
Rational Software Corporation

support@rational.com
http://www.rational.com

Rational®Testing Products
COMMAND LINE INTERFACE TO RATIONAL TEST SCRIPT
SERVICES

VERSION: 2002.05.00

PART NUMBER: 800-025129-000

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2000-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025129-000

Version Number: 2002.05.00

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE
PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART
OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A
RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY
FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company,
ClearCase, ClearQuest, Object Testing, Object-Oriented Recording, Objectory, PerformanceStudio,
PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC, Rational
PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational Unified Process, Rational
Visual Test, Requisite, RequisitePro, SiteCheck, SoDA, TestFactory, TestMate, TestStudio, and The Rational
Watch are trademarks or registered trademarks of Rational Software Corporation in the United States and
in other countries. All other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, DeveloperStudio, Visual C++, Visual
Basic, Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and
XENIX are trademarks or registered trademarks of Microsoft Corporation in the United States and
other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc.
Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product
or application the primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and
277.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR
227-14, as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying license agreement.
Rational Software Corporation expressly disclaims all other warranties, express or implied, with respect to
the media and software product and its documentation, including without limitation, the warranties of
merchantability or fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface .vii
About This Manual .vii
Audience .vii
Other Resources. .vii
Contacting Rational Technical Publications . viii
Contacting Rational Technical Support . viii

1 Introduction to tsscmd .1
About tsscmd? . 1
Setting Up TestManager for tsscmd. 1
tsscmd Format . 8
Sample Command Line Test Script. 9
Editing and Storing Test Scripts . 10
Running Test Scripts . 10

Running a Test Script from TestManager . 10
Running a Test Script with rttsee . 11

tsscmd Output . 12
Test Log . 13
Error File and Output File . 13
TestManager Shared Memory . 13

Error Handling . 14
Limitation. 14

2 Test Script Services Reference .15
About Test Script Services . 15
Datapool Commands . 15

Summary . 16
DatapoolClose . 17
DatapoolColumnCount . 17
DatapoolColumnName . 18
DatapoolFetch . 19
DatapoolOpen . 20
DatapoolRewind . 22
DatapoolRowCount . 23
DatapoolSearch . 24
Contents iii

DatapoolSeek . 25
DatapoolValue . 26

Logging Commands . 27
Summary . 28
LogEvent. 28
LogMessage . 29
LogTestCaseResult . 31

Measurement Commands. 32
Summary . 32
CommandEnd. 33
CommandStart . 34
EnvironmentOp. 35
GetTime . 44
InternalVarGet . 44
Think. 48
TimerStart. 49
TimerStop . 50

Utility Commands . 51
Summary . 52
ApplicationPid. 53
ApplicationStart . 54
ApplicationWait . 55
Delay. 56
ErrorDetail . 56
GetComputerConfigurationAttributeList . 57
GetComputerConfigurationAttributeValue . 58
GetPath. 59
GetScriptOption . 59
GetTestCaseConfigurationAttribute . 60
GetTestCaseConfigurationAttributeList. 61
GetTestCaseConfigurationName . 62
GetTestCaseName . 63
GetTestToolOption . 63
JavaApplicationStart . 64
NegExp. 65
Rand . 66
SeedRand. 67
ePrint . 68
iv Contents

Print . 68
Uniform. 69
UniqueString . 70

Monitor Commands . 71
Summary . 71
Display . 71
PositionGet. 72
PositionSet . 73
ReportCommandStatus . 74
RunStateGet . 75
RunStateSet. 76

Synchronization Commands. 79
Summary . 79
SharedVarAssign . 79
SharedVarEval . 81
SharedVarWait . 82
SyncPoint . 84

Session Commands . 85
Summary . 85
 Context . 85
ServerStart. 87
ServerStop . 88

 Advanced Commands . 89
Summary . 89
InternalVarSet . 89
LogCommand. 90
ThinkTime . 92
Index . 95
Contents v

vi Contents

Preface
About This Manual

This manual is a reference of the commands that you use to add a variety of testing
services to your test scripts — services such as datapool, logging, monitoring, and
synchronization.

The Test Script Services described in this manual are designed to be used with
Rational TestManager.

Audience

This manual is intended for test designers who write or edit test scripts in a scripting
language such as Perl or a UNIX shell. Your command line test scripts can be used for
both performance and functional testing.

Other Resources

■ To access an HTML version of this manual, click TSS for Command Line in the
following default installation path (ProductName is the name of the Rational
product you installed, such as Rational TestStudio):

Start > Programs > Rational ProductName > Rational Test > API

■ All manuals for this product are available online in PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

■ For information about training opportunities, see the Rational University
Web site: http://www.rational.com/university.
vii

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, telephone number, and company name

■ Your computer ’s make and model

■ Your operating system and version number

■ Product release number and serial number

■ Your case ID number (if you are following up on a previously reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
viii Preface

1Introduction to tsscmd
About tsscmd

tsscmd is a command line executable that gives test scripts access to Rational Test
Script Services (TSS). tsscmd can be called from a compiled program; for example, a
C program can call tsscmd using the system() function. Typically, however,
tsscmd statements appear inside a source file written in some scripting language. For
example, test scripts written in the Bourne shell, Perl, Python, or Windows cmd
languages can access test script services through internal tsscmd statements.

With tsscmd, you can access services such as logging, synchronization, timing, and
datapools. The next chapter documents all the test script services provided by
tsscmd.

Setting Up TestManager for tsscmd

A TestManager suite can contain test scripts of different types. When a TestManager
user runs a suite, TestManager invokes a program (a Test Script Execution Adapter, or
TSEA) that knows how to execute each type of script in the suite. One of the built-in
test script types supported by TestManager is Command Line. The command line TSEA,
rttseacmd, allows TestManager to execute any program (including script source
files) that can be executed from the command line.

Although tsscmd can be called from a compiled program, the most likely usage is
through tsscmd statements inside a source file written in a scripting language such as
Perl. To use tsscmd in this way, you must add a test script type to TestManager that
uses the command line TSEA.

The procedure for doing this is described below. Performing this procedure enables
TestManager to execute Perl scripts containing tsscmd statements. You can then add
Perl test scripts to suites containing test scripts of other types (Java, Visual Basic, VU,
GUI). And you can run, view, or edit Perl test scriptss from TestManager’s File menu.
1

Setting Up TestManager for tsscmd
1 Create (or designate) a folder for Perl test scripts — for example,
C:\testscripts\perl. The folder can be on a local or a network location.

2 From TestManager, click Tools > Manage > Test Script Types. The Manage Test Script
Types dialog box appears.

3 Click the New button. The New Test Script Type dialog box appears with the General
tab selected.

In the Name box, type the name of the new test script type — for example, Perl
Script. Optionally, type a description and select an owner. Only the owner can
edit or delete this script type.
2 Chapter 1

Setting Up TestManager for tsscmd
4 Click the Console Adapter Type tab. The dialog box changes as shown below.

Click Use the command line console adapter and fill in the boxes as follows:

❑ In the New instance command line box, type the command to execute in order to
create a new test script — the name of your favorite editor. For example:

notepad

❑ In the Edit instance command line box, type the command to start in order to view
or edit existing scripts of this type.For example:

notepad {testscriptpath}

Type {testscriptpath} exactly as shown.

The program you enter (in this case notepad) must be in your path.
Introduction to tsscmd 3

Setting Up TestManager for tsscmd
5 Click the Execution Adapter Type tab. The dialog box changes as shown below.

Click Use the command line execution adapter. In the Execution command line box, type
the execution command line for a new script instance. In this example, type the
following exactly as shown:

perl {testscriptpath}

The program (perl) must be in your path. (A copy that is released with
TestManager is located in the Rational Test folder, which will be in your path by
default.)
4 Chapter 1

Setting Up TestManager for tsscmd
6 Click the Test Script Options button. The Test Script Options dialog box opens as
shown below.

In the Options area, type the following Option Name and Option Value pair:

Option Name: _TMS_TSO_EXEC_COPY_TO_AGENT_FILELIST
Option Value: {testscript}

Click OK.
Introduction to tsscmd 5

Setting Up TestManager for tsscmd
7 Click the Sources tab. The dialog box changes as shown below.

8 Click the Insert button. A popup appears telling you that the test script you are
defining must be created before proceeding — answer Yes. The dialog box
changes as shown below.
6 Chapter 1

Setting Up TestManager for tsscmd
In the Name box, type a descriptive name for this source. Optionally, type a
description and an owner. Only the owner can edit or delete this source.

The Name you type here will be added to TestManager’s File > New Test Script, File >
Open Test Script,and File > Run Test Script drop-down lists. You will select this name
to create a new Perl script or edit/view/run an existing Perl script.

9 Click the Connection Data tab. The dialog box changes as shown below.

In the Data path box, type the directory name (corresponding to Name) that you
designated in step 1. This is where source files for test scripts of this type are
located.

If the data path might vary from one local computer to another, click Computer
specific. In this case, the TestManager user will be prompted for the actual path of a
script at the time of selection.

The Connection options box allows you to specify platform-specific execution
options for the script type’s executable file (in this case, for perl). No connection
options are needed for this example. Click OK and close the dialog box to conclude
the procedure.
Introduction to tsscmd 7

tsscmd Format
tsscmd Format

tsscmd statements have one of the following two basic formats:

tsscmd command options arguments

value = ‘tsscmd command options arguments’

where:

■ command is a keyword indicating the Test Script Service you are requesting.

■ options indicates zero or more options supported by command. Option names
are preceded by a “-” (hyphen) and might be followed by arguments. If present,
options must precede arguments.

■ arguments indicates zero or more values that might be required by command. If
present, arguments are positional (must be specified in order) and must follow any
options. Argument strings that contain spaces (or any characters with special
meaning to the scripting language, such as “.”) must be quoted.

In the second format, value is a variable defined in whatever scripting language you
are using: the tsscmd expression will return a value to this variable, which can then be
used in the test script in whatever manner the scripting language allows.

Note that ‘’ indicate delimiters. Some delimiter is required, but a different delimiter
might be used, or required, with different scripting languages. For example, in Perl,
here are the correct command formats:

‘tsscmd command options arguments‘;

$value = ‘tsscmd command options arguments‘;

With the first format (no value returned), you can use the Perl system function.

Both command and options are case-insensitive, and can be abbreviated by the
shortest unique string. Thus, two statement options named -access and -ascend can
be specified as -ACCESS, -ASCEND, -ac, and -as. Similarly, the command
DatapoolOpen can be entered as datapoolopen, DATAPOOLOPEN, datapoolO,
DATAPOOLo, and so on.
8 Chapter 1

Sample Command Line Test Script
Sample Command Line Test Script

The following example illustrates how to use tsscmd statements inside a Perl script.
If you follow the procedure explained in Setting Up TestManager for tsscmd on page 1,
you can write, edit and view this test script from TestManager ’s File menu. And if you
will create a datapool (click Tools > Manage > Datapools) matching the name entered in
the script’s first line, you can run the script directly. Or you can add it to a suite
containing test scripts of other types and run the suite.

The example opens a datapool and displays some of its attributes. If the datapool fails
to open, the script calls ErrorDetail for information.

$dpid= ‘tsscmd datapoolopen -access private contacts‘;
chomp ($dpid);
$? = $? >> 8;
if ($? == 0) { # datapool is open
 print "Datapool opened: here are some of its attributes\n";
 print "Datapool ID for this run is $dpid\n";
 $ncol= ‘tsscmd datapoolcolumncount $dpid‘;
 print "datapool has $ncol columns\n";
 for ($i=1; $i le $ncol; $++i) {

$cname= ‘tsscmd datapoolcolumnname $dpid $i‘;
print "Column $i is named $cname\n";

 }
 $nrows = ‘tsscmd datapoolrowcount $dpid‘;
 print "datapool has $nrows rows\n";
 ‘tsscmd datapoolclose $dpid‘;
 }
else{ # datapool open failed
 print "datapool failed to open with status code $?\n";
 print ‘tsscmd errordetail‘;
}

Introduction to tsscmd 9

Editing and Storing Test Scripts
Editing and Storing Test Scripts

To open a test script in TestManager, click File > Open Test Script. TestManager opens the
test script using the editor you specified when you added the test script type (step 4 in
“Setting Up TestManager for tsscmd” on page 1). Test scripts are stored in the folder
you indicated when you added the test script type (step 4 in “Setting Up TestManager
for tsscmd” on page 1).

