
3 - 1 

Module 3
The RUP Test Discipline

Principles of Software Testing for
Testers

Module 3: The RUP Test Discipline

Topics

Objectives ............................................................................................................3-2

What is the Rational Unified Process (RUP)? ..........................................................3-3

Overview of the Software Lifecycle in RUP............................................................3-4

Overview of the Building Blocks of RUP ................................................................3-9

Roles in the Test Discipline .................................................................................3-12

Workflow Details in the Test Discipline ...............................................................3-17

Module 3 - Review .............................................................................................3-26



Principles of Software Testing for Testers 

3 - 2  

Objectives

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Objectives

Introduce concepts and vocabulary used in
this course:

The terminology of RUP
The testing discipline in RUP
The testing workflow structure

 

 



 Module 3 - The RUP Test Discipline 

 3 - 3 

What is the Rational Unified Process (RUP)?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

What is the Rational Unified Process (RUP)?

The Rational Unified Process
(RUP) is a software engineering
process framework that provides a
disciplined yet flexible approach to
assigning tasks and
responsibilities within a software
development organization.

RUP’s goal is to support the production of high-quality
software that meets the needs of its end users within a
predictable schedule and budget.

 

The Rational Unified Process is a generic process framework for conducting object-
oriented software engineering projects. It describes a family of related software 
engineering practices sharing a common structure and a common process 
architecture. The Rational Unified Process captures the proven practices in modern 
software development in a form that can be adapted for a wide range of projects and 
organizations. 

The RUP supports many software engineering practices: 

• The dynamic structure (phases and iterations) of the Rational Unified Process 
creates a basis for iterative development. 

• The Project Management discipline describes how to set up and execute a 
project using phases and iterations.   

• The Use-Case Model and Risk List of the Requirements discipline help determine 
what functionality you implement in each iteration. 

• The Workflow Details of the Requirements discipline show the activities and 
artifacts that make requirements management possible. 

• The iterative approach allows you to progressively identify components, decide 
which ones to develop, which ones to reuse, and which ones to buy.  

• The Unified Modeling Language (UML) used in the process represents the basis 
of Visual Modeling and has become the de facto modeling language standard. 

• The focus on software architecture allows you to articulate the structure: the 
components and the ways in which they integrate, the fundamental mechanisms 
and patterns by which they interact. 



Principles of Software Testing for Testers 

3 - 4  

Overview of the Software Lifecycle in RUP

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Module 3 - Agenda

Overview of the software lifecycle in RUP
Overview of the building blocks of RUP
Roles in the Test Discipline
Workflow Details in the Test Discipline

 

In this section, we introduce the structural elements of the Rational Unified process 
that are referred to as the software lifecycle in the RUP. 



 Module 3 - The RUP Test Discipline 

 3 - 5 

RUP Process Architecture

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

RUP Process Architecture

Lifecycle

Disciplines

 

The figure at the top shows the overall architecture of the RUP. 

The RUP has two dimensions: 

• The horizontal axis represents time and shows the lifecycle aspects of the process 
as it unfolds.  

• The vertical axis represents disciplines, which group activities logically by nature.  

The first dimension represents the “dynamic” aspect of the process as it is enacted, 
and it is expressed in terms of phases, iterations, and associated milestones. 

The second dimension represents the “static” aspects of the process as it is described 

in terms of process components – the roles, activities, artifacts, and their related 
disciplines. 

The graph shows how the emphasis varies over time. For example, in early iterations, 
we spend more time on requirements, and in later iterations we spend more time on 
implementation. 



Principles of Software Testing for Testers 

3 - 6  

Process Structure - Lifecycle Phases

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Inception Elaboration Construction Transition

Process Structure - Lifecycle Phases

The Rational Unified Process has four phases:
Inception - Define the project scope, gain agreement
on project objectives, baseline the product Vision
Elaboration - Address key technical risks, produce an
evolutionary prototype, baseline the Architecture
Construction - Iteratively and incrementally develop an
operationally complete product
Transition - Deliver the product into the live end-user
environment

time

 

During Inception, we define the scope of the project based on our initial 
understanding, identifying what is included, and what is not. We do this by 

identifying actors and use cases, and by outlining the most essential use cases 
(typically approximately 20% of the complete model). A business plan and a vision of 
the product are developed and assessed to determine whether resources should be 
committed to the project. 

During Elaboration, we focus on three things: getting a good grasp of the 
requirements (80% complete), addressing key technical risks and establishing an 

architectural baseline that proves the key concepts of the solution. If we have a good 
grasp of the requirements and the architecture, we can eliminate a lot of the risk 
inherent in software development. This gives us a much better idea for what amount 
of work remains to be done. We can make detailed cost/resource estimations at the 
end of Elaboration with much more confidence. 

