
0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 5 1

ver the years, there has been broad interest in creating software engi-
neering standards. One authoritative survey discovered approximately
315 standards, guides, handbooks, and other prescriptive documents
maintained by 46 different organizations (see the “Sources of Software

Engineering Standards” sidebar).1 Nevertheless, uptake of the available standards
has been somewhat disappointing. Hopeful users report difficulty in finding the
standards that suit their particular situation among the numerous ones available.
They also report that detailed differences between standards make it difficult to
apply them in unison. For example, in an area of overlap between two standards,
each might emphasize a different approach or use different terminology.

We need an approach to managing a standards collection that emphasizes in-
tegrating the various standards. Since 1991, those of us working on the IEEE
Computer Society’s Software Engineering Standards Committee have undertaken
efforts to manage the standards collection to promote consistency. Although the col-

James W. Moore, The Mitre Corporation

An Integrated
Collection of Software
Engineering Standards

O

The IEEE S of t ware Engineer ing Standards Commit tee has taken
del ib erate s teps to un i fy and integrate i t s co l lec t ion o f so f t ware
engineer ing s tandards. Encourag ing resu l t s a re apparent in i t s
la tes t publ i cat ion , which i s o rganized around a s ing le
arch i tec ture for the SESC co l lec t ion .

lection has doubled in size, we have substantially
improved its degree of integration. The process is
not yet complete but significant progress has been
made, culminating in the publication of the 1999
four-volume edition of SESC standards—packaged
along the lines of the integrating principles for the
collection.

This article explains the principles of the SESC
collection and describes our progress toward inte-
grating the various standards within it.

BUYER AND SELLER BENEFITS

To some, the value of using software engineer-
ing standards might be obvious—they contribute
to disciplined practice, hence they improve product
quality. Although these reasons validly account for
using standards in the software engineering craft,
they do not characterize the unique contribution of
standards to the profession. For this, we must look
at the value of standards to those buying and sell-
ing software engineering goods and services.

Many goods and services can be confidently pur-
chased after simple examination or after studying
the supplier’s product literature. The complexity of
software products, however, induces a need for a
more thorough analysis. Whether purchased as a
completed product or as a contracted development,
the purchasing or acceptance decision is complicated

because important characteristics may be effectively
hidden from examination until unusual circum-
stances or changing patterns of usage reveal them.

Standards can provide assistance and can pro-
tect the buyer by

♦ providing a vocabulary for communication be-
tween the buyer and seller;

♦ providing objective criteria for otherwise
vague claims regarding the product’s nature;

♦ defining methods for characterizing elusive
characteristics, such as reliability; and

♦ assuring the seller that specific quality assur-
ance practices were applied.

The benefit of standards in protecting the seller
is probably underappreciated in the software engi-
neering community. From this viewpoint, standards
are important, not because they represent best prac-
tice, but because they represent good enough prac-
tice. Courts generally view the application of stan-
dards as important evidence that engineers perform
their work with appropriate diligence and responsi-
bility. If sued for negligence or reckless conduct, an
engineer can cite the standards used when he or
she conducted the work to demonstrate that it was
performed in accordance with codified professional
practices.

By providing important benefits for both the
buyer and the seller, software engineering standards
support the emergence of a software engineering
profession characterized by consensually validated

5 2 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Software engineering standards concern the responsible

practice of software engineering. They often deal with processes,

but sometimes they deal with generic product characteristics or

supporting resources. The subjects of the standards include

phrases familiar to large-scale software developers—configura-

tion management, quality assurance, verification, validation, and

so forth. The standards generally do not deal with specific pro-

gramming languages or technologies. The disciplines provided

by the standards generally transcend the lifetimes of specific

technologies.

Three organizations are generally regarded as the source of

international standards—the International Organization for

Standardization, the International Electrotechnical Commission,

and the International Telecommunications Union. Two of those

organizations cooperate in a Joint Technical Committee, ISO/IEC

JTC1, responsible for information technology. A subcommittee,

ISO/IEC JTC1/SC7, is responsible for standards related to software

engineering and software systems engineering. SC7 currently

manages a collection of about two dozen standards, the most

popular being ISO/IEC 12207, Software Life Cycle Processes. Other

technical committees and subcommittees of ISO and IEC make

standards in related areas—for example, ISO TC176 (Quality

Management), IEC TC56 (Dependability), and IEC SC65A (Functional

Safety).