To create a test script, click File > New Test Script. then select the appropriate type.
TestManager starts an editing session with the editor you specified when added the
test script type (step 4 in “Setting Up TestManager for tsscmd” on page 1).

When you’ve written your new script, be sure to save it in the folder you specified
when you added the test script type (step 9 in “Setting Up TestManager for tsscmd”
on page 1).

Running Test Scripts

You can run Command Line test scripts containing tsscmd statements either from
within the TestManager GUI, or from a command line via the rttsee command. You
cannot run a Command Line test script containing tsscmd statements directly from
the command line (by typing the test script’s name.)

Running a Test Script from TestManager

This is the usual way to run test scripts containing tsscmd statements. You can:

■ Run a single test script by itself (File > Run Test Script).

■ Run a test script from within a test case (File > Run Test Case).

■ Add the test script to a TestManager suite and run the suite (File > Run Suite). A
suite can include different types of test scripts — for example, you can add
Command Line test scripts containing tsscmd statements to a suite that also
contains Java, Visual Basic, GUI, VU, or custom test script types. For information
about adding scripts to a TestManager suite, see the Using Rational TestManager
manual.
10 Chapter 1

Running Test Scripts
Running a Test Script with rttsee

The rttsee program allows you to run a test script through its TSEA from the
command line rather than from TestManager. For example, if you add a test script
named datapoolTest following the instructions in Sample Command Line Test Script on
page 9, you can run the script from a Windows command window as explained
below.

1 Start a TSS server at a listening port (any port above 1024 will do). For example:

rttsee -k -P 3298

2 Set environment variable RTTSS_HOST to localhost and RTTSS_PORT to the port
number you used in step 1. (On Windows systems, use the System Properties
dialog.)

3 Issue the run command. For example:

rttsee -e rttseacmd datapoolTest

The rttsee interface is useful for debugging, and for running test scripts on
non-Windows platforms (for example, testing a UNIX Bourne shell script containing
tsscmd statements). However, scripts that are run via this interface do not have
access to TestManager’s monitoring and reporting functions, so normally you use
rttsee only for debugging or during development.

Test scripts are stored in a folder you specified when you added the Command Line
test script type: see step 7 in section Setting Up TestManager for tsscmd on page 1.
TestManager cannot execute test scripts that are stored in an unregistered location.

The syntax of rttsee is:

rttsee [option [arg]]
Introduction to tsscmd 11

tsscmd Output
The full options are described in the following table.

tsscmd Output

tsscmd statements can deposit information in any of these locations:

■ Test log

■ Error and output files

■ TestManager shared memory

The following sections describe these locations.

Option Description

-d dir Specifies the directory for result files — u-file (log), o-file, e-file.
The default is the current directory.

-e tsea[:type]
script[:type]

Specifies the TSEA to start and the test script to run. If tsea
handles test scripts of more than on type, :type indicates the
type of script. The :type may be specified with either or both
the TSEA or script, but it must match if specified with both.

-G [I | i T | t] Controls random number generation. Enter one choice (I or i, T
or t) from either or both pairs:
■ I Generate unique seeds for each virtual tester, using either

the predefined seed or one specified with -S (default).
■ i Use the same seed for all virtual testers, either the

predefined seed or one specified with -S.
■ t Seed the generator once for all tasks at the beginning, using

either the predefined seed or one specified with -S (default).
■ T Reseed the generator at the beginning of each task.

-k Keep-alive. Use with -P to start a TSS server that keeps running
after all test scripts have completed execution.

-P portnumber Specifies the listening port for a TSS server that remains alive
until explicitely stopped.

-r Redirects stdio to the o-file and e-file (in the directory specified
by -d).

-S seed Specifies an alternative seed value for the predefined seed. Must
be a positive integer except in conjunction with -G i.

-u uid Specifies the ID of a virtual tester.

-V Displays the rttsee version.
12 Chapter 1

tsscmd Output
Test Log

The test log (or log) is where TestManager lists the test cases that have been run and
their pass/fail results. TestManager uses the information in the log to generate
reports.

You can also write pass/fail results to the log and log messages and errors, using the
following comands:

■ LogEvent on page 28

■ LogMessage on page 29

■ LogTestCaseResult on page 31

■ CommandEnd on page 33

■ CommandStart on page 34

■ LogCommand on page 90

For test scripts executed from within TestManager, use the TestManager ViewLog
button to view the log of test scripts. For test scripts executed outside the TestManager
UI (with rttsee), the log file is in the current working directory by default but can be
redirected by the -d and -r option switches.

Error File and Output File

As a development and debugging aid, you can write information to an output and an
error file using the Print and ePrint commands, respectively.

For test scripts executed from within TestManager, use the TestManager perfdata
button to view output and error logs. For test scripts executed outside the
TestManager UI (with rttsee), the output and error files are in the current working
directory by default but can be redirected by the -d and -r option switches.

TestManager Shared Memory

Shared memory is used to provide data for TestManager’s runtime console, and to
pass information among test scripts during playback.

To write data to shared memory, use the methods described in the following sections:

■ Monitor Commands on page 71. These commands provide TestManager with data
needed for monitoring operations.

■ Synchronization Commands on page 79. These commands allow concurrently
running scripts to share data.
Introduction to tsscmd 13

Error Handling
Error Handling

If an error occurs in a script, the script stops running and (ususally) TestManager
generates an error file. However, for command line test scripts (including those
containing tsscmd statements), TestManager does not log a Fail result for scripts that
fail. Your script is responsible for error checking and handling.

All tsscmd statements return numeric status codes, which are documented with each
statement. In addition, many return values as well. For example, when successful
SharedVarWait returns:

■ The value of the specified shared variable before the adjustment is performed.

■ A status code of 0 or 1 indicating whether or not the value of the shared variable
reached a specified range within a specified timeout interval

On failure, SharedVarWait returns one of three integers (4, 5, 8) indicating the cause
of the failure. The following fragment indicates how you could check for status return
codes and obtain additional information about a failure in Perl.

$before = ‘tsscmd SharedVarWait -t 60000 svFoo 10 20’;
$? = $? >> 8;
if ($? == 0) {

‘tsscmd LogMessage timeout expired, value was $before‘;
}
elsif ($? == 1) {

‘tsscmd LogMessage condition was met before timeout expired‘;
}
else {

‘tsscmd LogMessage unexpected exit status $?‘;
$detail = ‘tsscmd ErrorDetail’;
chomp ($detail);
‘tsscmd LogMessage $detail‘;

}

Limitation

Test scripts which have more than one virtual tester, and which use datapools,
synchronization points, or shared variables, will not run on agents. The scripts will
run on the local (TestManager) host.

A workaround to this limitation exists: run, in the same test suite, a VU script that
declares the same datapools, synchronization points, and shared variables.
14 Chapter 1

2Test Script Services
Reference
About Test Script Services

This chapter describes the Rational Test Script Services (TSS). It explains the tsscmd
commands you use to give test scripts access to services such as datapools,
measurement, virtual tester synchronization, and monitoring. The commands are
divided into the following functional categories.

Datapool Commands

During testing, it is often necessary to supply an application with a range of test data.
Thus, in the functional test of a data entry component, you may want to try out the
valid range of data, and also to test how the application responds to invalid data.
Similarly, in a performance test of the same component, you may want to test storage
and retrieval components in different combinations and under varying load
conditions.

Category Description

Datapool Provide variable data to test scripts during playback.

Logging Log messages for reporting and analysis.

Measurement Manage timers and test variables.

Utility Perform common test script functions.

Monitor Monitor test script playback progress.

Synchronization Synchronize virtual testers in multicomputer runtime environments.

Session Manage the test suite runtime environment.

Advanced Perform advanced logging and measurement functions.
15

Summary
A datapool is a source of data stored in a Rational project that a test script can draw
upon during playback, for the purpose of varying the test data. You create datapools
from TestManager, by clicking Tools > Manage > Datapools. For more information, see
the datapool chapter in the Rational TestManager User’s Guide. Optionally, you can import
manually created datapool information stored in flat ASCII Comma Separated Values
(CSV) files, where a row is a newline-terminated line and columns are fields in the
line separated by commas (or some other field-delimiting character).

Summary

Use the datapool commands listed in the following table to access and manipulate
datapools within your scripts.

Command Description

DatapoolClose Closes a datapool.

DatapoolColumnCount Returns the number of columns in a datapool.

DatapoolColumnName Returns the name of the specified datapool column.

DatapoolFetch Moves the datapool cursor to the next row.

DatapoolOpen Opens the named datapool and sets the row access
order.

DatapoolRewind Resets the datapool cursor to the beginning of the
datapool access order.

DatapoolRowCount Returns the number of rows in a datapool.

DatapoolSearch Searches a datapool for the named column with a
specified value.

DatapoolSeek Moves the datapool cursor forward.

DatapoolValue Retrieves the value of the specified datapool column.
16 Chapter 2

Datapool Commands
DatapoolClose

Closes a datapool.

Syntax

tsscmd DatapoolClose dpid

Return Value

This command exits with one of the following results:

■ 0 –Success.

■ 4 – Server connection failure.

■ 5 – The datapool identifier is invalid.

Example

This example opens the datapool custdata with default row access and closes it.

dpid = ‘tsscmd DatapoolOpen custdata‘
tsscmd DatapoolClose dpid

See Also

DatapoolOpen

DatapoolColumnCount

Returns the number of columns in a datapool.

Syntax

columns = ‘tsscmd DatapoolColumnCount dpid‘

Element Description

dpid The ID of the datapool to close. Returned by DatapoolOpen.

Element Description

dpid The ID of the datapool. Returned by DatapoolOpen.
Test Script Services Reference 17

DatapoolColumnName
Return Value

On success, this command returns the number of columns in the specified datapool.
The command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The datapool identifier is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example opens the datapool custdata and gets the number of columns.

dpid = ‘tsscmd DatapoolOpen custdata‘
columns = ‘tsscmd DatapoolColumnCount dpid‘

DatapoolColumnName

Gets the name of the specified datapool column.

Syntax

columnName = ‘tsscmd DatapoolColumnName dpid columnNumber‘

Return Value

On success, this command returns the name of the specified datapool column. The
command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The datapool identifier or column number is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Element Description

dpid The ID of the datapool. Returned by DatapoolOpen.

columnNumber A positive number indicating the number of the column whose name you
want to retrieve. The first column is number 1.
18 Chapter 2

Datapool Commands
Example

This example opens a three-column datapool and gets the name of the third column.

dpid = ‘tsscmd DatapoolOpen custdata‘
tsscmd DatapoolFetch dpid
colName = ‘tsscmd DatapoolColumnName dpid 3‘

DatapoolFetch

Moves the datapool cursor to the next row.

Syntax

tsscmd DatapoolFetch dpid

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 3 – The end of the datapool was reached.

■ 4 – Server connection failure.

■ 5 – The datapool identifier is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

This call positions the datapool cursor on the next row and loads the row into
memory. To access a column of data in the row, call DatapoolValue.

The “next row” is determined by the assessFlags passed with the open call. The
default is the next row in sequence. See DatapoolOpen.

After a datapool is opened, a DatapoolFetch is required before the initial row can
be accessed.

Element Description

dpid The ID of the datapool. Returned by DatapoolOpen.
Test Script Services Reference 19

DatapoolOpen
An end-of-file condition results if a script fetches past the end of the datapool, which
can occur only if access flag NOWRAP was set on the open call. If the end-of-file
condition occurs, the next call to DatapoolValue results in a runtime error.

Example

This example opens datapool custdata with default (sequential) access and
positions the cursor to the first row.

dpid = ‘tsscmd DatapoolOpen custdata‘
tsscmd DatapoolFetch dpid

See Also

DatapoolOpen, DatapoolSeek, DatapoolValue

DatapoolOpen

Opens the named datapool and sets the row access order.

Syntax

dpid =‘tsscmd DatapoolOpen [-access accessFlags] name
[colname=value...]‘

Element Description

name The name of the datapool to open. If accessFlags includes NO_OPEN,
no CSV datapool is opened; instead, name refers to the specified
name/value pairs specifying a one-row table. Otherwise, the CSV file
name in the Rational project is opened.
20 Chapter 2

Datapool Commands
Return Value

On success, this command returns a positive integer indicating the ID of the opened
datapool. The command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The accessFlags argument is or result in an invalid combination.

■ 7 – No datapool of the given name was found.

