
An Interview with Cem Kaner, Software Testing
Authority

by Sam Guckenheimer
 Senior Director of Technology for

Automated Test
Rational Software

Cem Kaner, Ph.D. J.D., is Professor
of Computer Sciences at Florida
Institute of Technology. He is perhaps
the world's most prolific and widely
read author, consultant, educator,
and attorney in the field of software
testing.

Last year, Dr. Kaner coauthored, with
James Bach and Bret Pettichord,
Lessons Learned in Software Testing:
A Context-Driven Approach. One of
his previous books, Testing Computer
Software (coauthored with Jack Falk
and Hung Nguyen), is a standard text
for training software testers. Many of
his articles on software testing are
available at www.kaner.com. In
addition, as an attorney, Dr. Kaner has been active in developing the law
of software quality, and he was elected to the American Law Institute in
recognition of his work.

Rational University recently engaged Dr. Kaner to develop content for a
new course, Principles of Software Testing for Testers. Dr. Kaner will teach
this course on August 17-18, immediately before the Rational User
Conference (RUC) in Orlando. (The course will be available from Rational
University instructors shortly afterwards.) At RUC, Dr. Kaner and his
coauthor James Bach will also deliver a talk on context-driven software
testing.

I recently had the pleasure of speaking with Dr. Kaner regarding the new
Rational course, his work on context-driven testing, his new book, his
curriculum development activities, and some of his foundational ideas in

jprince
Copyright Rational Software 2002

jprince
http://www.therationaledge.com/content/jul_02/f_interviewWithKaner_sg.jsp

software testing. I will share the highlights of that conversation with you
below.

Sam Guckenheimer: Let's start with your book Lessons Learned, which
you published about half a year ago. We liked the book so much we
featured part of it on Rational Developer Network. It's generated a lot of
interest, a lot of praise, and a little controversy. What drove you with
James Bach and Bret Pettichord to do Lessons Learned?

Cem Kaner: The three of us were pretty enthusiastic about some aspects
of the patterns movement. As I see it, the patterns movement involves a
structured writing style for taking well-understood learning and trying to
communicate it to other people. Although the structured style of writing in
patterns looks very easy -- you have a bunch of subheadings and you fill
in stuff for each one -- the method is time-consuming. And the essence of
what you have to say gets lost inside all of the other components in which
you don't have much special to say. I've done a lot of writing within
structured constraints. In the first edition of Testing Computer Software, I
tried to do something like that in the Appendix for bug descriptions, and
discovered that I could make a much better product -- and not hurt the
reader at all -- by focusing on the nugget of what I had to say and leaving
out the other details. So rather than writing a book called Patterns of
Software Testing, which came out of our first discussion, we said, Why
don't we just write a book called Lessons Learned? We would consider a
bunch of the things we had learned very well, extract the essence of
those, and instead of putting them into a structured form, put them down
one at a time and see what developed. Lessons Learned was the result.

SG: When you were creating Lessons Learned, did you set out to define
context-driven software testing based on context and forces in patterns, or
did it just emerge?

CK: The idea of context-driven testing had emerged in our group years
before. In fact, Brian Marick, James Bach, and I started writing a book in
1997 to define the context-driven school. We opened the software test
mailing list (http://groups.yahoo.com/group/software-testing/) specifically
as a home list for the context-driven school. We were talking about
context-driven testing a lot, but we were talking about it within an inner
circle and polishing our ideas before exposing them under that name to
the rest of the community. At some point during Lessons Learned, we
realized that Brian would be happy to have the three of us kind of
announce the school without his participation as a co-author. We were
hesitant about doing that, since he had done so much work in this area. In
any case, by the time we began work on the book, many of the context-
driven ideas were quite mature.

SG: How has the reception been to context-driven software testing?

CK: I think a lot of folks have responded that it's what they do anyway, so
while they're glad somebody is putting it into words, it's not really a big
deal. Other folks have found it liberating, and some have found it
intriguing; it's gotten them thinking. And some people are deeply offended

by it.

We're not surprised by the negative reactions. Many people in the testing
community feel there is "one right way" to do certain things. They know
the "right" lifecycle, the "right" test documentation method and test
techniques. And then we come along, saying, "You know, no technique is
good everywhere, and every technique is good somewhere, and the task is
to figure out when something will work and when it won't, rather than
whether it's good or bad." Some folks think that we're engaging in sloppy
thinking and are personally offended by it. Some consultants don't know
how to adapt their practices to include it, and simply attack it as
something different from what they've been teaching for many years.