Standards-making in the US is not rigidly delegated as it is

in many other countries. Over 500 organizations in the US make

standards of some kind. Two organizations mentioned in this

article are the Electronic Industries Alliance and the Institute for

Electrical and Electronic Engineers. EIA has played an important

role in “demilitarizing” the standards for complex software de-

velopment that were originally written for use in the defense

industry.

The Software Engineering Standards Committee of the IEEE

Computer Society manages the world’s most comprehensive

collection of software engineering standards (nearly 50), devel-

oped since 1979. SESC serves as a developer of these standards,

but also as an integrator of specifications and standards devel-

oped by other organizations. It has adopted, sometimes with

changes, standards developed by organizations such as ISO/IEC

JTC1/SC7 and the Project Management Institute.

S O U R C E S O F S O F T W A R E E N G I N E E R I N G S T A N D A R D S

norms for responsible conduct. With such clear ben-
efits, you would expect a nearly universal application
of software engineering standards. Unfortunately,
this is difficult due to the vast amount of available
and occasionally inconsistent information.

VISION 2000 ARCHITECTURE

Early in the 1990s, the SESC established a plan-
ning committee to initiate the long-range efforts
needed to integrate its collection. The committee
studied customer needs2 and surveyed existing
standards,3 concluding that there was no shortage
of available advice for the practice of software en-
gineering. However, there existed no clear way for
users to select the advice appropriate to their needs.
Furthermore, the individually optimized nature of
each standard presented obstacles to selecting and
applying them together. The software engineering
community needed an integrated collection of stan-
dards that could be applied in unison and from which
users could easily select appropriate standards.

With this information, we were ready to develop
an integrating architecture for the SESC collection,
termed Vision 2000.4 The most recently published
edition of the SESC collection5 reflects the Vision
2000 architecture, which comprises three important
organizing criteria (see Figure 1). The concept of the
first organizing criterion, normative levels, is that dif-
ferent standards should provide dif-
ferent levels of advice—sometimes
detailed, sometimes general—for dif-
ferent uses. The second organizing cri-
terion, objects of software engineering,
recognizes that software engineering
standards address four different ob-
jects: customer, process, product, and
resource. The third organizing criterion
is relationships to other disciplines. The
SESC software engineering collection
is positioned within the context of
other standards selected from soft-
ware engineering, quality manage-
ment, and various systems engineer-
ing disciplines.

Normative levels
We borrowed the concept of nor-

mative levels from other successful
standards collections. The top layer in-
cludes standards for terminology and

other key concepts. Such standards are generally
nonprescriptive; they simply provide definitions, tax-
onomies, or other reference material that can be
used in other standards in the collection. The IEEE
software engineering vocabulary, IEEE Std. 610.12,
falls under this category.

The next layer is also nonprescriptive, occupied by
one or a few documents that serve as an overall guide
to the remainder of the collection. The document ex-
plains the collection’s architecture and the key rela-
tionships among the standards within it. We decided
to fill this layer by authorizing and endorsing a text-
book rather than writing a standard.6

The third layer contains standards providing poli-
cies or principles to a user. Principles are useful be-
cause it is difficult to write detailed standards cover-
ing the entire conceivable range of usage. In a
specific situation, if the details don’t seem applica-
ble, a user can apply the principles instead. In the case
of the SESC collection, there are currently no princi-
ples documents dealing with resources and prod-
ucts. However, portions of IEEE/EIA 12207 fill this role
for the standards dealing with customers and
processes.

The fourth layer, element standards, is the one
most familiar to standards users. It contains docu-
ments with conformance requirements in various
important areas. Most of the SESC collection’s stan-
dards are grouped into this layer.

