overly optimistic, some
are realistic, and some are pessimistic.

■ Software providers with overly optimistic
estimates tend to have the lowest bids.

■ Software clients require a fixed-price con-
tract.

■ Software clients tend to select a provider
with a low bid.

The resulting contract often delivers low or
negative profits to the bidder; it can also be
risky for the client. In one experiment,19 for
example, Magne Jørgensen and Stein Grom-
stad asked 35 companies for bids on a certain
requirements specification. They then asked
four companies to implement the system. They
found that the companies with the lowest bids
incurred the greatest risks.

Both Flyvbjerg and Jørgensen emphasize
the need for careful risk management. As one
experienced project manager told me, “Risk
management is project management for
adults.” Risk management definitely deserves
a front seat in a full-fledged SE curriculum.

Trap 4: The user interface is part of low-level
design

We can’t worry about these user interface is-
sues now. We haven’t even gotten this thing to
work yet! —R. Mulligan et al.20

A system’s user interface is important: In an
interactive system, about half the code is de-
voted to the user interface. In a recent study,
researchers found that 60 percent of software
defects arose from usability errors, while only
15 percent related to functionality.21 In addi-
tion, adequate attention to user interface qual-
ity can increase sales of e-commerce sites by
100 percent.22 For Web-based systems, usabil-
ity goals are business goals. To improve the

state of the practice, we should integrate ap-
propriate user interface design techniques into
our software development process. The place
to start this practice is SE education.

Ignoring human factors. Is the SE community
integrating user interface design techniques
into the development process? SWEBOK and SE
2004 offer the most relevant answers here.
SWEBOK lists human–computer interface (HCI)
as a “related discipline” of SE, concerned with
understanding the interactions among humans
and other system elements. SE 2004 takes a
similar position, describing an HCI course in
which user interface design concerns topics
such as “use of modes” and “response time
and feedback.”

Both organizations reflect Mulligan and
colleagues’ limited view of the user interface.
This view totally ignores the fact that many
current and future software development proj-
ects will aim to develop systems in which hu-
man use and related human factors are deci-
sive elements of product quality.

A broader view. Interface design and function-
ality design go hand in hand. We might even
say that the user interface is the system. There
are two main reasons to take this broader
view of the user interface. First, the system—
and hence its interface—should help users per-
form certain tasks. The user interface should
therefore reflect the task domain’s structure.
The design of tasks and their corresponding
user interfaces influence each other and should
be part of the same iterative refinement
process. Like quality, the user interface isn’t a
supplement. Second, dialog and representa-
tion alone don’t provide users with sufficient
information. To work with a system, users
sometimes need to know “what’s going on be-
hind the screen.”

Various studies corroborate the need to
better attend to HCI in SE and CS curricula.
Timothy Lethbridge,23 for example, addresses
the question of what software professionals
need to know. He found that HCI is one of the
topics with the widest educational knowledge
gap. As Lethbridge reports, practitioners
called HCI an important topic but one they’d
learned little about in school. Nigel Bevan24

shows that we must expand the traditional
quality assurance approach—which empha-
sizes software’s static and dynamic proper-

M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 5 9

Risk
management

definitely
deserves

a front seat in
a full-fledged

SE curriculum.

ties—to incorporate quality-in-use aspects
that address broader ergonomic issues.

Proponents of traditional SE see user inter-
face design as a separate activity and don’t in-
clude it in the mainstream software develop-
ment process model. We need a more eclectic
approach in which we attend to user interface
issues from the start. If, as I believe, the user
interface is the system, then software develop-
ers must have a basic understanding of HCI is-
sues. SE or CS curricula must therefore offer
at least an introductory HCI course.25

Trap 5: SWEBOK represents the state
of the practice

In my opinion, SWEBOK and SE 2004 lag be-
hind the state of the practice in some areas and
run ahead of the herd in others.

Outpacing reality. As an example of SWEBOK’s
running ahead of practice, consider data from
MOOSE (Software Engineering Methodologies for
Embedded Systems; www.mooseproject.org), a
recent European research project. MOOSE re-
searchers created a Web repository with 100
entries describing participating companies’ in-
dustrial experiences. Of the companies’ prod-
ucts, researchers found that

■ 50 percent were developed without an RE
method,

■ 75 percent were developed without an RE
tool,

■ 25 percent were designed without a design
method,

■ 50 percent were designed using a generic
drawing tool or no tool at all,

■ 33 percent were tested manually, and
■ 90 percent were developed using some

configuration management tool.