■ 8 – Pending abort resulting from a user request to stop a suite run.

accessFlags Optional flags indicating how the datapool is accessed when a script is
played back. Specify at most one value from each of the following
categories:

1 Specify the sequence in which datapool rows are accessed:

SEQUENTIAL – physical order (default)

RANDOM – any order, including multiple access or no access

SHUFFLE – access order is shuffled after each access

2 Specify what happens after the last datapool row is accessed:

NOWRAP – end access to the datapool (default)

WRAP – go back to the beginning

3 Specify whether the datapool cursor is shared by all virtual testers or
is unique to each:

PRIVATE – virtual testers each work from their own sequential,
random, or shuffle access order (default)

SHARED – all virtual testers work from the same access order

4 PERSIST specifies that the datapool cursor is persistent across
multiple script runs. For example, with a persistent cursor, if the row
number after a suite run is 100, the first row accessed in a subsequent
run is numbered 101. Cannot be used with PRIVATE. Ignored if used
with RANDOM.

5 REWIND specifies that the datapool should be rewound when opened.
Ignored unless used with PRIVATE.

6 NO_OPEN specifies that, instead of a CSV file, the opened datapool
consists only of specified column/value pairs.

colname=value
...

Optionally, a list of one or more column/value pairs, where colname is
the column name and value is the override value to be returned by
DatapoolValue for that column name.

Element Description
Test Script Services Reference 21

DatapoolRewind
Comments

If the accessFlags argument is specified as 0 or omitted, the rows are accessed in
the default order: sequentially, with no wrapping, and with a private cursor. If
multiple accessFlags are specified, they must be valid combinations as explained
in the syntax table.

If you close and then reopen a private-access datapool with the same accessFlags
and in the same or a subsequent script, access to the datapool is resumed as if it had
never been closed.

If multiple virtual testers access the same datapool in a suite, the datapool cursor is
managed as follows:

■ The first open that uses the SHARED option initializes the cursor. In the same suite
run (and, with the PERSIST flag, in subsequent suite runs), virtual testers that
subsequently use the same datapool opened with SHARED share the initialized
cursor.

■ The first open that uses the PRIVATE option initializes the private cursor for a
virtual tester. In the same suite run, a subsequent open that uses PRIVATE sets the
cursor to the last row accessed by that virtual tester.

Example

This example opens the datapool named custdata, with a modified row access.

dpid = ‘tsscmd DatapoolOpen -a SHUFFLE -a PERSIST custdata‘

See Also

DatapoolClose

DatapoolRewind

Resets the datapool cursor to the beginning of the datapool access order.

Syntax

tsscmd DatapoolRewind dpid

Element Description

dpid The ID of the datapool. Returned by DatapoolOpen.
22 Chapter 2

Datapool Commands
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The datapool identifier is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

The datapool is rewound as follows:

■ For datapools opened SEQUENTIAL, DatapoolRewind resets the cursor to the
first record in the datapool file.

■ For datapools opened RANDOM or SHUFFLE, DatapoolRewind restarts the
random number sequence.

■ For datapools opened SHARED, DatapoolRewind has no effect.

At the start of a suite, datapool cursors always point to the first row.

If you rewind the datapool during a suite run, previously accessed rows are fetched
again.

Example

This example opens the datapool custdata with default (sequential) access, moves
the access to the second row, and then resets access to the first row.

dpid = ‘tsscmd DatapoolOpen custdata‘
tsscmd DatapoolSeek dpid 2
tsscmd DatapoolRewind dpid

DatapoolRowCount

Returns the number of rows in a datapool.

Syntax

rows = ‘tsscmd DatapoolRowCount dpid‘
Test Script Services Reference 23

DatapoolSearch
Return Value

On success, this command returns the number of rows in the specified datapool. The
command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The datapool identifier is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example opens the datapool custdata and gets the number of rows in the
datapool.

dpid = ‘tsscmd DatapoolOpen custdata‘
rows = ‘tsscmd DatapoolRowCount dpid‘

DatapoolSearch

Searches a datapool for a named column with a specified value.

Syntax

tsscmd DatapoolSearch dpid column=value [...]

Return Value

This command exits with one of the following results:

■ 0 – Success.

Element Description

dpid The ID of the datapool. Returned by DatapoolOpen.

Element Description

dpid The ID of the datapool. Returned by DatapoolOpen.

column=value One or more column/value pairs to be searched for.
24 Chapter 2

Datapool Commands
■ 3 – The end of the datapool was reached.

■ 4 – Server connection failure.

■ 5 – The datapool identifier is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

When a row is found containing the specified values, the cursor is set to that row.

Example

This example searches the datapool custdata for a row containing the column
named Last with the value Doe:

dpid = ‘tsscmd DatapoolOpen custdata‘
rowNumber=‘tsscmd DatapoolSearch dpid Last=Doe‘

DatapoolSeek

Moves the datapool cursor forward.

Syntax

tsscmd DatapoolSeek dpid count

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 3 – The end of the datapool was reached.

■ 4 – Server connection failure.

■ 5 – The datapool identifier is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Element Description

dpid The ID of the datapool. Returned by DatapoolOpen.

count A positive number indicating the number of rows to move forward in the
datapool.
Test Script Services Reference 25

DatapoolValue
Comments

This call moves the datapool cursor forward count rows and loads that row into
memory. To access a column of data in the row, call DatapoolValue.

The meaning of “forward” depends on the accessFlags passed with the open call;
see DatapoolOpen. This call is functionally equivalent to calling DatapoolFetch
count times.

An end-of-file error results if cursor wrapping is disabled (by access flag NOWRAP)
and count moves the access row beyond the last row. If DatapoolValue is then
called, a runtime error occurs.

Example

This example opens the datapool custdata with the default (sequential) access and
moves the cursor forward two rows.

dpid = ‘tsscmd DatapoolOpen custdata‘
tsscmd DatapoolSeek dpid 2

See Also

DatapoolFetch, DatapoolOpen, DatapoolValue

DatapoolValue

Retrieves the value of the specified datapool column in the current row.

Syntax

value = ‘tsscmd DatapoolValue dpid columnName‘

Return Value

On success, this command returns the value of the specified datapool column in the
current row. The command exits with one of the following results:

■ 0 – Success.

Element Description

dpid The ID of the datapool. Returned by DatapoolOpen.

columnName The name of the column whose value you want to retrieve.
26 Chapter 2

Logging Commands
■ 3 – The end of the datapool was reached.

■ 4 – Server connection failure.

■ 5 – The specified columnName is not a valid column in the datapool.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

This call gets the value of the specified datapool column from the current datapool
row, which will have been loaded into memory either by DatapoolFetch or
DatapoolSeek.

By default, the returned value is a column from a CSV datapool file located in a
Rational datastore. If the datapool open call included the NO_OPEN access flag, the
returned value comes from an override list provided with the open call.

Example

This example retrieves the value of the column named Middle in the first row of the
datapool custdata.

dpid = ‘tsscmd DatapoolOpen custdata‘
tsscmd DatapoolFetch dpid
colVal = ‘tsscmd DatapoolValue dpid Middle‘

See Also

DatapoolFetch, DatapoolOpen, DatapoolSeek

Logging Commands

Use the logging commands to build the log that TestManager uses for analysis and
reporting. You can log events, messages, or test case results.

A logged event is the record of something that happened. Use the environment
variable LogEvent_control (page 37) to control whether or not an event is logged.

An event that gets logged may have associated data (either returned by the server or
supplied with the statement). Use the environment variable LogData_control
(page 37) to control whether or not any data associated with an event is logged.
Test Script Services Reference 27

Summary
Summary

Use the commands listed in the following table to write to the TestManager log.

LogEvent

Logs an event.

Syntax

tsscmd LogEvent [-result result] [-desc description] eventType
[property=value ...]

Command Description

LogEvent Logs an event.

LogMessage Logs a message event.

LogTestCaseResult Logs a test case event.

Element Description

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ NONE (default: no notification)
■ PASS

■ FAIL

■ WARN

■ STOPPED

■ INFO

■ COMPLETED

■ UNEVALUATED

description Contains the string to be put in the entry’s failure description field.

eventType Contains the description to be displayed in the log for this event.

property=value Specifies one or more property-value pairs.
28 Chapter 2

Logging Commands
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – An unknown result was specified.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

The event and any data associated with it are logged only if the specified result
preference matches associated settings in the LogData_control (page 37) or
LogEvent_control (page 37) environment variables. Alternatively, the logging
preference can be set with the Log_level (page 38) and Record_level (page 39)
environment variables. The STOPPED, COMPLETED, and UNEVALUATED
preferences are intended for internal use.

Example

This example logs the beginning of an event of type Login Dialog.

tsscmd LogEvent -d "Login script failed" "Login Dialog"
ScriptName=Login LineNumber=1

LogMessage

Logs a message.

Syntax

tsscmd LogMessage [-result result] [-desc description] message
Test Script Services Reference 29

LogMessage
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the LogData_control (page 37) or
LogEvent_control (page 37) environment variables. Alternatively, the logging
preference can be set with the Log_level (page 38) and Record_level (page 39)
environment variables. The STOPPED, COMPLETED, and UNEVALUATED
preferences are intended for internal use.

Example

This example logs the following message: --Beginning of timed block T1--.

tsscmd LogMessage "--Beginning of timed block T1--"

Element Description

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ NONE (default: no notification)
■ PASS

■ FAIL

■ WARN

■ STOPPED

■ INFO

■ COMPLETED

■ UNEVALUATED

description Specifies the string to be put in the entry’s failure description field.

message Specifies the string to log.
30 Chapter 2

Logging Commands
LogTestCaseResult

Logs a test case result.

Syntax

tsscmd LogTestCaseResult [-result result] [-desc description]
testcase [property=value ...]

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

A test case is a condition, specified in a list of property name/value pairs, that you are
interested in. This command searches for the test case and logs the result of the search.

Element Description

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ NONE (default: no notification)
■ PASS

■ FAIL

■ WARN

■ STOPPED

■ INFO

■ COMPLETED

■ UNEVALUATED

description Contains the string to be displayed in the event of a log failure.

testcase Identifies the test case whose result is to be logged.

property=value Optionally a list of one or more property name/value pairs.
Test Script Services Reference 31

Measurement Commands
An event and any data associated with it are logged only if the specified result
preference matches associated settings in the LogData_control (page 37) or
LogEvent_control (page 37) environment variables. Alternatively, the logging
preference may be set by the Log_level (page 38) and Record_level (page 39)
environment variables. The STOPPED, COMPLETED, and UNEVALUATED
preferences are intended for internal use.

Example

This example logs the result of a test case named Verify login.

tsscmd TestCaseResult "Verify login" Result=OK

Measurement Commands

Use the measurement commands to set timers and environment variables and to get
the value of internal variables. Timers allow you to gauge how much time is required
to complete specific activities under varying load conditions. Environment variables
allow for the setting and passing of information to virtual testers during script
playback. Internal variables store information used by the TestManager to initialize
and reset virtual tester parameters during script playback.

Summary

The following table lists the measurement commands.

Command Description

CommandEnd Logs an end-command event.

CommandStart Logs a start-command event.

EnvironmentOp Sets an environment variable.

GetTime Gets the elapsed time of a run.

InternalVarGet Gets the value of an internal variable.

Think Sets a think-time delay.

TimerStart Marks the start of a block of actions to be timed.

TimerStop Marks the end of a block of timed actions.
32 Chapter 2

Measurement Commands
CommandEnd

Marks the end of a timed command.

Syntax

tsscmd CommandEnd [-desc description] [-start starttime] [-end
endtime] result logdata [property=value ...]

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Element Description

description Contains the string to be displayed in the event of failure.

starttime An integer indicating a time stamp to override the time stamp set by
CommandStart. To use the time stamp set by CommandStart, omit or
specify as 0.

endtime An integer indicating a time stamp to override the current time. To use
the current time, omit or specify as 0.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ NONE (default: no notification)
■ PASS

■ FAIL

■ WARN

■ STOPPED

■ INFO

■ COMPLETED

■ UNEVALUATED

logdata Text to be logged describing the ended command.

property=value Optionally specify one or more property name/value pairs.
Test Script Services Reference 33

CommandStart
Comments

The command name and label entered with CommandStart are logged, and the run
state is restored to the value that existed before the CommandStartcall.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the LogData_control (page 37) or
LogEvent_control (page 37) environment variables. Alternatively, the logging
preference can be set with the Log_level (page 38) and Record_level (page 39)
environment variables. The STOPPED, COMPLETED, and UNEVALUATED
preferences are intended for internal use.