The fifth layer makes provisions for application

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 5 3

Terminology

Overall guide

Other standards Normative levels

Terminology

“Toolbox” of technique standards

Quality
management

Software
engineering

System
disciplines

Customer Process Product Resources Objects of
software

engineering

Relationships
to other

disciplines

Principles

Element
standards

Application
guides

FIGURE 1. The Software Engineering Standards Committee’s architecture for

its standards collection. The main organizing criteria are normative levels, objects

of software engineering, and relationships to other disciplines.

guides. Sometimes, users need supplementary doc-
uments to describe how to apply an element stan-
dard within particular situations. These documents
are often guides but can be standards deriving their
conformance requirements from the appropriate el-
ement standards. For example, we have an element
standard on a software quality assurance plan and
an application guide describing the overall disci-
pline of SQA planning.

The bottom layer is viewed as a toolbox of de-
tailed techniques. The standards in this layer are
“subroutines”that any of the other standards can in-
voke to provide requirements in a specific area. An
example from the SESC collection is IEEE Std. 1044
regarding the classification of software anomalies.

Objects of software engineering
The objects of software engineering result from

the abstract model of software engineering depicted
in Figure 2. This model centers on the software en-
gineering project as the focal point for applying soft-
ware engineering standards. In this view, a project
uses resources in performing processes to produce
products for a customer. The model is instructive in
providing four major subject areas that can be
treated by standards: customer, process, product, and
resource. We organized the four volumes of the 1999
standards edition according to the four objects.

Relationships to other disciplines
Software engineering does not exist in isolation

from other disciplines. Its purpose is to apply the
principles of mathematics, engineering, and com-
puter science to various application domains. In
addition, it inherits principles from more general dis-
ciplines such as systems engineering, quality man-
agement, and project management. Its work is also
influenced by cross-cutting disciplines such as de-
pendability, safety, and security.

Particularly in this time of emphasis on process
improvement, we cannot afford for our standards to
be inconsistent with closely related standards from
other disciplines. It would be a tragedy if the stan-

dards for the best practices of software engineering
were capriciously incompatible with, say, the stan-
dards for quality management.

Therefore, where the relationship is strong, and
where suitable standards exist, we have selected a
few key standards from other disciplines as targets
for integration. For example, ISO 9000-3 provides a
bridge between software engineering and the fa-
mous ISO 9000 series of quality management stan-
dards, and the Project Management Institute’s Guide
to the Project Management Body of Knowledge
(PMBOK) describes general project management
principles that SESC standards adapted to the sub-
ject of software project management (http://www.
pmi.org/publictn/pmboktoc.htm).

By adopting or otherwise recognizing key stan-
dards from related disciplines, we avoid the need to
reinvent key principles.

AN UMBRELLA STANDARD: IEEE/EIA
12207

Not all integrating standards of the SESC collec-
tion are borrowed from other disciplines. IEEE/EIA
12207, Software Life Cycle Processes, is an umbrella
for all of the customer and process standards in the
SESC collection.

ISO/IEC 12207
IEEE/EIA 12207 is an adoption of a 1995 ISO/IEC stan-

dard with the same name and number. The interna-
tional standard establishes a common framework for
software throughout its life cycle from conception
through retirement, and it addresses the organizational
context of those software processes both from the sys-
tem’s technical viewpoint and from the enterprise’s
business viewpoint. The standard is widely regarded as
providing a basis for world trade in software services;
adoption of the standard is completed or underway
in most of the world’s major countries.

The ISO/IEC 12207 standard improved over past
standards in similar areas. Most importantly, it is de-
fined at the process rather than the procedure level.
Rather than provide the step-by-step requirements
characteristic of a procedure, it describes continuing
responsibilities that must be achieved and maintained
during the life of the process. The standard addresses
the functions to be performed rather than the orga-
nizations that will execute them. (For example, the
standard describes a quality assurance process; this
does not imply that a conforming enterprise must es-

5 4 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Customer
Interacts with

Process
TransformsAids

Project Product
Produces

Performs

Uses

Resource
Applies to

FIGURE 2 . The objects of software engineering, suggesting a

categorization of standards in the subject areas of customer,

process, product, and resource.

tablish a quality assurance department.) The standard
describes software development, maintenance, and
operation within the context of the system, thus ef-
fectively establishing the minimum system context
essential to software processes.

