
1 - 1

Module 1
Software Engineering Practices

Principles of Software Testing for
Testers

Module 1: Software Engineering Practices
(Some things Testers should know about them)

Topics

Objectives ..1-2

Software Development Problems ..1-3

Six Software Engineering Practices ...1-6

Software Engineering Process and Practices ...1-28

Review ...1-32

Principles of Software Testing for Testers

1 - 2

Objectives

2
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Objectives

Identify some common software
development problems.
Identify six software engineering practices
for addressing common software
development problems.
Discuss how a software engineering
process provides supporting context for
software engineering practices.

In this module, we explore a number of software engineering practices and explain
why these are considered to be good practices to follow. We will also look at how a
software engineering process helps you to implement these and many other
engineering practices.

 Module 1 - Software Engineering Practices

 1 - 3

Software Development Problems

3
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Module 1 - Content Outline (Agenda)

Software development problems
Six software engineering practices
Supporting software engineering practices
with process

In this section, we describe some common software development problems and their
root causes.

Principles of Software Testing for Testers

1 - 4

Symptoms of Software Development Problems

4
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Symptoms of Software Development Problems

User or business needs not met
Requirements churn
Modules don’t integrate
Hard to maintain
Late discovery of flaws
Poor quality or poor user experience
Poor performance under load
No coordinated team effort
Build-and-release issues

 Module 1 - Software Engineering Practices

 1 - 5

Trace Symptoms to Root Causes

5
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Trace Symptoms to Root Causes

Needs not met

Requirements churn

Modules don’t fit

Hard to maintain

Late discovery

Poor quality

Poor performance

Colliding developers

Build-and-release

Incorrect requirements

Ambiguous communications

Brittle architectures

Overwhelming complexity

Undetected inconsistencies

Insufficient testing

Subjective assessment

Waterfall development

Uncontrolled change

Insufficient automation

Symptoms Root Causes Software Engineering
Practices

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Continuously Verify Quality

Poor quality

Undetected inconsistencies

Insufficient testing

Subjective assessment

Treat these root causes, and you’ll eliminate the symptoms. Eliminate the symptoms,
and you’ll be in a much better position to develop quality software in a repeatable

and predictable fashion.

The software engineering practices listed here are approaches to developing software
that have been commercially-proven. When used in combination, they strike at many
of the common root causes of software development problems. These are also
referred to as “best practices,” not so much because we can precisely quantify their
value, but rather because they are observed to be the common practices adopted by

successful organizations.

These software engineering practices have been identified by observing thousands of
customers on thousands of projects and they align with similar observations made by
independent industry experts*.

*(CHAOS Report ©1999, The Standish Group International).

Principles of Software Testing for Testers

1 - 6

Six Software Engineering Practices

6
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Module 1 - Content Outline (Agenda)

Software development problems
Six software engineering practices
Supporting software engineering practices
with process

In this section, we describe some commonly recommended software engineering
practices.

 Module 1 - Software Engineering Practices

 1 - 7

Practice 1: Develop Iteratively

7
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 1: Develop Iteratively

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

Software Engineering
Practices

Developing iteratively is a technique that is used to deliver the functionality of a
system in a successive series of releases of increasing completeness. Each release is

developed in a specific, fixed time period called an “iteration.”

Each iteration is focused on identifying, defining and analyzing some set of
requirements, and designing, building and testing software based on the
understanding of those requirements.

If you want to learn more about how software can be developed iteratively, you can

take the Rational Unified Process Fundamentals course.

Principles of Software Testing for Testers

1 - 8

Waterfall Development Characteristics

8
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Waterfall Development Characteristics

Delays confirmation of
critical risk resolution
Measures progress by
assessing work-
products that are poor
predictors of time-to-
completion
Delays and aggregates
integration and testing
Precludes early
deployment
Frequently results in
major unplanned project
extensions

Design

System Test

Waterfall Process

Requirements
Analysis

Code &
Unit Test

Total Elapsed Time

Integrate

Design

Waterfall is conceptually straightforward because it produces a single deliverable. The
fundamental problem of this approach is that it pushes risk forward in time, where it’s

costly to undo mistakes from earlier phases. An initial design will likely be flawed with
respect to its key requirements, and furthermore, the late discovery of design defects
tends to result in costly overruns and/or project cancellation. The waterfall approach
tends to mask the real risks to a project until it is too late to do anything meaningful
about them.