SG: I'm curious about the earlier work you've done on paradigms of
testing which, of course, explores the notion that people have different
ways to do software testing and that all of these different schools claim
their method is the right one. Was that a driver behind context-driven
testing?

CK: The paradigm notion was, for me, a very important driver. That early
research was the first time that I had worked with anyone else to
crystallize some of the notions of context. The history of the paradigms is
kind of fun. When I was first breaking into consulting in the 1980s, I was
working full time but would do consulting at night and on weekends for
anybody desperate enough to hire me. You can imagine what sort of test
manager or development manager would be willing to give up a late
Saturday night to talk with a testing consultant. Those people were in
deep trouble.

I would, in those days, tell them about domain testing, using boundary
conditions, and about what I now call scenario testing, based on real-life
examples of how people use the product or how we would like to imagine
different users working with the product. And they would follow those
principles, things would get much better, and they would think I was a
genius -- and, of course, I thought I was pretty knowledgeable back then,
too. Then I became a full-time consultant and started selling my services
to people who weren't so desperate that they were willing to meet with me
at midnight. They expected me there at normal business hours, they
weren't in terrible trouble, and I would see them using methods that were
"wrong." I don't know how else to put it. Fortunately, before telling them
that everything they were doing was crazy, I had enough sense to ask for
access to their customer support database, and I would take a look at
what bugs they had in their bug tracking system and what complaints they
were getting from customers. This revealed what bugs they had found and
missed, and I realized that they had found things with their techniques
that would have been very hard for me to find. There were a few things I
had the ability to find that they had missed, but often, we simply had
different visions of what good testing was, and these visions were yielding
different, though quite effective, styles of testing.

Now, while these folks needed consulting -- they were certainly not as
effective as they wanted to be -- it was nevertheless remarkable how
much progress they could make following relatively few of the design
principles that I thought were basic. So I would take that company's ideas

and put them in my toolkit and go on to the next company, only to find
out they were doing something else that was different.

I had identified nine basic styles by the time I met James Bach at an
American Society for Quality meeting in Dallas. We had e-mailed for years,
and our first face-to-face meeting was extremely productive. We spent six
hours in the Dallas airport talking about test design. He pulled out a list of
nine basic testing styles, and lo and behold: They were the same as mine.
The names were slightly different, but they were the same. For each style,
we could name a company that relied almost exclusively on that style; if
you talked to them about some other style, they'd say, "that's not
testing," or "that's not interesting," or "that reveals bugs that nobody
cares about."

As we further discussed these nine styles of testing, we agreed that the
phenomenon looked very much like what Thomas Kuhn described in The
Structure of Scientific Revolutions as pre-scientific paradigms. A paradigm
really defines your scientific worldview. You have a set of data, you have a
theory associated with those data, and you have measurement techniques
or experimental techniques that are considered useful for finding new
research results. Plus, you have a bunch of unanswerable questions that
are out of scope relative to what you're currently working on and what you
expect to continue working on within your field. All fields of science, over
time, undergo revolutions in the ways problems are identified and
resolved. Problems that used to be considered out of scope eventually
offer an entirely new way of looking at the field. Practitioners start viewing
those previously uninteresting and out-of-scope issues as central to the
field of study. Bach and I both had had the experience of persuading
people to adopt one or two new testing styles in their company and
watching a transformation in their attitude about certain kinds of problems
and test methods. So we started working on ways to communicate our
style list to others.

Now, as soon as you come up with the notion that there are styles that
overlap but are far from completely overlapping, you end up asking the
question: If I were aware of all or most of these styles, how would I know
when to use one or the other? What's the cost-benefit associated with one
versus another? And you get into absolute contextual reasoning at that
point. You have to ask questions like: What are the skill sets of the people
who are doing this? What are the quality standards of people who have
influence over development?

Quality standards are a funny thing, by the way. I was at Electronic Arts
when we built Chuck Yeager's Flight Simulator. When I talk about context
sometimes, I contrast EA's simulator with the kind that the Air Force
would use. I point out that good testing for the Boeing flight simulator
would be very different from good testing for the Chuck Yeager simulator.
The response I often get back is, of course, that it would have been fine
for the game flight simulator to be of lower quality, so we can use less
rigorous approaches. But they miss the point. It's not that the
entertainment Flight Simulator is of a lower quality -- it's of a different
quality.