Example

This example marks the end of the timed activity specified by the previous
CommandStart call.

tsscmd CommandEnd -d "Command timer failed" PASS "Login command
completed"

See Also

CommandStart, LogCommand

CommandStart

Starts a timed command.

Syntax

tsscmd CommandStart label name state

Element Description

label The name of the timer to be started and logged, or NULL for an unlabeled
timer.

name The name of the command to time.

state The run state to log with the timed command. See the run state table starting
on page 76. You can enter 0 (MST_UNDEF) if you’re uninterested in the
run state.
34 Chapter 2

Measurement Commands
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

A command is a term or string, such as sock or deposit, that you expect to occur in
client/server conversations. By placing CommandStart and CommandEnd calls
around expected strings, you can record the time required to complete associated
actions.

During script playback, TestManager displays progress for different virtual testers.
What is displayed for a group of actions associated by CommandStart depends on
the run state argument. Run states are listed in the run state table starting on page 76.

CommandStartincrements cmdcnt, sets the name, label, and run state for
TestManager, and sets the beginning time stamp for the log entry. CommandEnd
restores the TestManager run state to the run state that was in effect immediately
before CommandStart.

Example

This example starts timing the period associated with the string Login.

tsscmd CommandStart -l initTimer Login WAITRESP

See Also

CommandEnd, LogCommand

EnvironmentOp

Sets a virtual tester environment variable.

Syntax

tsscmd EnvironmentOp envVar envOp [envVal]
Test Script Services Reference 35

EnvironmentOp
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The timer label is invalid, or there is no unlabeled timer to stop.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

Environment variables define and control the environment of virtual testers. Using
environment variables allows you to test different assumptions or runtime scenarios
without re-writing your test scripts. For example, you can use environment variables
to specify:

■ A virtual tester’s average think time, the maximum think time, and how the think
time is mathematically distributed around a mean value

■ How long to wait for a response from the server before timing out

■ The level of information that is logged and available to reports

The following table describes the valid values of argument envVar. Note the
following about LogData_control and LogEvent_control:

■ They correspond to the check boxes in the TestManager TSS Environment
Variables dialog box. Use this dialog box to set logging and reporting options at
the suite rather than the script level.

■ They are more flexible alternatives to Log_level and Report_level.

Element Description

envVar The environment variable to operate on. Valid values are described in the
environment variable table starting on page 36.

envOP The operation to perform. Valid values are described in the environment
operations table starting on page 43.

envVal The value operated on as specified by envOP to produce the new value for
envVar.
36 Chapter 2

Measurement Commands
Name Type/Values/(default) Contains

Delay_dly_scale integer 0–2000000000
percent (100)

The scaling factor applied
globally to all timing
delays. A value of 100%,
which is the default, means
no change. A value of 50%
means one-half the delay,
which is twice as fast as the
original; 200% means twice
the delay, which is half as
fast. A value of zero means
no delay.

LogData_control NONE,
PASS,
FAIL,
WARNING,
STOPPED,
INFORMATIONAL,
COMPLETED,
UNEVALUATED
ANYRESULT

Flags indicating the level of
detail to log. Specify one or
more. These result flags
(except the last, which
specifies everything)
correspond to flags entered
with the vent, essage,
estCaseResult,
ommandEnd, and
ogCommand statements.
For example, specifying
FAIL selects everything
logged by statements that
specified flag FAIL.

LogEvent_control NONE,
PASS,
FAIL,
WARNING,
STOPPED,
INFORMATIONAL,
COMPLETED,
UNEVALUATED,
TIMERS,
COMMANDS,
ENVIRON,
STUBS,
TSSERROR,
TSSPROXYERROR
ANYRESULT

Flags indicating the level of
detail to log for reports.
Specify one or more. The
first nine result flags
(NONE thru
UNEVALUATED)
correspond to flags
specified with the vent,
essage,
estCaseResult,
ommandEnd, and
ogCommand statements.
The other flags (TIMERS
thru TSSPROXYERROR)
indicate the event objects.
For example, FAIL plus
COMMANDS selects for
reporting all commands
that recorded a failed result.
ANYRESULTS selects
everything.
Test Script Services Reference 37

EnvironmentOp
Log_level string "OFF" ("TIMEOUT")
"UNEXPECTED" "ERROR"
"ALL"

The level of detail to log:
■ OFF – Log nothing.
■ TIMEOUT – Log

emulation command
time-outs.

■ UNEXPECTED – Log
time-outs and
unexpected responses
from emulation
commands.

■ ERROR – Log all
emulation commands
that set error to a
nonzero value. Log
entries include error
and error_text.

■ ALL – Log everything:
emulation command
types and IDs, script IDs,
source files, and line
numbers.

Name Type/Values/(default) Contains
38 Chapter 2

Measurement Commands
Record_level "MINIMAL" "TIMER"
"FAILURE" ("COMMAND")
"ALL"

The level of detail to log for
reporting:
■ MINIMAL – Record only

items necessary for
reports to run. Use this
value when you do not
want user activity to be
reported.

■ TIMER – MINIMAL plus
start_time and
stop_time emulation
commands. Reports do
not contain response
times for each emulation
command, emulation
command failure does
not show up, and the
result file for each virtual
tester is small. Use this
setting if you are not
concerned with the
response times or
pass/fail status of
individual emulation
commands.

■ FAILURE – TIMER
plus emulation
command failures and
some environment
variable changes. Use
this setting if you want
the advantages of a small
result file but you also
that no emulation
command failed.

■ COMMAND – FAILURE
plus emulation
command successes and
some environment
variable changes.

■ ALL – COMMAND plus all
environment variable
changes. Complete
recording.

Name Type/Values/(default) Contains
Test Script Services Reference 39

EnvironmentOp
Suspend_check string ("ON") "OFF" Controls whether you can
suspend a virtual tester
from a Monitor view:
■ ON – A suspend request

is checked before
beginning the think time
interval by each send
emulation command.

■ OFF – Disable suspend
checking.

Think_avg integer 0–2000000000 ms
(5000)

The average think-time
delay (the amount of time
that, on average, a user
delays before performing
an action).

Think_cpu_dly_scale integer 0–2000000000 ms
(100)

The scaling factor applied
globally to CPU (processing
time) delays. Used instead
of Think_dly_scale if
Think_avg is less than
Think_cpu_threshol
d. Delay scaling is
performed before
truncation (if any) by
Think_max.

Think_cpu_threshold integer 0–2000000000 ms (0) The threshold value used to
distinguish CPU delays
from think-time delays.

Name Type/Values/(default) Contains
40 Chapter 2

Measurement Commands
Think_def string "FS" "LS" "FR" ("LR") "FC"
"LC"

The starting point of the
think-time interval:
■ FS – the submission time

of the previous send
emulation command

■ LS – the completion time
of the previous send
emulation command

■ FR – the time the first
data of the previous
receive emulation
command was received

■ LR – the time the last
data of the previous
receive emulation
command was received,
or LS if there was no
intervening receive
emulation command

■ FC – the submission
time of the previous
connect emulation
command (uses the
fc_ts internal variable)

■ LC – the completion time
of the previous connect
emulation command
(uses the lc_ts internal
variable)

Name Type/Values/(default) Contains
Test Script Services Reference 41

EnvironmentOp
Environment control options allow a script to control a virtual tester’s environment
by operating on the environment variables. Every environment variable has, instead
of a single value, a group of values: a default value, a saved value, and a current
value.

Think_dist string ("CONSTANT")
"UNIFORM" "NEGEXP"

The think-time
distrubution:
■ CONSTANT – sets a

constant distribution
equal to Think_avg

■ UNIFORM – sets a
random think-time
interval distributed
uniformly in the range:
[Think_avg -
Think_sd, Think_avg
+ Think_sd]

■ NEGEXP – sets a random
think-time interval
approximating a bell
curve with Think_avg
equal to standard
deviation

Think_dly_scale integer 0 – 2000000000 ms
(100)

The scaling factor applied
globally to think-time
delays. Used instead of
Think_cpu_dly_scal
e if Think_avg is greater
than
Think_cpu_threshol
d. Delay scaling is
performed before
truncation (if any) by
Think_max.

Think_max integer 0–2000000000 ms
(2000000000)

A maximum threshold for
think times that replaces
any larger setting.

Think_sd integer 0–2000000000 ms (0) Where Think_dist is set
to UNIFORM, specifies the
think-time standard
deviation.

Name Type/Values/(default) Contains
42 Chapter 2

Measurement Commands
■ default – The value of an environment variable before any commands are applied
to it. Environment variables are automatically initialized to a default value, and,
like persistent variables, retain their values across scripts. The reset command
resets the default value, as listed in the following table.

■ saved – The saved value of an environment variable can be used as one way to
retain the present value of the environment variable for later use. The save and
restore commands manipulate the saved value.

■ current – TSS supports a last-in-first-out “value stack” for each environment
variable. The current value of an environment variable is simply the top element of
that stack. The current value is used by all of the commands. The push and pop
commands manipulate the stack.

The following table describes the valid values of envOP.

Example

This example turns off Suspend_check before the start of a block of code and then
turns it back on at the end of the block.

tsscmd EnvironmentOP Suspend_check push OFF
/* imput emulation statements */
tsscmd EnvironmentOP Suspend_check pop ON

Operation Description

eval Operate on the value at the top of the variable’s stack.

pop Remove the variable value at the top of the stack.

push Push a value to the top of a variable’s stack.

reset Set the value of a variable to the default and discard any other values in the
stack.

restore Set the saved value to the current value.

save Save the value of a variable.

set Set a variable to the specified value.
Test Script Services Reference 43

GetTime
GetTime

Gets the elapsed time since the beginning of a suite run.

Syntax

time=`tsscmd GetTime`

Return Value

On success, this command returns the number of milliseconds elapsed in a suite run.
The command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

For execution within TestManager, this call retrieves the time elapsed since the start
time shared by all virtual testers in all test scripts in a suite.

For a test script executed outside TestManager, the time returned is the milliseconds
elapsed since the start of the rttsee process running the script.

Example

This example stores the elapsed time in etime.

etime = ‘tsscmd GetTime‘

InternalVarGet

Gets the value of an internal variable.

Syntax

ivVal=`tsscmd InternalVarGet internVar`

Element Description

internVar The internal variable to operate on. Valid values are described in the internal
variables table on page 45.
44 Chapter 2

Measurement Commands
Return Value

On success, this command returns the value of the specified internal variable. In
addition, it returns one of the following values:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The timer label is invalid, or there is no unlabeled timer to stop.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

Internal variables contain detailed information that is logged during script playback
and used for performance analysis reporting. This function allows you to customize
logging and reporting detail.

The following table lists the internal variables that can be entered with the
internVar argument.

Variable Contains

alltext Response text up to the value of Max_nrecv_saved. The same
as response.

cmd_id The ID of the most recent emulation command.

cmdcnt A running count of the number of emulation commands the
script has executed.

col The current column position (1-based) of the cursor (ASCII
screen emulation variable).

column_headers The two-line column header if Column_headers is ON;
otherwise, empty.

command The text of the most recent emulation command.

cursor_id The last cursor declared by sqldeclare_cursor or opened by
sqlopen_cursor.

error The status of the last emulation command. Most values for
error are supplied by the server.

error_text The full text of the error from the last emulation command. If
error is 0, error_text returns nothing. For an SQL database
or TUXEDO error, the text is provided by the server.
Test Script Services Reference 45

InternalVarGet
error_type If you are emulating a TUXEDO session and error is nonzero,
error_type contains one of the following values:

0 (no error)

1 VU/TUX Usage Error

2 TUXEDO System/T Error

3 TUXEDO FML Error

4 TUXEDO FML32 Error

5 Application under test Error

6 Internal Error

If you are emulating an IIOP session and error is nonzero,
error_type contains one of the following values:

0 (no error)

1 IIOP_EXCEPTION_SYSTEM

2 IIOP_EXCEPTION_USER

3 IIOP_ERROR

fc_ts The “first connect” time stamp for http_request and
sock_connect.

fr_ts The time stamp of the first received data of sqlnrecv,
http_nrecv, http_recv, http_header_recv, sock_nrecv,
or sock_recv. For sqlexec and sqlprepare, fr_ts is set to
the time the SQL database server responded to the SQL
statement.

fs_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time when the first data was
submitted to the server by http_request or sock_send.

host The host name of the computer on which the script is running.

lc_ts The “last connect” time stamp for http_request and
sock_connect.

lineno The line number in source_file of the previously executed
emulation command.

lr_ts The time stamp of the last received data for sqlnrecv,
http_nrecv, http_recv, http_header_recv, sock_nrecv,
or sock_recv. For sqlexec and sqlprepare, lr_ts is set to
the time the SQL database server responded to the SQL
statement.

ls_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time the last data was
submitted to the server by http_request or sock_send.