 Module 1 - Software Engineering Practices

 1 - 9

Iterative Development Produces an Executable

9
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Iterative Development Produces an Executable

Initial
Planning

Planning

Requirements

Analysis & Design

Implementation

Deployment

Test

Evaluation

Management
&

Environment

Each iteration
results in an
executable
release

The earliest iterations address greatest risks. Each iteration produces an executable
release. Each iteration includes integration and test. Iterations help to:

• resolve major risks before making large investments

• enable early objective feedback

• make testing and integration continuous

• focus the project on achievable short-term objective milestones

• make it possible to deploy partial implementations of the completed final system

Iterative processes were developed to address the problems with the waterfall
discussed on the previous slide. With an iterative process, the phase concerns of the
waterfall process are addressed in each iteration (although not typically in sequence,

usually somewhat more in parallel). Instead of developing the whole system in lock
step, an increment (i.e. a subset of system functionality) is selected and developed,
then another increment, etc.

The selection of each increment to be developed is based on its potential to address
key risks, the highest priority risks being addressed first. To address the selected
risk(s), a subset of use cases or use-case instances are selected. The minimal set of
use-case instances are realized (developed) that will allow objective verification (i.e.,

through a set of executable tests) of the risks that you have chosen to address. The
next increment addresses the next highest risks, and so on.

Principles of Software Testing for Testers

1 - 10

Risk Profiles

10
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Risk Reduction

Time

R
is

k

Waterfall Risk

Iterative Risk

Risk Profiles

Iterative development drives risks out early.

Iterative development produces the architecture first, allowing integration to occur
“as the verification activity” of the design phase, and allowing design flaws to be

detected and resolved earlier in the lifecycle. Continuous integration throughout the
project replaces the big bang integration at the end of a project.

Iterative development also provides much better insight into quality, because system
characteristics that are largely inherent in the architecture (e.g., performance, fault
tolerance, maintainability) are tangible earlier in the process. Thus, issues are still
correctable without jeopardizing target costs and schedules.

 Module 1 - Software Engineering Practices

 1 - 11

Practice 2: Manage Requirements

11
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 2: Manage Requirements

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

Software Engineering
Practices

A report from the Standish Group confirms that a distinct minority of software
development projects is completed on-time and on-budget. In their report, the

success rate was only 16.2%, while challenged projects (operational, but late and
over-budget) accounted for 52.7%. Impaired projects (canceled) accounted for
31.1%. These failures are attributed to poor requirements management, incorrect
definition of requirements from the start of the project, and poor requirements
management throughout the development lifecycle. (Source: Chaos Report,
http://www.standishgroup.com).

If you want to learn more about how to manage requirements, you can take the
Requirements Management with Use Cases course.

Principles of Software Testing for Testers

1 - 12

Manage Requirements - Map of the Territory

12
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Problem

Solution
Space

Problem
Space

Needs

Features

Software
Requirements

Tests Design User
Docs

The
Product
To Be
Built

Traceability

Manage Requirements - Map of the Territory

Managing requirements involves the translation of stakeholder requests into a set of
key stakeholder needs and system features. These in turn are detailed into

specifications for functional and non-functional requirements. Detailed specifications
are translated into a design, user documentation and tests.

The requirements for the software are a key input to testing. You will often find
important problems at the boundary between each section of the pyramid – for
example, are the needs appropriately reflected in the features? Does the design
appropriately reflect the requirements? Later in this course we will discuss testing

based on requirements.

To help manage the relationship between the requirements and the tests derived
from those requirements, you can establish traceability relationships between those
elements. Traceability assists us to do many things, including:

• Assess the project impact of a change in a requirement

• Assess the impact of a failure of a test on requirements (i.e., if test fails, the
requirement may not be satisfied)

• Manage the scope of the project

• Verify that all requirements of the system are fulfilled by the implementation

• Verify that the application does only what it was intended to do

• Manage change

Later in this course we will discuss traceability and assessment needs for testing.