In a flight simulator game, it doesn't matter if the cockpit is shown

perfectly accurately. What matters is that somebody who has never flown
an airplane can have fun dealing with a very complex virtual instrument.
And if they can experience some of the thrill of flying without having to go
through pilot training, then you have a game that might be not only
commercially successful, but also entertaining in the best sense of the
word. Boeing doesn't have to worry about making their simulator fun.
Instead, they have to make their simulator absolutely realistic and
structure it so that it will operate properly under all sorts of circumstances
that test pilots are going to face. A kid crashing the game flight simulator
has a very different emotional experience from a pilot crashing a training
flight simulator. We don't have to worry as much about game players
crashing; in fact, for some folks that's fun. We do have to worry about the
screen being absolutely predictable and grouping the game controls in
ways that novices will find appropriate. So the quality standards we used
to create the game simulator at Electronic Arts were not necessarily higher
or lower than the quality standards at Boeing, but the quality criteria --
playability, entertainment value, educational value -- are very different
from the criteria for an Air Force flight simulator -- which are based on
getting someone ready to fly a plane accurately and skillfully.

So the test techniques that you're going to use for the two flight
simulators will really be very different, and at the end you will have two
incredibly different products. The testers of one product might not be in
any way competent to test the other product, but both products might still
be absolutely successful and well respected. That's one of the best
illustrations of context-driven testing that I can think of.

SG: You talk about this kind of spread in the Principles of Software Testing
for Testers course as well. If an organization is like those you mentioned
earlier - married to one kind of testing style but really should be using
others too -- what does it take to get them to see the benefit?

CK: Generally, they have to notice that they are missing problems or
spending too much finding the problems that they do find. Often it takes a
crisis, like costly recalls that are visible to senior management. Sometimes
the frustration comes from slow response time. If your product is really
taking off and getting used under an increasingly wide range of
circumstances out in the field, customers will encounter problems under
the new usage conditions. If your testing style requires a long time to
develop and document tests, you won't be able to keep up with all the
problems and their fixes. Some test groups notice that their programmers
and tech support staff catch the problems before they become disasters.
But when you see problems caught by programmers or customer support
that should have been caught by testers, you know it's only a matter of
time before some problems will be missed by two or three levels of folks,
and you're at great risk of serious failures or recalls. That's when people
start thinking, Hmmm, maybe we need to do our testing a little differently
than we've been doing it.

SG: The course that you helped Rational with, of course, covers all of the
approaches. Would you say that the most important take-away from the
course is the ability to appreciate new approaches to testing and take
home ideas for new ones you can try?

CK: Actually, I think the Rational course offers several valuable things.
Certainly laying out several different test techniques should be of value to
anyone who takes the course. We also spend a lot of time on
communication, on problem reporting.

I think that problem reporting is among the most fundamental skills that
testers can have, yet it's among the least well-practiced. Rational
publishes an excellent problem tracking tool, but if someone doesn't know
what to write, then a well-structured database only helps them put stuff in
that no one will read. Imagine that, when you discover a bug, someone
other than you has to make an informed business decision about whether
to fix it or even do follow-up research on it. Your goal, as a tester, is to
give that person the best information they can have to make that
decision; in some cases, that means pushing them pretty hard with data
to get them to understand how serious the problem is, so they'll make a
decision to go for higher quality even on a tough schedule or at a high
cost. Under these circumstances, you need techniques to make the
severity of the problem more clear, to make the circumstances under
which the problem appears simpler to explain and imagine, and to make
the presentation itself easier to read. In the Rational course, we drill these
techniques, and I think that's a very important thing for testers.

I did a study at one company across six of their products, looking partly at
the question of why certain bugs had escaped into the field and caused
recalls. As I wandered through their bug tracking results, what struck me
most was that they had many testers who were not writing really good
problem reports. This came as a surprise to the company. They had such
confidence that their engineers would fix problems if they understood
them, that many testers felt that all they ad to do was to get a problem to
the point where it was reproducible and write a description that was
accurate. But too often, the descriptions were rambling, over-detailed, and
not necessarily focused on the problem's effect on a customer or another
stakeholder. By looking at the readability and focus of the report, I was
able to predict whether a reported problem was likely to be fixed or not. I
think many companies overlook very serious problems just because their
tracking reports are weak. Programmers reading those reports would
probably tend to turn their attention to fixing much less serious problems
simply because their descriptions were easier to understand. So I think
effective reporting is a fundamental skill for testers -- to be able to take
what they learn through testing and communicate it very well in writing.

Coming next month: Part II of this series, with a focus on education and
training for software testers.