Variable Contains
46 Chapter 2

Measurement Commands
mcommand The actual (mapped) sequence of characters submitted to the
application under test by the most recent send or msend
command. For send commands, mcommand is always equivalent
to command.

ncnull The number of null characters in an application response
examined by the previous receive command in attempting to
match this response.

ncols The number of columns in the current screen (ASCII screen
emulation variable).

ncrecv The total number of nonnull characters from an application
response examined by the previous receive command in
attempting to match this response.

ncxmit The total number of characters transmitted to the application by
the previous send or msend command.

nkxmit The total number of “keystrokes” transmitted to the application
by the previous send or msend command. For send commands,
nkxmit is always equivalent toncxmit.

nrecv The number of rows processed by the last sqlnrecv, or the
number of bytes received by the last http_nrecv, http_recv,
sock_nrecv, or sock_recv.

nrows The number of rows in the current screen (ASCII screen
emulation variable).

nusers The number of total virtual testers in the current TestManager
session.

nxmit The total number of characters contained in the SQL statements
transmitted to the server in the last sqlexec or sqlprepare
command, or the number of bytes transmitted by the last
http_request or sock_send.

response Same as row.

row The current row position (1-based) of the cursor (ASCII screen
emulation variable).

script The name of the script currently being executed.

source_file The name of the file that was the source for the portion of the
script being executed.

statement_id The value assigned as the prepared statement ID, which is
returned by sqlprepare and sqlalloc_statement.

Variable Contains
Test Script Services Reference 47

Think
Example

This example stores the current value of the error internal variable in IVVal.

IVVal = ‘tsscmd InternalVarGet error‘

Think

Puts a time delay in a script that emulates a pause for thinking.

Syntax

tsscmd Think [thinkAverage]

total_nrecv The total number of bytes received for all HTTP and socket
receive emulation commands issued on a particular connection.

total_rows Set to the number of rows processed by the SQL statements. If
the SQL statements do not affect any rows, total_rows is set to
0. If the SQL statements return row results, total_rows is set to
0 by sqlexec, and then incremented by sqlnrecv as the row
results are retrieved.

tux_tpurcode TUXEDO user return code, which mirrors the TUXEDO API
global variable tpurcode. It can be set only by the
tux_tpcall, tux_tpgetrply, tux_tprecv, and
tux_tpsend emulation commands.

uid The numeric ID of the current virtual tester.

user_group The name of the user group (from the suite) of the virtual tester
running the script.

version The full version string of TestManager (for example, 7.5.0.1045).

Variable Contains

Element Description

thinkAverage If specified as 0 , the number of milliseconds stored in the Think_avg
environment variable is used as the basis of the calculation. Otherwise, the
calculation is based on the value specified.
48 Chapter 2

Measurement Commands
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

A think-time delay is a pause inserted in a performance test script in order to emulate
the behavior of actual application users.

For a description of environment variables, see EnvironmentOp on page 42.

Example

This example calculates a pause based on the value stored in the environment variable
Think_avg and inserts the pause into the script.

tsscmd Think

See Also

ThinkTime

TimerStart

Marks the start of a block of actions to be timed.

Syntax

tsscmd TimerStart [-label label] [-time timeStamp]

Element Description

label The name of the timer to be inserted into the log. If specified as NULL, an
unlabeled timer is created. Only one unlabeled timer is supported at a time.

timeStamp An integer specifying a time stamp to override the current time. If specified as
0, the current time is logged.
Test Script Services Reference 49

TimerStop
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

This call associates a starting time stamp with label for later reference by
TimerStop. The TestManager reporting system uses captured timing information for
performance analysis reports.

Example

This example times actions designated event1, logging the current time.

tsscmd TimerStart -l event1
/* actions to be timed */
tsscmd TimerStop -l event1

See Also

TimerStop

TimerStop

Marks the end of a block of timed actions.

Syntax

tsscmd TimerStop [-remove] [-t timeStamp] label

Element Description

label The name of the timer to be stopped and logged. If label does not match a
label entered with a previous TimerStart call, the most recent unlabeled timer
is stopped.

time stamp If specified as 0, the current time is recorded.

-r Specify to stop and remove the timer or omit to stop the timer without
removing it. A timer that is not removed can be stopped multiple times in
order to measure intervals comprising this timed event.
50 Chapter 2

Utility Commands
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The timer label is invalid, or there is no unlabeled timer to stop.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

Normally, this call associates an ending time stamp with a label specified with
TimerStart. If the specifiedlabel was not set by a previous TimerStart but an
unlabeled timer exists, this call uses the start time specified with TimerStart for the
unlabeled timer. If -r is not specified, multiple invocations of TimerStop are allowed
against a single TimerStart. This usage (see the example) allows you to subdivide a
timed event into separate timed intervals.

Example

This example stops an unlabeled timer without removing it.

tsscmd TimerStart
/* actions to be timed */
tsscmd TimerStop -l event1
/* other actions to be timed */
tsscmd TimerStop -l event2

See Also

TimerStart

Utility Commands

Use the utility commands to perform actions common to many test scripts.
Test Script Services Reference 51

Summary
Summary

The following table lists the utility commands.

Command Description

ApplicationPid Gets the process ID of an application.

ApplicationStart Starts an application.

ApplicationWait Waits for an application to terminate.

Delay Delays the specified number of milliseconds.

ErrorDetail Retrieves error information about a failure.

GetComputerConfiguration
AttributeList

Gets the list of computer configuration
attributes and their values.

GetComputerConfiguration
AttributeValue

Gets the value of a computer configuration
attribute.

GetPath Gets a pathname.

GetScriptOption Gets the value of a script playback option.

GetTestCaseConfiguration
Attribute

Gets the value of a test case configuration
attribute.

GetTestCaseConfiguration
AttributeList

Gets the list of test case configuration
attributes and their values.

GetTestCaseConfigurationName Gets the name of the configuration (if any)
associated with the current test case.

GetTestCaseName Gets the name of the test case in use.

GetTestToolOption Gets a test case tool option.

JavaApplicationStart Starts a Java application.

NegExp Gets the next negative exponentially
distributed random number with the specified
mean.

Rand Gets the next random number.

SeedRand Seeds the random number generator.

StdErrPrint Prints a message to the virtual tester’s error
file.
52 Chapter 2

Utility Commands
ApplicationPid

Gets the process ID of an application.

Syntax

pid = ‘tsscmd ApplicationPid appHandle‘

Return Value

On success, this command returns the system process ID of the specified application.
It exits with one of the following values :

■ 0 – Success.

■ 5 – The application handle is invalid.

Comments

This command works for applications started by ApplicationStart or
JavaApplicationStart.

A successful invocation does not imply that the application whose PID is returned is
still alive nor guarantee that the application is still running under this PID.

Example

This example returns the PID of application myApp.

myAppHandle = ‘tsscmd ApplicationStart myApp‘
myAppPID = ‘tsscmd ApplicationPid myAppHandle‘

StdOutPrint Prints a message to the virtual tester’s output
file.

Uniform Gets the next uniformly distributed random
number in the specified range.

UniqueString Returns a unique text string.

Command Description

Element Description

appHandle The ID of the application whose PID you want to get. Returned by
ApplicationStart or JavaApplicationStart.
Test Script Services Reference 53

ApplicationStart
See Also

ApplicationStart, ApplicationWait,JavaApplicationStart

ApplicationStart

Starts an application.

Syntax

handle = ‘tsscmd ApplicationStart [-workdir workingDir]
appHandle‘

Return Value

On success, this command returns a handle for the started application. It exits with
one of the following values :

■ 0 – Success.

■ 5 – The application handle is invalid.

Comments

Example

This example starts application myApp.

myAppHandle = ‘tsscmd ApplicationStart myApp‘

See Also

ApplicationPid, ApplicationWait,JavaApplicationStart

Element Description

appHandle The pathname of the application to be started, which can include options
and arguments. The file suffix can be omitted.

workingDir The directory in which to start the application. The current directory if not
specified.
54 Chapter 2

Utility Commands
ApplicationWait

Waits for an application to terminate.

Syntax

tsscmd ApplicationWait [-timeout msec] app

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 2 – The application was still running when the time-out expired.

■ 4 – Server connection failure.

■ 6 – The system returned an error: call ErrorDetail for information.

■ 7 – The process indicated by app was not found. It may have terminated before
this call or app may be an invalid handle.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

This command works for applications started by ApplicationStart or
JavaApplicationStart.

Example

This example waits 600 milliseconds for application myApp to terminate.

myAppHandle = ‘tsscmd ApplicationStart myApp‘
tsscmd ApplicationWait -timeout 600 myAppHandle

See Also

ApplicationPid, ApplicationStart,JavaApplicationStart

Element Description

app The application that you are waiting for. Returned by ApplicationStart
or JavaApplicationStart.

msec The number of milliseconds to wait for app to terminate or 0 to return
immediately.
Test Script Services Reference 55

Delay
Delay

Delays script execution for the specified number of milliseconds.

Syntax

tsscmd Delay msecs

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

The delay is scaled as indicated by the contents of the Delay_dly_scale
environment variable. The accuracy of the time delayed is subject to operating system
limitations.

Example

This example delays execution for 10 milliseconds.

tsscmd Delay 10

ErrorDetail

Retrieves error information about a failure.

Syntax

errorText=‘tsscmd ErrorDetail‘

Element Description

msecs The number of milliseconds to delay script execution.
56 Chapter 2

Utility Commands
Return Value

This command returns 0 if the previous command succeeded. If the previous
command failed, ErrorDetail returns one of the error codes listed below and
corresponding errorText.

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example opens a datapool and, if there is an error, displays the associated error
message text.

dpid = ‘tsscmd DatapoolOpen custdata‘
errorText = ‘tsscmd ErrorDetail‘

GetComputerConfigurationAttributeList

Gets the list of computer configuration attributes and their values.

Syntax

config = ‘tsscmd GetComputerConfigurationAttributeList
[-single]‘

Return Value

 This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

You create and maintain computer configuration attributes from TestManager. This
command returns the current settings.

The computer configuration attribute list can be obtained in either of two formats:

■ Without the -single option, two result lines are returned for each row with the
configuration name appearing on the first and its value on the second.
Test Script Services Reference 57

GetComputerConfigurationAttributeValue
■ With the -single option, all rows are returned on one result line containing all
pairs in the form name=value.

Example

This example returns the current computer configuration attribute list.

config = ‘tsscmd GetComputerConfigurationAttributeList‘

See Also

GetComputerConfigurationAttributeValue

GetComputerConfigurationAttributeValue

Gets the value of computer configuration attribute.

Syntax

value = ‘tsscmd GetComputerConfigurationAttributeValue name‘

Return Value

On success, this command returns a handle for the started application. It exits with
one of the following values.

■ 0 – Success.

■ 4 – Server connection failure.

Example

This example returns the value of the configuration attribute Operating System.

OSVal = ‘tsscmd GetComputerConfigurationAttributeValue "Operating
System"‘

See Also

GetComputerConfigurationAttributeList

Element Description

name The name of the computer configuration attribute whose value is to be
returned.
58 Chapter 2

Utility Commands
GetPath

Gets the pathname of a test asset.

Syntax

value = ‘tsscmd GetPath pathKey‘

Return Value

On success, this command returns the pathname of the currently executing test script.
On failure, it returns nothing: call ErrorDetail for information.

Example

This example returns the path of the currently executing test script.

scriptPath = ‘tsscmd GetPath SOURCE_PATH‘

See Also

UniqueString

GetScriptOption

Gets the value of a test script playback option.

Syntax

optVal=‘tsscmd GetScriptOption optionName‘

Element Description

pathKey Specifies one of these values:
■ SOURCE_PATH to get the location of the source file for the currently

executing test script. On an agent, this is the root destination to which
files are copied from the local computer.