 Module 1 - Software Engineering Practices

 1 - 13

Manage Requirements - Use-Case Concepts

13
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Manage Requirements - Use-Case Concepts

Actor Use Case

An actor represents a
person or another
system that interacts
with the system.

A use case defines a
sequence of actions a
system performs that
yields a result of
observable value to an
actor.

Use cases are a
rich source for
identifying test
scenarios

Use Cases represent a technique for defining requirements in a way that focuses on
the end-user goal. They have been popularized by iterative development processes

such as the Rational Unified Process. However, the technique is not specific to
iterative development – it can be applied just as well to eliciting and managing
requirements in a waterfall development lifecycle.

An Actor:

• is not part of the system. It represents a role that users of the system will play
when interacting with it.

• can actively interchange information with the system.

• can be a passive recipient of information.

• can be a giver of information.

• can represent a human, a machine or another system.

A Use Case:

• specifies a dialogue between an actor and the system.

• is initiated by an actor to invoke certain functionality in the system.

• is a collection of meaningful, related flows of events.

• yields a result of observable value.

Taken together, all use cases provide a high-level, external view of all possible ways of
using the system.

Principles of Software Testing for Testers

1 - 14

Practice 3: Use Component Architectures

14
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 3: Use Component Architectures

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

Software architecture is the development product that gives the highest return on
investment with respect to quality, schedule, and cost, according to the authors of

Software Architecture in Practice (Len Bass, Paul Clements & Rick Kazman [1998]
Addison-Wesley). The Software Engineering Institute (SEI) has an effort underway
called the Architecture Tradeoff Analysis (ATA) Initiative to focus on software
architecture, a discipline much misunderstood in the software industry. The SEI has
been evaluating software architectures for some time and would like to see
architecture evaluation in wider use. By performing architecture evaluations, AT&T

reports a 10% productivity increase (from news@sei, Vol. 1, No. 2).

If you want to learn more about the use of component architectures in software
development, you can take the Object Oriented Design with UML or Principles of
Architecting Software courses.

 Module 1 - Software Engineering Practices

 1 - 15

Resilient Component-Based Architectures

15
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Resilient Component-Based Architectures

Resilient
Meets current and future requirements
Improves extensibility
Enables reuse
Encapsulates system dependencies

Component-based
Reuse or customize components
Select from commercially available components
Evolve existing software incrementally

Architecture is an aspect of design. It is about making decisions on how the system
will be built. But it is not all of the design. It stops at the major abstractions, or in

other words, the elements that have some pervasive and long-lasting effect on the
system’s performance and ability to evolve.

A software system’s architecture is perhaps the most important aspect that can be
used to control the iterative and incremental development of a system throughout its
lifecycle.

The most important property of an architecture is resilience -- flexibility in the face of

change. To achieve it, architects must anticipate evolution in both the problem
domain and implementation technologies to produce a design that can gracefully
accommodate such changes. Key techniques are abstraction, encapsulation, and
object-oriented analysis and design. The result is that applications are fundamentally
more maintainable and extensible.

Principles of Software Testing for Testers

1 - 16

Purpose of a Component-Based Architecture

16
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Purpose of a Component-Based Architecture

Basis for reuse
Component reuse
Architecture reuse

Basis for project management
Planning
Staffing
Delivery

Intellectual control
Manage complexity
Maintain integrity System-

software

Middleware

Business-
specific

Application-
specific

Component-based
Architecture with
layers

Definition of a (Software) Component:

Process Definition: A non-trivial, nearly independent, and replaceable part of a
system that fulfills a clear function in the context of a well-defined architecture. A
component conforms to and provides the physical realization of a set of interfaces.

UML Definition: A physical, replaceable part of a system that packages
implementation, and conforms to and provides the realization of a set of interfaces. A
component represents a physical piece of implementation of a system, including
software code (source, binary or executable) or equivalents such as scripts or
command files.

Your testing will typically be constrained by and dependent on the delivery and
availability of software components. As noted on the slide, planning and staffing of
the project will often be based around components, so your test plans will most likely
need to reflect this as well.

Components also help to manage complexity by hiding (or encapsulating)
unnecessary detail, making it easier to discuss how basic and fundamental interaction
occurs between components at different levels of detail (or abstraction). This will
assist in gaining an understanding of how the software is designed to work, and will
help you to reason about useful tests to conduct.