Clearly, the state-of-the-practice is still quite a
bit removed from SWEBOK and the average SE
textbook. Fresh graduates are likely to enter
environments characterized by the practices
this data reflects, which will probably further
increase the perceived distance between uni-
versities and industry. Although there’s some
room for improvement, industry prefers evo-
lution over revolution.

Lagging behind. SWEBOK lags behind the state of
the practice because the SE field changes rapidly.
New approaches—such as model-driven devel-

opment and service-oriented architecture—have
made a considerable impact on both research
and practice, but SWEBOK and SE 2004 have yet
to mention them. The same holds for my fa-
vorite topic: software architecture.

Admittedly, SWEBOK and SE 2004 discuss
software architecture, but in a rather shallow
way. By and large, these documents view ar-
chitecture as global design. The now-prevalent
view of software architecture is that it involves
balancing quality and functional require-
ments.26 So, architecture design doesn’t follow
RE, it’s intertwined with it.

Many architectural decisions involve trade-
offs because they affect multiple quality at-
tributes. For example, the choice of communi-
cation protocol can have implications for both
performance and security. Through architec-
ture design, developers make these trade-offs,
communicate them and their consequences to
stakeholders, and document them in architec-
tural views. Software architecture is therefore
about documenting and sharing important de-
sign decisions rather than the components and
connectors that result.27

Heterogeneity. SE is becoming increasingly het-
erogeneous, as recent developments show:

■ Distributed development, involving teams
from different cultures, affects work
processes.28

■ For many organizations, combining in-
house software developed with COTS with
open source and other externally acquired
software is now policy—if not a neces-
sity—rather than an unfortunate event.

■ To get the best of both worlds, organiza-
tions combine traditional, document-
driven development approaches with the
more recent, people-driven agile develop-
ment approaches.

In their basic structure, SWEBOK and SE
2004 largely follow a traditional view. Al-
though both periodically stress evolution’s im-
portance, the documents’ surface structure
suggests a greenfield situation, in which soft-
ware is developed from scratch. Although un-
intentional, this structure is nonetheless likely
to influence student attitudes. Because SE’s
emergent heterogeneity further complicates in-
dustrial practice, it should have some counter-
part in education.

6 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The state of the
practice is

still quite a bit
removed from

SWEBOK and
the average
SE textbook.

M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 6 1

T here’s more to SE than engineering. A
major challenge is to reconcile the en-
gineering dimension with the human

and social dimension in SE. Practitioners
know from the trenches that both are impor-
tant. Students are easily misguided if we only
stress the engineering part.

Acknowledgments
I’m grateful for discussions about the SE traps with

Philippe Kruchten, Patricia Lago, and Chris Verhoef (of
course, they don’t agree with all of them). An extended
abstract of this article was published in Proceedings of
the 26th International Conference on Software Engi-
neering (IEEE CS Press, 2005, pp. 621–622).

References
1. P. Kruchten, “Putting the ‘Engineering’ into Software

Engineering,” Australian Software Eng. Conf. (ASWEC

2004), P. Strooper, ed., IEEE CS Press, 2004, pp. 2–8.
2. D. Parnas, “Software Engineering Programs Are Not

Computer Science Programs,” IEEE Software, vol. 16,
no. 6, 1999, pp. 19–30.

3. M. Shaw, “Prospects for an Engineering Discipline of Soft-
ware,” IEEE Software, vol. 7, no. 6, 1990, pp. 15–24.

4. H. Saiedian, D. Bagert, and N. Mead, “Software Engi-
neering Programs: Dispelling the Myths and Misconcep-
tions,” IEEE Software, vol. 19, no. 5, 2002, pp. 35–41.

5. R. Dawson and R. Newsham, “Introducing Software
Engineers to the Real World,” IEEE Software, vol. 14,
no. 6, 1997, pp. 37–43.

6. R. Dawson, “Twenty Dirty Tricks to Train Software
Engineers,” Proc. 22nd Int’l Conf. Software Eng.
(ICSE 00), IEEE CS Press, 2000, pp. 209–218.

7. H. van Vliet, Software Engineering: Principles and
Practice, 2nd ed., John Wiley & Sons, 2000.

8. D. Budgen, Software Design, 2nd ed., Addison-Wesley,
2003.

9. P. Lago and H. van Vliet, “Teaching a Course on Soft-
ware Architecture,” Proc. 18th Conf. Software Eng. Ed-
ucation and Training, IEEE CS Press, 2005, pp. 35–42.