Three categories describe the ISO/IEC 12207
processes:

♦ Primary processes are executed by parties who
initiate or perform major roles in the software life
cycle. They include both business (acquisition and
supply) and technical roles (development, opera-
tion, and maintenance).

♦ Supporting processes contribute to the exe-
cution of other processes as an integral part with
distinct goals. They include
documentation, configuration
management, quality assurance,
verification, validation, joint
review, audit, and problem res-
olution.

♦ Organizational processes inherently exist out-
side the individual project’s scope, but the project
employs instances of them. They include manage-
ment, infrastructure, improvement, and training.

IEEE/EIA 12207
IEEE/EIA 12207.0 adds a foreword and some an-

nexes to the text of the international standard. Two
additional guidance parts were added to the stan-
dard: IEEE/EIA 12207.1 provides guidance on the data
produced by the life cycle processes and is cross-
referenced to the provisions of 12207.0, and IEEE/EIA
12207.2 provides guidance on implementing pro-
cesses by quoting the complete text of 12207.0 and
interspersing guidance notes.

12207.1 describes data but not documents. It de-
scribes 84 different information items, which the user
selects and packages into documents appropriate for
the project. Forty of the information items have spe-
cific content (but not format) requirements, while the
other 44 information items are classified as one of
seven different kinds of data that have generic con-
tent requirements. A 12207.1 user might apply it as a
guide, meaning that it is presumed simply to offer
good advice. On the other hand, 12207.1 also con-
tains optional conformance provisions that permit
users to cite the standard if they want to make strong
claims regarding the nature of the data that their
processes produce. The user can claim that one or
more documents conform to 12207.1 by providing a
mapping from the documents to the selected infor-
mation items. The mapping must demonstrate that

the document satisfies generic and specific content
requirements; captures the data required by the cross-
referenced provisions of 12207.0; and achieves some
general requirements for the treatment of data.

12207.1 also provides cross-references to other IEEE
standards that might be helpful in implementing the
provisions concerning data. For instance, a user might
choose to adopt IEEE Std. 1016, Software Design
Descriptions, to detail the data provisions related to
the information item for software item description.
Working in the other direction, the SESC has supple-
mented each of the referenced IEEE standards with a
content map describing the extent to which the stan-
dard satisfies the data provisions of 12207.1. Within

the next few years, the SESC will revise the content of
each standard so that it directly implements the rele-
vant provisions of 12207.1.

IEEE/EIA 12207 also plays an important role in the
principles layer of the SESC architecture. The IEEE/EIA
adoption of 12207 supplemented each of the 17
processes with a statement of objectives. In unusual
cases, in which the more detailed 12207 require-
ments are unsuitable for adoption, an organization
can instead choose to adopt the processes at the ob-
jectives level.

In overall terms, we have adopted policy desig-
nating 12207 as a strategic, integrating standard for
its collection. All of the relevant standards of the
SESC collection will be revised to improve their fit
with 12207; in particular, many of them will detail
the processes of the 12207 framework. From the
user’s viewpoint, IEEE/EIA 12207 will serve as a sin-
gle entry point to all the process standards of the
IEEE software engineering collection.

We are also using IEEE/EIA 12207 as the baseline
to articulate new processes. For example, IEEE Std.
1517, Software Reuse Processes, adds three reuse-
specific processes to those of 12207, and the plan-
ned IEEE 1540 standard (still under development)
will add a software risk management process.

SESC FOUR-VOLUME EDITION

All of the SESC standards are available for indi-
vidual purchase from the IEEE (http://standards.

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 5 5

The standard addresses the functions to be
performed rather than the organizations
that will execute them.

ieee.org/catalog). Every few years, we have gathered
our standards and collectively published them in a
volume similar in size to a major city’s phone direc-
tory. With total page count approaching 2,400, the
1999 edition needed a new approach.

The four objects of the Vision 2000 architecture
suggested a four-volume packaging, with each vol-
ume containing the standards pertaining to cus-
tomer, product, process, or resource. We bundled the
standards from the terminology layer into the cus-
tomer volume and the standards from the tech-
nique layer into the resource volume. We made the
guide to the collection available at a discounted
price when purchased with the four-volume edition.
We also omitted from the edition a few large stan-
dards intended for specific audiences, making them
available for purchase separately.