In some cases components will be acquired from third-party suppliers or reused from
other projects within your organization. This poses some interesting potential
problems and challenges (as well as opportunities) for testing software systems built
using previously developed components.

 Module 1 - Software Engineering Practices

 1 - 17

Practice 4: Model Visually (UML)

17
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 4: Model Visually (UML)

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

A model is a simplification of reality that provides a complete description of a system
from a particular perspective. We build models so that we can better understand the

system we are modeling. We build models of complex systems because we cannot
comprehend any such system in its entirety.

If you want to learn more about visual modeling in software development, you can
take the Fundamentals of Visual Modeling with UML course.

Principles of Software Testing for Testers

1 - 18

Why Model Visually?

18
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Why Model Visually?

To help manage complexity
To capture both structure and behavior
To show how system elements fit together
To hide or expose details as appropriate

To keep design and implementation
consistent
To promote unambiguous communication

UML provides one language for all practitioners

Modeling is important because it helps the development team visualize, specify,
construct, and document the structure and behavior of a system’s architecture. Using

a standard modeling language such as the UML (the Unified Modeling Language),
different members of the development team can communicate their decisions
unambiguously to one another.

Using visual modeling tools facilitates the management of these models, letting you
hide or expose details as necessary. Visual modeling also helps you maintain
consistency among a system’s artifacts: its requirements, designs, implementations

and tests. In short, visual modeling helps improve a team’s ability to manage software
complexity.

Different techniques can be used to verify aspects of a model prior to the physical
implementation of program code associated with the model. The UML itself provides
rules to establish whether a model is “well-formed”, and various software is
commercially available to “walk the model” looking for anomalies. That software can
typically be extended with user-defined rules.

Tools are also becoming available that take UML models as input and allow the
generation of test assets based on those models. For more information about these
tools, you might want to look at the Rational Quality Architect product.

 Module 1 - Software Engineering Practices

 1 - 19

Visual Modeling Using UML Diagrams

19
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Visual Modeling Using UML Diagrams

user : Clerk

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sor tByName ()

L

1: Doc vie w request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fi llDocument ()

4: create ()

8: fillFile ()

Window 95

¹®¼-°ü¸®

Å¬¶óÀÌ¾ðÆ® .EXE

Windows
NT

¹® ¼-°ü¸® ¿£Áø. EXE

Wind ows
N T

Windo ws95

Solaris

ÀÀ¿ë¼-¹ö.EXE

Alpha
UNIX

IBM
Mainfra me

µ¥ ÀÌÅ º̧£ÀÌ½º¼- ¹ö

W indows95

¹®¼-°ü¸® ¾ÖÇÃ¸ ´
Document

FileManager

GraphicFile

File

Repository DocumentList

FileList

user

mainWnd fileMgr :
FileMgr

repositorydocument :
Document

gFile

1: Doc view request ()

2 : fetchDoc()

3: create ()

4: creat e ()

5: read Doc ()

6 : fillDocument ()

7: read File ()

8: fillFi le ()

9 : sortByName ()

Æ¯ Á¤¹ ®¼- ¿¡ ë́ÇÑ º ±̧â ¦̧
»ç¿ëÀÚ °¡ ¿äÃ»ÇÑ´Ù .

È-ÀÏ°ü ¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼-À Ç Á¤º̧ ¦̧ ÇØ ḉ ¹® ¼-
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ »ÇÑ´Ù.

È-̧ é °´Ã¼´Â ÀÐ¾îµéÀÎ
°´Ã¼µé¿¡ ë́ÇØ ÀÌ §̧ º°·Î

Á¤·Ä À» ½ÃÄÑ È- ȩ́¿¡
º̧ ¿© ÁØ´Ù.

Forward and
Reverse
Engineering

Target
System

Openning

Writing

Reading
Closing

add f ile [numberOf f ile==MAX] /
f lag OFF

add f ile

close f ile

close f ile

Use-case
diagram

Class diagram

Collaboration
diagram

Sequence
diagram

Component
diagram

Statechart
diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readD oc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

Fi leList

add()
delete()

1

File

read()

read() fill the
code..