■ ATTACHED_LOG_FILE_PATH to get the location of files attached to the
log.

Element Description

optionName The name of the script option whose value is returned.
Test Script Services Reference 59

GetTestCaseConfigurationAttribute
Return Value

On success, this command returns the value of the specified script option. The
command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example gets the value of the script option repeat_count.

optVal = ‘tssscmd GetScriptOption repeat_count‘

GetTestCaseConfigurationAttribute

Gets the value of the specified test case configuration attribute.

Syntax

config = ‘tsscmd GetTestCaseConfigurationAttribute [-single]
name‘

Return Value

On success, this command returns the value of the specified test case configuration
attribute. It exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

You create and maintain test case configuration attributes from TestManager. This
command returns the value of the specified attribute for the current test case.

Element Description

name Specifies the name of the configuration attribute to be returned.
60 Chapter 2

Utility Commands
The test case configuration attribute value can be obtained in either of two formats:

■ Without the -single option, three result lines are returned for each row with the
configuration name appearing on the first, the operator on the second, and the
configuration value on the third.

■ With the -single option, each row is returned on one result line containing a
name operator value triplet.

Example

This example returns the value of the configuration attribute Operating System.

OSVal = ‘tsscmd GetTestCaseConfigurationAttribute "Operating System"‘

See Also

GetTestCaseConfigurationAttributeList

GetTestCaseConfigurationAttributeList

Gets the list of test case configuration attributes and their values.

Syntax

config = ‘tsscmd GetTestCaseConfigurationAttributeList
[-single]‘

Return Value

 This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

You create and maintain test case configuration attributes from TestManager. This
command returns the current settings for the current test case.

The test case configuration attribute value can be obtained in either of two formats:

■ Without the -single option, three result lines are returned for each row with the
configuration name appearing on the first, the operator on the second, and the
configuration value on the third.
Test Script Services Reference 61

GetTestCaseConfigurationName
■ With the -single option, each row is returned on one result line containing a
name operator value triplet.

Example

This example returns the current test case configuration attribute list.

config = ‘tsscmd GetTestCaseConfigurationAttributeList‘

See Also

GetTestCaseConfigurationAttribute

GetTestCaseConfigurationName

Gets the name of the configuration (if any) associated with the current test case.

Syntax

config=‘tsscmd GetTestCaseConfigurationName‘

Return Value

On success, this command returns the name of the configuration associated with the
test case in use. The command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

A test case specifies the pass criteria for something that needs to be tested. A
configured test case is one that TestManager can execute and resolve as pass or fail.

Example

This example retrieves the name of a test case configuration.

tcConfig = ‘tsscmd GetTestCaseConfigurationName‘
62 Chapter 2

Utility Commands
GetTestCaseName

Gets the name of the test case in use.

Syntax

testcase=‘tsscmd GetTestCaseName‘

Return Value

On success, this command returns the name of the current test case. The command
exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

Created from TestManager, a test case specifies the pass criteria for something that
needs to be tested.

Example

This example stores the name of the test case in use in tcName.

tcName = ‘tsscmd GetTestCaseName‘

GetTestToolOption

Gets the value of a test tool execution option.

Syntax

optVal=‘tsscmd GetTestToolOption optionName‘

Element Description

optionName The name of the test tool execution option whose value is returned.
Test Script Services Reference 63

JavaApplicationStart
Return Value

On success, this command returns the value of the specified test tool execution option.
On failure, it returns nothing: call ErrorDetail for information.

Comments

If you develop adapters for a new test script type that support options, you can use
this command to get the value of a specified option.

Example

This example returns the value of an option called persist.

optval = ‘tsscmd GetTestToolOption "persist"‘

JavaApplicationStart

Starts a Java application.

Syntax

handle = ‘tsscmd JavaApplicationStart [-workdir workingDir]
[-classpath classPath] [-jvm JVM] [-jvmoptions JVMOptions]
app‘

Return Value

On success, this command returns a handle for the started application. It exits with
one of the following values .

■ 0 – Success.

Element Description

app The pathname of the application to be started, which can include options
and arguments. The file suffix can be omitted.

workingDir The directory in which to start the application. The current directory if .

classPath The Java CLASSPATH. The specified value replaces the current CLASSPATH.

JVM The pathname of Java Virtual Machine. If not specified, java.exe is used on
Windows machines and java on UNIX agent platforms.

JVMOptions Any valid JVM options may be specified.
64 Chapter 2

Utility Commands
■ 4 – Server connection failure.

■ 5 – The application pathname, classpath, or working directory is invalid.

Example

This example starts application myJavaApp.

myAppHandle = ‘tsscmd JavaApplicationStart myApp‘

See Also

ApplicationPid, ApplicationStart, ApplicationWait

NegExp

Gets the next negative exponentially distributed random number with the specified
mean.

Syntax

nnext=‘tsscmd NegExp mean‘

Return Value

This command returns the next negative exponentially distributed random number
with the specified mean, or –1 if there is an error. The command exits with one of the
following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

Element Description

mean The mean value for the distribution.
Test Script Services Reference 65

Rand
 Example

This example seeds the generator and gets a random number with a mean of 10.

tsscmd SeedRand 10
next = ‘tsscmd NegExp 10‘

See Also

Rand, SeedRand, Uniform

Rand

Gets the next random number.

Syntax

next=‘tsscmd Rand‘

Return Value

This command returns the next random number in the range 0 to 32767, or –1 if there
is an error. The command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

Example

This example gets the next random number.

next = ‘tsscmd Rand‘

See Also

SeedRand, NegExp, Uniform
66 Chapter 2

Utility Commands
SeedRand

Seeds the random number generator.

Syntax

tsscmd SeedRand seed

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

SeedRand uses the argument seed as a seed for a new sequence of random numbers
to be returned by subsequent calls to the Rand routine. If SeedRand is then called
with the same seed value, the sequence of random numbers is repeated. If Rand is
called before any calls are made to SeedRand, the same sequence is generated as
when SeedRand is first called with a seed value of 1.

Example

This example seeds the random number generator with the number 10:

tsscmd SeedRand 10

See Also

Rand, NegExp, Uniform

Element Description

seed The base integer.
Test Script Services Reference 67

ePrint
ePrint

Prints a message to the virtual tester’s error file.

Syntax

tsscmd ePrint message

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example prints to the error file the message Login failed. The quotes are
optional.

tsscmd ePrint "Login failed"

See Also

Print

Print

Prints a message to the virtual tester’s output file.

Syntax

tsscmd Print message

Element Description

message The string to print.

Element Description

message The string to print.
68 Chapter 2

Utility Commands
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example prints the message Login successful. The quotes are optional.

tsscmd Print "Login successful"

See Also

ePrint

Uniform

Gets the next uniformly distributed random number.

Syntax

unext=‘tsscmd Uniform low high‘

Return Value

This command returns the next uniformly distributed random number in the
specified range, or –1 if there is an error. The command exits with one of the following
results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Element Description

low The low end of the range.

high The high end of the range.
Test Script Services Reference 69

UniqueString
Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

If the error return value –1 is a legitimate value for the specified range, then
TSSErrorDetail exits with value 0.

Example

This example gets the next uniformly distributed random number between –10 and
10.

next = ‘tsscmd Uniform -10 10‘

See Also

Rand, SeedRand, NegExp

UniqueString

Returns a unique text string.

Syntax

str =‘tsscmd UniqueString‘

Return Value

On success, this command returns a string guaranteed to be unique in the current test
script or suite run. On failure, it returns NULL: call ErrorDetail for information.

Comments

You can use this command to construct the name for a unique asset, such as a test
script source file.

Example

This example returns a unique text string.

str = ‘tsscmd UniqueString‘
70 Chapter 2

Monitor Commands
Monitor Commands

When a suite of test cases or test scripts is played back, TestManager monitors
execution progress and provides a number of monitoring options. The monitoring
commands support the TestManager monitoring options.

Summary

The following table lists the monitoringcommands.

Display

Sets a message to be displayed by the monitor.

Syntax

tsscmd Display message

Command Description

Display Sets a message to be displayed by the monitor.

PositionGet Gets the script source file name or line number
position.

PositionSet Sets the script source file name or line number
position.

ReportCommandStatus Gets the runtime status of a command.

RunStateGet Gets the run state.

RunStateSet Sets the run state.

Element Description

message The message to be displayed by the progress monitor.
Test Script Services Reference 71

PositionGet
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 1 – The TSS server is running proxy.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

This message is displayed until overwritten by another call to Display.

Example

This example sets the monitor display to Beginning transaction. The quotes are
optional.

tsscmd Display "Beginning transaction"

PositionGet

Gets the test script file name or line number position.

Syntax

LineAndFile=‘tsscmd PositionGet‘

Return Value

On success, this command returns the name of the source file in use and the current
line position. The command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

TestManager monitoring options include Script View, causing test script lines to be
displayed as they are executed. PositionSet and PositionGet partially support this
monitoring option for TSS scripts: if line numbers are reported, they are displayed
during playback but not the contents of the lines.
72 Chapter 2

Monitor Commands
The line number returned by this function is the most recent value that was set by
PositionSet. A return value of 0 for line number indicates that line numbers are not
being maintained.

Example

This example gets the name of the current script file and the number of the line to be
accessed next.

LineAndFile = ‘tsscmd PositionGet‘

See Also

PositionSet

PositionSet

Sets the test script file name or line number position.

Syntax

tsscmd PositionSet [-source srcfile] lineno

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Element Description

srcFile The name of the test script, or NULL for the current test script.

lineNumber The number of the line in srcFile to set the cursor to, or 0 for the current
line.
Test Script Services Reference 73

ReportCommandStatus
Comments

TestManager monitoring options include Script View, causing test script lines to be
displayed as they are executed. PositionSet and PositionGet partially support this
monitoring option for TSS scripts: if line numbers are reported, they are displayed
during playback but not the contents of the lines.

Example

This example sets access to the beginning of test script checkLogin.

tsscmd PositionSet -s checkLogin 0

See Also

PositionSet

ReportCommandStatus

Reports the runtime status of a command.

Syntax

tsscmd ReportCommandStatus status

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 1 – The TSS server is running proxy.

■ 4 – Server connection failure.

Element Description

status The status of a command. Can be one of the following:
■ FAIL

■ PASS

■ WARN

■ INFO
74 Chapter 2

Monitor Commands
■ 5 – The entered status is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example reports a failure command status.

tsscmd ReportCommandStatus FAIL

RunStateGet

Gets the run state.

Syntax

state=‘tsscmd RunStateGet‘

Return Value

On success, this command returns one of the run state values listed in the run state
table starting on page 76. The command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

This call is useful for storing the current run state so you can change the state and then
subsequently do a reset to the original run state.

Example

This example gets the current run state.

orig = ‘tsscmd RunStateGet‘

See Also

RunStateSet
Test Script Services Reference 75

RunStateSet
RunStateSet

Sets the run state.

Syntax

tsscmd RunStateSet state

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – Invalid run state.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

TestManager includes the option to monitor script progress individually for different
virtual testers. The run states are the mechanism used by test scripts to communicate
their progress to TestManager. Run states can also be logged and can contribute to
performance analysis reports.

The following table lists the TestManager run states.

Element Description

state The run state to set. Enter one of the run state values listed in the run state
table starting on page 76.