Of course, it wasn’t practical to publish multiple
copies of standards that legitimately fit into more
than one category. So, each standard had to be force-
fitted into a single category for publication purposes.
Our rationale for these decisions is explained below.

The customer volume
Because IEEE/EIA 12207 is the umbrella standard

for both process and customer interaction, its place-
ment was one of the toughest decisions in design-
ing the edition. We decided to place all three parts
of the standard into the customer volume so that
the volume would be self-contained from the soft-
ware acquirer’s point of view. Those who desire a
more detailed standard for software acquisition can
also find IEEE Std. 1062 in this volume.

Another key decision involved treating systems
engineers as part of the customer set for software
engineering. Certainly, IEEE/EIA 12207 takes this view
when it treats software requirements as derived from
an essential systems context. So, all of the standards
involving the system context of software develop-
ment are in this volume:

♦ IEEE Std. 1220, Systems Engineering Process,
♦ IEEE Std. 1228, Software Safety Plans,
♦ IEEE Std. 1233, Systems Requirements Specifi-

cation, and
♦ IEEE Std. 1362, Concept of Operations.
To complete its self-contained nature, this vol-

ume includes the vocabulary standard from the ter-
minology layer of the collection, IEEE Std. 610.12.

The process volume
Although we placed IEEE/EIA 12207 in the edi-

tion’s customer volume, we placed another impor-

tant umbrella process standard in the process vol-
ume; IEEE Std. 1074 addresses the process architect
and provides building blocks for constructing
processes that meet the requirements of 12207 or
other standards.

You’ll find standards in this volume that provide
additional details on many of the technical
processes and activities of 12207:

♦ IEEE Std. 730, Software Quality Assurance Plans,
♦ IEEE Std. 828, Software Configuration Manage-

ment Plans,
♦ IEEE Std. 1008, Software Unit Testing,
♦ IEEE Std. 1012, Software Verification and

Validation,
♦ IEEE Std. 1028, Software Reviews, and
♦ IEEE Std. 1219, Software Maintenance.
IEEE/EIA 12207 treats management as a process,

so IEEE Std. 1058, Software Project Management Plans,
is included, along with IEEE Std. 1490, the PMBOK
Guide, which provides a broader treatment of pro-
ject management issues.

Some of the tough calls in placing standards into
the volumes relate to the practice in some SESC stan-
dards of expressing process requirements in terms of
the content of a plan to be developed. In each case,
we evaluated the standard to determine if its em-
phasis was truly on the process or the plan’s content.
As a result, we included IEEE Std. 730 and IEEE Std. 828
in this volume, but placed IEEE Std. 829, Software Test
Documentation, in the resource volume. IEEE Std.
1045, Productivity Metrics, is in this volume, because
it offers means for measuring the performance of
software processes.

Generally, you’ll find standards related to system
engineering processes elsewhere—many of them
in the customer volume. IEEE Std. 830 regarding soft-
ware requirements specifications is in the resource
volume.

Some developers, particularly those in the defense
community, might be interested in using EIA/IEEE J-
Std-016 to guide their software development process.
We decided to omit this standard from the four-
volume edition for several reasons: it is currently
being revised; it is already standalone and users do
not need the other material from this volume; and it
is large and would have significantly increased the
volume’s price. EIA/IEEE J-Std-016 is available for sep-
arate purchase from either the IEEE or EIA.

The product volume
The trend in software engineering over the past

15 years or so has been to focus on evaluating and

5 6 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

improving processes. Nevertheless, we should not
forget that the purpose of any engineering effort is
to create a product. This volume includes standards
useful for software product evaluation.

Unfortunately, unlike the customer and process
volumes, there is no standard providing principles
to serve as a unifying umbrella for the others. The
closest candidate would be IEEE Std. 1061, which
provides a methodology for software quality met-
rics. IEEE Std. 982.1 is a dictionary of metrics that can
be applied to measure software reliability and re-
lated characteristics.

IEEE Std. 1465 is an adoption of ISO/IEC 12119 and
provides quality requirements for software pack-
ages—that is, prepackaged software products. Be-
cause user documentation is an important compo-
nent of a software product, IEEE Std. 1063 is included
in this volume, although other documentation stan-
dards appear elsewhere.