Deployment
diagram

Actor A

Use Case 1

Use Case 2

Use Case 3

Actor B

Use-case diagrams
outline the system
scope

Visual modeling with the UML makes an application’s architecture tangible,
permitting us to assess it in multiple dimensions. How portable is it? Can it exploit

expected advances in parallel processing? How might we modify it to support a
family of applications? We’ve discussed the importance of architectural resilience and
quality. The UML enables us to evaluate these key characteristics during early
iterations -- at a point when design defects can be corrected before threatening
project success.

If your software development team will be making use of visual models, it is worth

taking some time to learn how to read, interpret and discuss these models. You will
find this assists your communication with the developers, and offers you new and
unique insight into what the software is designed to do. In turn, this will help you
reason more completely about the appropriate tests that you should conduct.

Advances in forward and reverse engineering techniques permit changes to an
application’s model to be automatically reflected in its source code, and changes to
its source code to be automatically reflected in its model. This is critical when using

an iterative process, where we expect such changes with each iteration.

Principles of Software Testing for Testers

1 - 20

Workbook Page: A Sample UML Diagram – Use Cases

20
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Workbook Page: A Sample UML Diagram – Use Cases

Professor

Select Courses to Teach

Student

Course Catalog

Register for Courses

Maintain Student Information

Maintain Professor Information

Registrar Billing System

Close Registration

A University Course Registration System

Often a global use-case diagram will be included in the Use-Case-Model Survey to
give a graphical overview of the system.

This should include all use cases, actors, and their relationships that cover the scope
of the system being built.

Use case diagrams are used to show the existence of use cases and their relationships,
both to each other and to actors. An actor is something external to the system that
has an interface with the system, such as end users. A use case models a dialogue
between actors and the system. A use case is initiated by an actor to invoke a certain

functionality in the system. For example, in the diagram above, one class of user of
the system is student. In this system, students have a goal to use the system to register
for courses. Hence, Register for Courses is a use case.

The arrow (which is optional) indicates the direction in which messages are invoked
in the interaction. Here, the Student actor sends messages to the Register for Courses
use case.

A use case is a complete and meaningful flow of events. The flow of events

supplements the use case diagram and is usually provided in text format.

Taken together, all use cases constitute all possible ways of using the system.

 Module 1 - Software Engineering Practices

 1 - 21

Practice 5: Continuously Verify Quality

21
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 5: Continuously Verify Quality

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

Quality has many definitions. We’ll discuss some of the more commonly held
opinions about quality in a subsequent module. However, it is fair to state that

achieving quality is not simply about "meeting requirements" or producing a product
that meets user needs and expectations. Quality also includes identifying the
measures and criteria (to demonstrate the achievement of quality), and the
implementation of a process to ensure that the resulting product has achieved an
appropriate degree of quality.

Software testing is an important aspect of Software Quality process. Software testing

accounts for 30% to 50% of software development costs in many organizations, yet
most people believe that software is not well-tested before it is delivered. This
contradiction is arguably rooted in two interesting observations. First, testing software
is enormously difficult. The different ways a given program can behave are almost
infinite. Second, testing is typically done without a clear methodology and without
adequate supporting tools. While the complexity of software makes “complete”
testing an impossible goal, an appropriate methodology for the project context, and

use of appropriate supporting tools, can help to improve the productivity and
effectiveness of the software testing effort.

Principles of Software Testing for Testers

1 - 22

Continuously Verify Quality – in each Iteration

22
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Continuously Verify Quality – in each Iteration

A Software Build
triggers a cycle of
testing

In traditional software development, there is a tendency to delay certain types of
assessment–such as black-box testing–until late in the development cycle. In the case

of black-box testing, delaying these tests will delay the discovery of potentially
important problems until late in the development cycle. In many cases this will mean
the problems are too expensive to correct.

In iterative development, assessment activities are an integral part of the effort in each
iteration: they are needed to provide objective proof that the goals of the iteration
have been met. Without iteration-based assessment, it isn’t possible to objectively

evaluate whether an iteration achieved its goals: Were the key risks addressed
satisfactorily? Were the planned features delivered? Did the software exhibit the
required quality attributes?