10. A. Spector and D. Gifford, “A Computer Science Per-
spective of Bridge Design,” Comm. ACM, vol. 29, no.
4, 1986, pp. 267–283.

11. N. Leveson, “High-Pressure Steam Engines and Com-
puter Software,” Proc. 14th Int’l Conf. Software Eng.
(ICSE 92), IEEE CS Press, 1992, pp. 2–14.

12. A. Bryant, “Metaphor, Myth, and Mimicry: The Bases
of Software Engineering,” Ann. Software Eng., vol. 10,
2000, pp. 273–292.

13. R. Hirschheim and H. Klein, “Four Paradigms of Infor-
mation Systems Development,” Comm. ACM, vol. 32,
no. 10, 1989, pp. 1199–1216.

14. C. Lewerentz and H. Rust, “Are Software Engineers
True Engineers?” Ann. Software Eng., vol. 10, 2000,
pp. 311–328.

15. T. Hilburn and W. Humphrey, “The Impending Changes
in Software Education,” IEEE Software, vol. 19, no. 5,
2002, pp. 22–24.

16. E. Yourdon, Death March, The Complete Software De-

veloper’s Guide to Surviving “Mission Impossible” Pro-
jects, Prentice Hall, 1997.

17. B. Flyvbjerg, N. Bruzelius, and W. Rothengatter, Mega-
projects and Risk: An Anatomy of Ambition, 2003,
Cambridge Univ. Press, 2003.

18. T. DeMarco, Controlling Software Projects, Yourdon
Press, 1982.

19. M. Jørgensen and S. Grimstad, “Over-Optimism in
Software Development Projects: ‘The Winner’s Curse,’
Proc. 15th Int’l Conf. Electronics, Communications,
and Computers (CONIELECOMP 2005), IEEE CS Press,
2005, pp. 280–285.

20. R. Mulligan, M. Altom, and D. Simkin, “User Interface
Design in the Trenches: Some Tips on Shooting from
the Hip,” Proc. Conf. Human Factors in Computing
Systems (CHI 91), ACM Press, 1991, pp. 232–236.

21. O. Vinter, P Poulsen, and S Lauesen, “Experience Dri-
ven Software Process Improvement,” Software Process
Improvement, Brighton, 1996; www.ece.utexas.edu/
~perry/prof/ispa/icsp4/papers/o.vinter.html.

22. J. Nielsen, “Web Research: Believe the Data,” Alertbox,
11 July 1999, www.useit.com/alertbox/990711.html,
2000.

23. T. Lethbridge, “What Knowledge Is Important to a
Software Professional?” Computer, vol. 33, no. 5,
2000, pp. 44–50.

24. N. Bevan, “Quality in Use: Meeting User Needs for
Quality,” J. Systems and Software, vol. 49, no. 1, 1999,
pp. 89–96.

25. G. van der Veer and H. van Vliet, “A Plea for a Poor
Man’s HCI Component in Software Engineering and
Computer Science Curricula,” Comp. Science Educa-
tion, vol. 13, no. 3, special issue on human-computer
interaction, 2003, pp. 207–226.

26. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, 2nd ed., Addison-Wesley, 2003.

27. J. Bosch, “Software Architecture: The Next Step,” Proc.
European Workshop Software Architecture, LNCS
3047, Springer, 2004, pp. 194–199.

28. G. Borchers, “The Software Engineering Impacts of
Cultural Factors on Multi-cultural Software Develop-
ment Teams,” Proc. 25th Int’l Conf. Software Eng.
(ICSE 03), IEEE CS Press, 2003, pp. 540–545.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

About the Author

Hans van Vliet is a professor of software engineering at Vrije Universiteit Amsterdam.
His research interests include software architecture and software measurement. He is the
author of Software Engineering: Principles and Practice (Wiley, 2nd ed., 2000). He chairs
Jacquard, the Dutch national research program in software engineering. van Vliet received his
PhD in sciences from the University of Amsterdam. He is a member of the IEEE Computer Soci-
ety and the ACM. Contact him at Dept. of Computer Science, Faculty of Sciences, Vrije Univer-
siteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands; hans@cs.vu.nl;
www.cs.vu.nl/~hans.