 Run State Meaning

BIND iiop_bind in progress

BUTTON X button action

CLEANUP cleaning up

CPUDLY cpu delay

DELAY user-requested delay

DSPLYRESP displaying response
76 Chapter 2

Monitor Commands
EXITED exited

EXITSQABASIC exited SQABasic code

EXTERN_C executing external C code

FIND find_text find_point

GETTASK waiting for task assignment

HTTPCONN waiting for http connection

HTTPDISC waiting for http disconnect

IIOP_INVOKE iiop_invoke in progress

INCL mask including above basic states

INIT doing startup initialization

INITTASK initializing task

ITDLY intertask delay

MOTION X motion

PMATCH matching response (precv)

RECV_DELAY line_speed delay in recv

SATEXEC executing satellite script

SEND httpsocket send

SEND_DELAY line_speed delay in send

SHVBLCK blocked from shv access

SHVREAD V_VP: reading shared variable

SHVWAIT user requested shv wait

SOCKCONN waiting for socket connection

SOCKDISC waiting for socket disconnect

SQABASIC_CODE running SQABasic code

SQLCONN waiting for SQL client connection

SQLDISC waiting for SQL client disconnect

SQLEXEC executing SQL statements

 Run State Meaning
Test Script Services Reference 77

RunStateSet
STARTAPP SQABasic: starting app

SUSPENDED suspended

TEST test case, emulate

THINK thinking

TRN_PACING transactor pacing delay

TUXEDO Tuxedo execution

TYPE typing

UNDEF user’s micro_state is undefined

USERCODE SQAVu user code

WAITOBJ SQABasic: waiting for object

WAITRESP waiting for response

WATCH interactive -W watch record

XCLNTCONN waiting for http connection

XCLNTCONN waiting for socket connection

XCLNTCONN waiting for SQL client connection

XCLNTCONN waiting for X client connection

XCLNTDISC waiting for http disconnect

XCLNTDISC waiting for socket disconnect

XCLNTDISC waiting for SQL client disconnect

XCLNTDISC waiting for X client disconnect

XMOVEWIN X move window

XQUERY X query function

XSYNC X sync state during X query

XWINCMP xwindow_diff comparing windows

XWINDUMP xwindow_diff dumping window

N_INCL number of above states

 Run State Meaning
78 Chapter 2

Synchronization Commands
Example

This example sets the run state to WAITRESP.

tsscmd RunStateSet WAITRESP

See Also

RunStateGet

Synchronization Commands

Use the synchronization commands to synchronize virtual testers during script
playback. You can insert synchronization points and wait periods, and you can
manage variables shared among virtual testers.

Summary

The following table lists the synchronization commands.

SharedVarAssign

Performs a shared variable assignment operation.

Syntax

value=tsscmd SharedVarAssign [-quiet] name value [op]

Command Description

SharedVarAssign Performs a shared variable assignment operation.

SharedVarEval Gets the value of a shared variable and operates on the
value as specified.

SharedVarWait Waits for the value of a shared variable to match a specified
range.

SyncPoint Puts a synchronization point in a script.
Test Script Services Reference 79

SharedVarAssign
Return Value

On success, this command retrieves the value of the specified shared variable. The
command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The entered name is not a shared variable.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example adds 5 to the value of the shared variable lineCounter and puts the
new value of lineCounter in returnval.

returnval = ‘tsscmd SharedVarAssign lineCounter 5 add‘

See Also

SharedVarEval, SharedVarWait

Element Description

-quiet This option suppresses the returned value. If omitted, the statement returns
the resulting value of name after application of op value.

name The name of the shared variable to operate on.

value The right-side value of the assignment expression.

op Assignment operator. Can be one of the following:
■ assign (default)
■ add

■ subtract

■ multliply

■ divide

■ modulo

■ and

■ or

■ xor

■ shiftleft

■ shiftright
80 Chapter 2

Synchronization Commands
SharedVarEval

Gets the value of a shared variable and operates on the value as specified.

Syntax

value=‘tsscmd SharedVarEval name [op‘]‘

Return Value

On success, this command returns the new value of the specified shared variable. The
command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The entered name is not a shared variable.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Example

This example post-decrements the value of shared variable lineCounter and stores
the result in val.

val = ‘tsscmd SharedVarEval lineCounter post_inc‘

See Also

SharedVarAssign, SharedVarWait

Element Description

name The name of the shared variable to operate on.

op Increment/decrement operator for the returned value: Can be one of the
following:
■ none (default)
■ pre_inc

■ post_inc

■ pre_dec

■ post_dec
Test Script Services Reference 81

SharedVarWait
SharedVarWait

Waits for the value of a shared variable to match a specified range.

Syntax

returnVal=‘tsscmd SharedVarWait [-quiet] [-adjust adjust]
[-timeout timeout] name min [max]‘

Return Value

The command exits with one of the following results:

■ 0 – The shared variable did not meet the range during the time-out period.

■ 1 – The shared variable met the range during the time-out period.

■ 4 – Server connection failure.

■ 5 – The entered name is not a shared variable.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Element Description

-quiet This option suppresses the returned value. If omitted, the statement returns
the value of name before any possible adjustment.

name The name of the shared variable to operate on.

min The low range for the value of name.

max The high range for the value of name.

adjust The value to increment/decrement the named shared variable by once it
meets the min – max range.

timeout The time-out preference (how long to wait for the condition to be met).
Enter one of the following:
■ A negative number for no time-out.
■ 0 to return immediately with an exit value of 1 (condition met) or 0 (not

met).
■ The number of milliseconds to wait for the value of name to meet the

criteria, before timing out with and returning an exit value of 1 (met) or 0
(not met).
82 Chapter 2

Synchronization Commands
Comments

This call provides a method of blocking a virtual tester until a user-defined global
event occurs.

If virtual testers are blocked on an event using the same shared variable, TestManager
guarantees that the virtual testers are unblocked in the same order in which they were
blocked.

Although this alone does not ensure an exact multiuser timing order in which
statements following a wait are executed, the additional proper use of the arguments
min, max, and adjust allows control over the order in which multiuser operations
occur. (UNIX or Windows NT determines the order of the scheduling algorithms. For
example, if two virtual testers are unblocked from a wait in a given order, the tester
that was unblocked last might be released before the tester that was unblocked first.)

If a shared variable’s value is modified, any subsequent attempt to modify this
value — other than through SharedVarWait — blocks execution until all virtual
testers already blocked have had an opportunity to unblock. This ensures that events
cannot appear and then quickly disappear before a blocked virtual tester is
unblocked. For example, if two virtual testers were blocked waiting for name to equal
or exceed N, and if another virtual tester assigned the value N to name, then
TestManager guarantees both virtual testers the opportunity to unblock before any
other virtual tester is allowed to modify name.

Offering the opportunity for all virtual testers to unblock does not guarantee that all
virtual testers actually unblock, because if SharedVarWait is called with a nonzero
value of adjust by one or more of the blocked virtual testers, the shared variable
value changes during the unblocking script. In the previous example, if the first user
to unblock had called SharedVarWait with a negative adjust value, the event
waited on by the second user would no longer be true after the first user unblocked.
With proper choice of adjust values, you can control the order of events.

Example

This example returns 1 if the shared variable inProgress reaches a value between
10 and 20 within 60000 milliseconds of the time of the call. Otherwise, it returns 0.
svVal contains the value of inProgress at the time of the return, before it is
adjusted. (In this case, the adjustment value is 0 so the value of the shared variable is
not adjusted.)

svVal = SharedVarWait -t 60000 inProgress 10 20

See Also

SharedVarAssign, SharedVarEval
Test Script Services Reference 83

SyncPoint
SyncPoint

Puts a synchronization point in a script.

Syntax

tsscmd SyncPoint label

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 1 – The TSS server is running proxy.

■ 4 – Server connection failure.

■ 5 – The synchronization point label is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

A script pauses at a synchronization point until the release criteria specified by the
suite have been met. If the criteria are met, the script delays a random time specified
in the suite and then resumes execution.

Typically, it is better to insert a synchronization point into a suite from TestManager
rather than use the SyncPoint call inside a script.

If you insert a synchronization point into a suite, synchronization occurs at the
beginning of the script. If you insert a synchronization point into a script with
SyncPoint, synchronization occurs at the point of insertion. You can insert the
command anywhere in the script.

Example

This example creates a sync point named BlockUntilSaveComplete.

tsscmd SyncPoint BlockUntilSaveComplete

Element Description

label The name of the synchronization point.
84 Chapter 2

Session Commands
Session Commands

This section documents functions that may be required by applications. They are not
typically used by test scripts.

A suite can contain multiple test scripts of different types. When TestManager
executes a suite, a separate session is started for each type of script in the suite. Each
session lasts until all scripts of the type have finished executing. Thus, if a suite
contains three Visual Basic test scripts and six VU test scripts, two sessions are started
and each remains active until all scripts of the respective types finish.

tsscmd statements are executed outside TestManager, by a proxy TSS server process.
If TestManager (or rttsee) encounters a tsscmd statement and no proxy server
process is running, one is started. Each tsscmd statement connects to this process,
and then disconnects after the service completes.

Summary

Applications can use the session commands listed in the following table to manage
proxy TSS servers and sessions on behalf of test scripts. commands.

 Context

Passes context information to a TSS server.

Syntax

tsscmd Context ctx value

Command Description

Context Passes context information to a TSS server.

ServerStart Starts a TSS proxy server.

ServerStop Stops a TSS proxy server.
Test Script Services Reference 85

Context
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 5 – The specified ctx is invalid.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

This command passes information, such as the log file name, that would be passed
through shared memory if the script were executed by TestManager. Where used in a
script, it should be used first, before any other tsscmd command. Otherwise,
inconsistent results can occur.

Example

This example passes a working directory to the current proxy TSS server.

tsscmd Context workingDir "C:\temp"

Element Description

ctx The type of context information to pass: Can be one of the following:
■ workingDir

■ datapoolDir

■ timeZero

■ todZero

■ logDir

■ logFile

■ logData

■ testScript

■ style

■ sourceUID

value The information of type ctx to pass.
86 Chapter 2

Session Commands
ServerStart

Starts a TSS proxy server.

Syntax

p=‘tsscmd ServerStart [port]‘

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 1 – A TSS server was already listening on port.

■ 4 – Start failure. Call ErrorDetail for information.

■ 6 – A system error occurred. Call ErrorDetail for information.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

No TSS server is started if one is already running. A test script that is to be executed
by a proxy server and that might be the first to execute, should make this call.

Example

This example starts a proxy TSS server on a system-designated port, whose number is
returned to port.

port = ‘tsscmd ServerStart‘

See Also

ServerStop

Element Description

port The listening port for the TSS server. If omitted (recommended), the system
chooses the port and returns its number to p.
Test Script Services Reference 87

ServerStop
ServerStop

Stops a TSS proxy server.

Syntax

tsscmd ServerStop port

Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 1 – No TSS server was listening on port.

■ 5 – No proxy TSS server was found or stopped.

■ 6 – A system error occurred. Call ErrorDetail for information.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

In a test suite with multiple scripts, only the last executed script should make this call.

Example

This example stops a proxy TSS server listening on port 3825.

tsscmd ServerStop 3825

See Also

ServerStart

Element Description

port The port number that the TSS server to be stopped is listening on.
88 Chapter 2

Advanced Commands
 Advanced Commands

You can use the advanced commands to perform timing calculations, logging
operations, and internal variable initialization functions. TestManager performs these
operations on behalf of scripts in a safe and efficient manner. As a result, the functions
need not and usually should not be performed by individual test scripts.

Summary

The following table lists the advanced commands.

InternalVarSet

Sets the value of an internal variable.

Syntax

tsscmd InternalVarSet internVar ivVal

Return Value

The command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

Command Description

InternalVarSet Sets the value of an internal variable.

LogCommand Logs a command event.

ThinkTime Calculates a think-time average.

Element Description

internVar The internal variable to operate on. Internal variables and their values are
listed in the table starting on page 45.

ivVal The new value for internVar.
Test Script Services Reference 89

LogCommand
■ 5 – The timer label is invalid, or there is no unlabeled timer to stop.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

The values of some internal variables affect think-time calculations and the contents
of log events. Setting a value incorrectly could cause serious misbehavior in a script.

Example

This example sets cmdcnt to 0.

tsscmd InternalVarSet cmdcnt 0

See Also

InternalVarGet

LogCommand

Logs a command event.

Syntax

tsscmd LogCommand [-desc description] [-start starttime] [-end
endtime] name label result logdata [property=value ...]

Element Description

description Contains the string to be displayed in the event of failure.

starttime An integer indicating a time stamp. If omitted or specified as 0, the logged
time stamp is the later of the values contained in internal variables
fcs_ts and fcr_ts.

endtime An integer indicating a time stamp. If omitted or specified as 0, the time
set by CommandEnd is logged.

name The command name.

label The event label.
90 Chapter 2

Advanced Commands
Return Value

This command exits with one of the following results:

■ 0 – Success.

■ 4 – Server connection failure.

■ 8 – Pending abort resulting from a user request to stop a suite run.

Comments

The value of cmdcnt is logged with the event.