The design and development of tests can be as complex and arduous as developing
the software product itself. You can mitigate the risk of expensive problems derailing
the testing process by starting early. In general it is best to start testing activities in the
same iteration as the first executable software release is planned.

 Module 1 - Software Engineering Practices

 1 - 23

Continuously Verify Quality – Software Models

23
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Continuously Verify Quality – Software Models

Various
disciplines
produce
Models …

Analysis &
Design

Require-
ments

Business
Modeling

Implement-
ation

Implemented
By

Implementation
Model

Design Model

Use-Case
Model

Business Use-
Case Model

Business
Object Model

Realized
By

Automated
By

Realized By

Assessment

Verified By Validated By

BBB

B

… each of
those models
is Assessed

Assessment
Artifacts are part of
and present in all
software models

The UML can be used to produce a number of models that represent various
perspectives or views on a software system as it evolves. Several models are useful to

fully describe the evolving system, with different software disciplines producing those
models. Each model is developed incrementally over multiple iterations.

• The Business Model is a model of what the business processes are and of the

business environment. It is primarily used to gain a better understanding of the
software requirements in the business context.

• The Use-Case Model is a model of the value the system represents to the external

users of the system environment. It describes the “external services” that the
system provides.

• The Design Model is a model that describes how the software will “realize” the

services described in the use cases. It serves as a conceptual model (or
abstraction) of the implementation model and its source code.

• The Implementation Model represents the physical software elements and the

implementation subsystems that contain them.

Assessment involves both Verification and Validation activities: verifying that the
software product is being built right, and validating that the right software product is
being built. This distinction refers to assessing both the appropriateness of the process
by which the software product is built (verification) and the appropriateness of the
resulting software product that will be delivered to the customer (validation).

Principles of Software Testing for Testers

1 - 24

Practice 6: Manage Change

24
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 6: Manage Change

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

As we indicated earlier, we cannot stop change from being introduced into our
project. However, we must control how and when changes are introduced into

project artifacts, and who introduces the changes. We also must synchronize change
across development teams and locations.

Unified Change Management (UCM) is Rational Software's approach to managing
change in software system development, from requirements to release.

 Module 1 - Software Engineering Practices

 1 - 25

What Do You Want to Control?

25
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

ALERTREPORT

Workspace
Management

Process
Integration

Parallel
Development

Build
Management

Good CM practices
help to prevent
certain types of
software errors

What Do You Want to Control?

Changes to enable iterative development
Secure workspaces for each worker
Parallel development possible

Automated integration/build management

Establishing secure workspaces for each worker on the project provides isolation from
changes made in other workspaces and control of all software artifacts -- models,

code, docs, tests etc.

A key challenge to developing software-intensive systems is the need to cope with
multiple workers, organized into different teams, possibly at different sites, all working
together on multiple iterations, releases, products, and platforms. In the absence of
disciplined control, the development process rapidly degrades into chaos. Progress
can come to a stop.

Three common problems that result are:

• Simultaneous update -- When two or more workers separately modify the same
artifact, the last one to make changes destroys the work of the former.

• Limited notification -- When a problem is fixed in shared artifacts, some of the
workers are not notified of the change.

• Multiple versions -- It is feasible to have multiple versions of an artifact in

different stages of development at the same time. For example, one software
release is in use by the customer, one is actively being developed and tested, and
yet another one is undergoing early prototyping of future features. If a problem is
identified in any one of the versions, the fix may need to be propagated among

all of them and change control can lead to chaos and halt progress.

Principles of Software Testing for Testers

1 - 26

Workbook Page: Aspects of a CM System

26
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Workbook Page: Aspects of a CM System

Change Request Management (CRM)
Configuration Status Reporting
Configuration Management (CM)
Change Tracking
Version Selection
Software Manufacture

Change Request Management (CRM) addresses the organizational infrastructure
required to assess the cost and schedule impacts of a requested change to the existing
product. CRM addresses the workings of a Change Review Team or Change Control
Board.

Configuration Status Accounting (Measurement) is used to describe the “state” of
the product based on the type, number, rate and severity of defects found, and fixed,
during the course of product development. Metrics derived under this aspect, either
through audits or raw data, are useful in determining the overall completeness status
of the project.