All standards focusing on the processes for ensur-
ing product quality appear elsewhere in the edition.

The resource volume
The term resource is deliberately broad, encom-

passing anything that might be used or consumed
while executing a software process or creating a
software product. Accordingly, we included a wide
variety of standards in this volume. It is perhaps not
surprising, therefore, that there is no umbrella stan-
dard to provide general principles in this area.

This volume contains the so-called “IDEF”notational
standards—(“Integrated Definition,”a modeling lan-
guage, combining graphics and text, used to analyze
and define system functions and requirements). The
volume contains both IEEE Std1320.1, specifying IDEF0,
and 1320.2, specifying IDEF1X97 (IDEFObject). The
basic interoperability data model is a series of stan-
dards (IEEE Std. 1420.1 and its supplements) providing
a data model for describing and interchanging
reusable software components. The volume includes
these standards and their guide, IEEE Std. 1430.

In addition, it has standards for CASE tools: IEEE
Std. 1462 considers tool evaluation and selection and
IEEE Std. 1348 considers organizational adoption. A
standard on CASE tool interconnections, IEEE Std.
1175, was omitted because of its size and because
its audience is primarily tool developers.

Some environments do not utilize CASE tools
when transferring engineering data. Instead, they
apply documentation conventions to move data
among the various processes and phases of a soft-
ware project. The resource volume holds standards

appropriate for this purpose:
♦ IEEE Std. 830, Software Requirements Speci-

fications,
♦ IEEE Std. 829, Software Test Documentation, and
♦ IEEE Std. 1016, Software Design Descriptions.
Finally, the standard in the SESC architecture’s

techniques layer is included in this volume. IEEE Std.
1044 (and an accompanying guide) describes the
classification of software anomalies for a variety of
purposes.

The level of integration among the IEEE software
engineering standards is not yet perfect. As

each individual standard is revised, on a cycle of
roughly five years, it will be modified to fit more
smoothly with IEEE/EIA 12207 and with the other
standards in the collection. Of course, the IEEE col-
lection continues to grow as additional subjects are
treated. We also cooperate with the appropriate in-
ternational standards committee to encourage the
evolution of ISO/IEC 12207 in a direction consistent
with the needs of SESC’s users. ❖

REFERENCES
1. S. Magee and L.L. Tripp, Guide to Software Engineering Standards

and Specifications, Artech House, Boston, 1997.

2. SESC Long Range Planning Group, Master Plan for Software
Engineering Standards, Version 1.0, Dec. 1993; http://
computer.org/standard/sesc/MasterPlan (current Oct. 1999).

3. SESC Business Planning Group, Survey of Existing and In-Work
Software Engineering Standards, Version 1.2, Dec. 1996; http://
computer.org/standard/sesc/survey0.htm (current Oct. 1999).

4. SESC Business Planning Group, Vision 2000 Strategy Statement,
Version 0.9, Aug. 1995; http://computer.org/standard/sesc/
strategy.htm (current Oct. 1999).

5. Institute of Electrical and Electronics Engineers, Software
Engineering, 1999, Vols. 1–4, IEEE Press, Piscataway, N.J., 1999.

6. J.W. Moore, Software Engineering Standards: A User’s Road Map,
IEEE Computer Soc. Press, Los Alamitos, Calif., 1997.

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 5 7

James W. Moore is the standards coordi-
nator for the WC3 Center of The Mitre
Corporation. He serves as a member of
the Management Board of the IEEE Soft-
ware Engineering Standards Committee,
as a member of the IEEE Standards Board
Review Committee, and as the head of
the US delegation to ISO/IEC JTC1/SC7

(Software Engineering). He received his BS in mathematics from
the University of North Carolina and his MS in systems and infor-
mation science from Syracuse University. The IEEE Computer
Society has recognized him as a charter member of their Golden
Core and has given him the Meritorious Service Award. Contact
him at The Mitre Corporation, 1820 Dolly Madison Blvd., W534,
McLean, VA 22102; james.w.moore@ieee.org.

About the Author