The command name and label entered with CommandStart are logged, and the run
state is restored to the value that existed prior to the CommandStart call.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the LogData_control (page 37) or
LogEvent_control (page 37) environment variables. Alternatively, the logging
preference may be set with the Log_level (page 38) and Record_level (page 39)
environment variables. The STOPPED, COMPLETED, and UNEVALUATED
preferences are intended for internal use.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ NONE (default: no notification)
■ PASS

■ FAIL

■ WARN

■ STOPPED

■ INFO

■ COMPLETED

■ UNEVALUATED

logdata Text to be logged describing the ended command.

property=value Specifies one or more property-value pairs

Element Description
Test Script Services Reference 91

ThinkTime
Example

This example logs a message for a login script.

tsscmd LogCommand -d "Command timer failed" Login initTimer PASS

See Also

CommandStart, CommandEnd

ThinkTime

Calculates a think-time average.

Syntax

thinkTime = ‘tsscmd ThinkTime [thinkAverage]‘

Return Value

On success, this command returns a calculated think-time average. An exit value of 1
indicates an error. Call ErrorDetail for more information.

Comments

This call calculates and returns a think time using the same algorithm as Think. But
unlike Think, this call inserts no pause into a script.

This function could be useful in a situation where a test script calls another program
that, as a matter of policy, does not allow a calling program to set a delay in execution.
In this case, the called program would use ThinkTime to recalculate the delay
requested by Thinkbefore deciding whether to honor the request.

Element Description

thinkAverage If specified as 0, the number of milliseconds stored in the ThinkAvg
environment variable is entered. Otherwise, the value specified overrides
ThinkAvg.
92 Chapter 2

Advanced Commands
Example

This example calculates a pause based on a think-time average of 5000 milliseconds.

ctime = ‘tsscmd GetTime‘
tsscmd InternalVarSet fcs_ts ctime
tsscmd InternalVarSet lcs_ts ctime
tsscmd InternalVarSet fcr_ts ctime
tsscmd InternalVarSet fcr_ts ctime
pause = ‘tsscmd ThinkTime 5000‘

See Also

Think
Test Script Services Reference 93

ThinkTime
94 Chapter 2

Index
A
advanced

list of commands 89
alltext internal variable 45, 47
application

get process id 53
start 54
start (Java) 64
wait for termination id 55

ApplicationPid 53
ApplicationStart 54
ApplicationWait 55
attributes

of computers 57
of test cases 60, 61

B
block on shared variable 82

C
calculate think-time 92
client/server environment variables

Column_headers 45
close

datapool 17
cmd_id internal variable 45
cmdcnt internal variable 45
col internal variable 45
Column_headers environment variable 45
column_headers internal variable 45
command IDs

internal variable 45
command internal variable 45
command runtime status, report 74
command timer

start 34

stop 33
command, log 90
CommandEnd 33
CommandStart 34
computer configuration attribute list, get 57
computer configuration attribute value, get 58
computers

internal variable containing names of 45, 46,
47

configuration attributes
of computers 57
of test cases 60, 61

Context 85
context information, pass to TSS server 85
cursor_id internal variable 45

D
DatapoolClose 17
DatapoolColumnCount 17
DatapoolColumnName 18
DatapoolFetch 19
DatapoolOpen 20
DatapoolRewind 22
DatapoolRowCount 23
datapools

access order during playback 21
close 17
get column name 18
get column value 26
get number of columns 17
get number of rows 23
list of commands 16
open 20
overview 16
reset access 22, 25
rewind 22
search for column/value pair 24
set row access 19

DatapoolSearch 24
95

DatapoolSeek 25
DatapoolValue 26
debugging test scripts 11
Delay 56
delay script execution 56
disconnect from TSS server 87
Display 71

E
emulation commands

internal variable containing 45
number executed 45

environment control commands 42
eval 43
pop 43
push 43
reset 43
restore 43
save 43
set 43

environment variables
client/server

Column_headers 45
current 43
default 43
list 36
operations, defined 43
reporting

Max_nrecv_saved 45
saved 43
set 35
setting values of 42

EnvironmentOp 35
ePrint 68
error file 13
error messages

internal variable containing 45
error internal variable 45
error_text internal variable 45
error_type internal variable 46
ErrorDetail 56
errors

get details 56

print message 68
eval environment control command 43
event log 28

F
fc_ts internal variable 46
fr_ts internal variable 46
fs_ts internal variable 46

G
get

application process id 53
computer configuration attribute list 57
computer configuration attribute value 58
elapsed runtime 44
error details 56
exponentially distributed random

number 65
internal variable value 44
name of datapool column 18
number of datapool columns 17
number of datapool rows 23
pathname 59
random number 66
run state 75
script option 59
script source file position 72
test case configuration 62
test case configuration attribute list 61
test case configuration attribute value 60
test case name 63
test tool execution option 63
uniformly distributed random number 69
unique text string 70
value of datapool column 26
value of shared variable 81

GetComputerConfigurationAttributeList 57
GetComputerConfigurationAttributeValue 58
GetPath 59
GetScriptOption 59
GetTestCaseConfiguration 62
GetTestCaseConfigurationAttribute 60
96

GetTestCaseConfigurationAttributeList 61
GetTestCaseName 63
GetTestToolOption 63
GetTime 44

H
host internal variable 46
http_header_recv emulation command

bytes received 48
http_nrecv emulation command

bytes processed by 47
bytes received 48

http_recv emulation command
bytes processed by 47
bytes received 48

http_request emulation command
bytes sent to server 47

I
internal variables

alltext 45, 47
cmd_id 45
cmdcnt 45
col 45
column_headers 45
command 45
cursor_id 45
error 45
error_text 45
error_type 46
fc_ts 46
fr_ts 46
fs_ts 46
get value of 44
host 46
lc_ts 46
lineno 46
list 45
lr_ts 46
ls_ts 46
mcommand 47
ncnull 47

ncols 47
ncrecv 47
ncxmit 47
nkxmit 47
nrecv 47
nrows 47
nusers 47
nxmit 47
response 47
row 47
script 47
set value of 89
source_file 47
statement_id 47
total_nrecv 48
total_rows 48
tux_tpurcode 48
uid 48
user_group 48
version 48

InternalvarGet 44
InternalvarSet 89

J
JavaApplicationStart 64

L
lc_ts internal variable 46
lineno internal variable 46
LoadTest

internal variable containing version 48
log

about 13
command 90
event 28
file location 13
message 29
test case result 31
writing to 13

LogCommand 90
LogEvent 28
logging, list of commands 27
97

LogMessage 29
LogTestCaseResult 31
lr_ts internal variable 46
ls_ts internal variable 46

M
Max_nrecv_saved environment variable 45
mcommand internal variable 47
measurement, list of commands 32
message

log 29
print 68

monitor display message, set 71
monitor, list of commands 71

N
ncnull internal variable 47
ncols internal variable 47
ncrecv internal variable 47
ncxmit internal variable 47
NegExp 65
nkxmit internal variable 47
nrecv internal variable 47
nrows internal variable 47
nusers internal variable 47
nxmit internal variable 47

O
open

datapool 20
test scripts 10

output file 13

P
pathname, get 59
pop environment control command 43
PositionGet 72
PositionSet 73
Print 68

print
error message 68
message 68

proxy TSS server
start 87
stop 88

proxy TSS server process
pass context information to 85

push environment control command 43

R
Rand 66
random numbers

get 66
get (exponentially distributed) 65
get (uniform) 69
seed 67

Rational TestManager
running scripts 10
shared memory 13

report, command runtime status 74
ReportCommandStatus 74
reporting environment variables

Max_nrecv_saved 45
reset

datapool access 22, 25
reset environment control command 43
response internal variable 47
restore environment control command 43
rewind

datapool 22
row internal variable 47
rows

number processed 48
run states

get 75
list of 76
set 76

running
test scripts 10
test scripts outside TestManager 11

RunStateGet 75
RunStateSet 76
98

S
save environment control command 43
script option, get 59
script internal variable 47
search

datapool 24
seed

random number generator 67
SeedRand 67
ServerStart 87
ServerStop 88
session

list of commands 85
set

command timer start point 34
command timer stop point 33
datapool row access 19
environment variable 35
monitor display message 71
run state 76
script execution delay 56
script source file position 73
synchronization point 84
think-time delay 48
timer end point 50
timer start point 49
value of internal variable 89
value of shared variable 79

set environment control command 43
shared memory 13
shared variables

assignment operations 80
block on 82
get value of 81
set value of 79

SharedVarAssign 79
SharedVarEval 81
SharedVarWait 82
sock_nrecv emulation command

bytes processed by 47
sock_recv emulation command

bytes processed by 47
sock_send emulation command

bytes sent to server 47

source_file internal variable 47
sqlalloc_statement emulation function

statement_id returned by 47
sqlexec emulation command

number of characters sent to server 47
sets rows processed to 0 48

sqlnrecv emulation command
increments total rows processed 48
rows processed by 47

sqlprepare emulation command
number of characters sent to server 47
statement_id returned by 47

stand-alone TSS server process
pass context information to 85
start 87
stop 88

standard input 13
standard output 13
start

application 54
command timer 34
Java application 64
timer 49
TSS server process 87

statement_id internal variable 47
stop

command timer 33
timer 50
TSS server process 88

synchronization
list of commands 79

synchronization point

set 84
SyncPoint 84

T
test case

get configuration 62
get name 63
log result 31

test case configuration attribute list, get 61
test case configuration attribute value, get 60
99

test log. See log
test scripts

block on shared variable 82
debugging 11
get line position 72
get shared variable value 81
internal variable containing 47
opening 10
running 10
running outside TestManager 11
set line position 73
set shared variable value 79
set synchronization point 84

test tool option, get 63
Think 48
think time

calculate 92
set 48

ThinkTime 92
timer

calculate think-time 92
get elapsed runtime 44
set think time 48
start 34, 49
stop 33, 50

TimerStart 49
TimerStop 50
timestamps 46
total_rows internal variable 48
total_nrecv internal variable 48
TSS server process

disconnect from 87
pass context information to 85
start 87

stop 88
tux_tpcall emulation command

sets TUXEDO user return code 48
tux_tpgetrply emulation command

sets TUXEDO user return code 48
tux_tprecv emulation command

sets TUXEDO user return code 48
tux_tpsend emulation command

sets TUXEDO user return code 48
tux_tpurcode internal variable 48

U
uid internal variable 48
Uniform 69
UniqueString 70
update, shared variable 79
user group internal variable 48
utility, list of commands 51

V
version internal variable 48
virtual testers

ID of 48
number of, in TestManager session 47

W
wait

for application termination id 55
100

	Rational®Testing Products Command Line Interface to Rational Test Script Services
	IMPORTANT NOTICE
	Contents
	Preface
	About This Manual
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction to tsscmd
	About tsscmd
	Setting Up TestManager for tsscmd
	tsscmd Format
	Sample Command Line Test Script
	Editing and Storing Test Scripts
	Running Test Scripts
	Running a Test Script from TestManager
	Running a Test Script with rttsee

	tsscmd Output
	Test Log
	Error File and Output File
	TestManager Shared Memory

	Error Handling
	Limitation

	Test Script Services Reference
	About Test Script Services

	Datapool Commands
	Summary
	DatapoolClose
	DatapoolColumnCount
	DatapoolColumnName
	DatapoolFetch
	DatapoolOpen
	DatapoolRewind
	DatapoolRowCount
	DatapoolSearch
	DatapoolSeek
	DatapoolValue

	Logging Commands
	Summary
	LogEvent
	LogMessage
	LogTestCaseResult

	Measurement Commands
	Summary
	CommandEnd
	CommandStart
	EnvironmentOp
	GetTime
	InternalVarGet
	Think
	TimerStart
	TimerStop

	Utility Commands
	Summary
	ApplicationPid
	ApplicationStart
	ApplicationWait
	Delay
	ErrorDetail
	GetComputerConfigurationAttributeList
	GetComputerConfigurationAttributeValue
	GetPath
	GetScriptOption
	GetTestCaseConfigurationAttribute
	GetTestCaseConfigurationAttributeList
	GetTestCaseConfigurationName
	GetTestCaseName
	GetTestToolOption
	JavaApplicationStart
	NegExp
	Rand
	SeedRand
	ePrint
	Print
	Uniform
	UniqueString

	Monitor Commands
	Summary
	Display
	PositionGet
	PositionSet
	ReportCommandStatus
	RunStateGet
	RunStateSet

	Synchronization Commands
	Summary
	SharedVarAssign
	SharedVarEval
	SharedVarWait
	SyncPoint

	Session Commands
	Summary
	Context
	ServerStart
	ServerStop

	Advanced Commands
	Summary
	InternalVarSet
	LogCommand
	ThinkTime

	Index