Configuration Management (CM) describes the product structure and identifies its
constituent configuration items that are treated as single versionable entities in the
configuration management process. CM deals with defining configurations, building
and labeling, and collecting versioned artifacts into constituent sets and maintaining
traceability between these versions.

Change Tracking describes what is done to components for what reason and at what
time. It serves as history and rationale of changes. It is quite separate from assessing
the impact of proposed changes as described under “Change Request Management.”

Version Selection ensures that the right versions of configuration items are selected
for change or implementation. Version selection relies on a solid foundation of
“configuration identification.”

Software Manufacture covers the need to automate the steps to compile, test and
package software for distribution.

 Module 1 - Software Engineering Practices

 1 - 27

Software Engineering Practices Reinforce Each Other

27
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Software Engineering Practices Reinforce Each Other

Validates architectural
decisions early on

Addresses complexity of design/
implementation incrementally

Measures quality early and often

Evolves baselines incrementally

Ensures users involved
as requirements evolve

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Software Engineering
Practices

In the case of our six software engineering practices, the whole is much greater than
the sum of the parts. Each of the practices reinforces and, in some cases, enables the

others. The slide shows just one example: how iterative development leverages the
other five software engineering practices. However, each of the other five practices
also enhances iterative development.

For example, iterative development done without adequate requirements
management typically fails to converge on a solution: requirements change at will,
users can’t agree, and the iterations never reach closure. When requirements are

managed, this is less likely to happen. Changes to requirements are visible, and the
impact to the development process assessed before they are accepted. Convergence
on a stable set of requirements is assured. Similarly, each pair of practices provides
mutual support. Hence, although it is possible to use one practice without the others,
additional benefits are realized by combining them.

Principles of Software Testing for Testers

1 - 28

Software Engineering Process and Practices

28
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Module 1 - Content Outline (Agenda)

Software development problems
Six software engineering practices
Software engineering process and software
engineering practices

In this section, we briefly discuss how a defined process – such as the Rational
Unified Process (RUP) – helps you to implement software engineering practices.

 Module 1 - Software Engineering Practices

 1 - 29

An Engineering Process Implements Engineering Practices

29
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

An Engineering Process Implements Engineering Practices

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component Architectures
Model Visually (UML)

Continuously Verify Quality
Manage Change

Software Engineering
Process

Why have a process?

• Provides guidelines for efficient development of quality software

• Reduces risk and increases predictability

• Promotes a common vision and culture

• Harvests and institutionalizes software engineering practices

A software engineering process should provide a disciplined yet flexible approach to
assigning tasks and responsibilities within a software development organization. The
goal is to ensure the production of high-quality software that meets the needs of its

end users within a predictable schedule and budget.

The UML provides a standard for many of the artifacts of software development
(semantic models, syntactic notation, and diagrams): the things that must be
controlled and exchanged. But the UML is not a standard for the development
process.

Despite all of the value that a common modeling language brings, you cannot achieve
successful development of today’s complex systems solely by the use of the UML.

Successful iterative development also requires employing a repeatable engineering
process.

Principles of Software Testing for Testers

1 - 30

A Team-Based Definition of Process

30
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

A Team-Based Definition of Process

A process defines Who is doing What
When, and How, in order to reach a certain
goal.

New or changed

requirements

New or changed

system

Software Engineering
Process

This course is about the What, When and
How of Testers’ activities in the process.

 Module 1 - Software Engineering Practices

 1 - 31

Workbook Page: Implementing Software Engineering Practices

31
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Workbook Page: Implementing Software Engineering Practices

A modern engineering process ideally:
Supports a controlled, iterative approach
Supports the use of user-focused requirements to
coordinate and drive the work in requirements,
design, implementation and test
Enables architectural concerns to be addressed
early
Allows the process to be configured to suit the
context of the individual project
Provides guidance for conducting work (activities)
and producing work products (artifacts)

Principles of Software Testing for Testers

1 - 32

Review

32
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Module 1 - Review

Software engineering practices guide
software development by addressing root
causes of problems.
Software engineering practices reinforce
each other.
Process guides a team on who does what
when and how.
A software engineering process provides
context and support for implementing
software engineering practices.