During Construction, we build the product in several iterations, evolving it 
progressively into a complete operationally capable system. We might include a beta 

product release during or at the end of this phase. 

During Transition, we stabilize the product and transition it into the end user’s 
environment(s). We also focus on end user training, installation, and support. 

The amount of time spent in each phase varies. For a very complex project with a lot 
of technical unknowns and unclear requirements, Elaboration will involve more 
iterations (e.g. 3-5). For a very simple project, where requirements are known and the 
architecture is simple, Elaboration may include only a single iteration. 



 Module 3 - The RUP Test Discipline 

 3 - 7 

The Lifecycle Has Phases and Iterations

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

The Lifecycle Has Phases and Iterations

Each iteration results in an executable release (internal or
external). Iterations are the “heartbeat” or rhythm of the
project and a governing principle for testing in RUP.

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel.
Iteration

Devel.
Iteration

Devel.
Iteration

Transition
Iteration

Transition
Iteration

Inception Elaboration Construction Transition

Minor Milestones: Releases

Lifecycle
Objective
Milestone

(LCO)

Lifecycle
Architecture

Milestone
(LCA)

Initial Operational
Capability
Milestone

(IOC)
Product
Release

 

At each of the major milestones, we review the project and decide whether to 
proceed with the project as planned, to abort the project, or to revise it. The criteria 

used to make this decision vary by phase.  

Definitions: 

LCO: scope agreed upon and risks understood and reasonable 

LCA: key risks addressed and architecture stable 

IOC: product is operationally complete and quality acceptable 

Within each phase, there is a series of iterations. The number of iterations per phase 
will vary. Each iteration results in an executable release (either internal or external) 
encompassing larger and larger subsets of the final application. 

An internal release is kept within the development environment and ideally 
demonstrated to a representative portion of the stakeholder community. More 

significant external releases, typically for installation in the end-user environment, are 
also provided. External releases are much more expensive (they usually involve more 
ceremony and therefore more resources) and thus typically occur at important 
milestones. 

The end of an iteration marks a minor milestone. At this point, we assess technical 
results and revise future plans as necessary. 



Principles of Software Testing for Testers 

3 - 8  

Bringing It All Together: The Iterative Approach

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 8

Bringing It All Together: The Iterative Approach

Disciplines
group
activities
logically

In an
iteration,
you typically
address all
disciplines

 

This graphic illustrates how phases and iterations (the “dynamic” or time dimension 
of RUP) relate to the development activities described in the disciplines (the “static” 

dimension). Note that while the graphic simply provides an example of how RUP 
might be enacted, the relative size of the colored graphs gives a general indication of 
how much relative effort is spent for each process discipline in each phase/ iteration. 

Notice that with a few exceptions, each iteration involves activity in all disciplines, 
and that the relative amount of effort expended in each discipline changes between 
iterations. For instance, during late Construction, the main effort is related to 

Implementation, Test and Deployment with minimal effort expended on 
Requirements and Environment work.  

Note that in an iterative development process, requirements work is typically not 
“complete” early in the project lifecycle – requirements effort typically continues into 
late Construction. It is also common for the final analysis and design work for well-
understood portions of the system to be delayed until Construction – this can be 
supported because this incomplete design represents minimal unaddressed risk. 



 Module 3 - The RUP Test Discipline 

 3 - 9 

Overview of the Building Blocks of RUP

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Module 3 - Agenda

Overview of the software lifecycle in RUP
Overview of the building blocks of RUP
Roles in the Test Discipline
Workflow Details in the Test Discipline

 

Next, we’ll introduce the major static structural elements of RUP that are used to 
define the detailed and unique process elements. 



Principles of Software Testing for Testers 

3 - 10  

Overview of Rational Unified Process Concepts

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

Overview of Rational Unified Process Concepts

Role: A set of related
responsibilities that
may be assigned to an
individual or a team in
the development
organization

Activity: A unit
of work a Role
may be asked to
perform

Artifact: A piece
of information
that is produced,
modified, or used
by an Activity

 

A Role is an abstract definition of a set of related behavior and responsibilities that 
will be fulfilled by an individual, or a set of individuals working together as a team. 

An Activity is the smallest piece of work that is useful to define in terms of repeatable 
process. Dividing the work in this manner makes it easier to monitor development. A 
specific role is responsible for one or more Activities. 

Artifacts are the work products of enacting the process. They are produced in the 
course of developing the software product –Activities evolve, maintain, or make use 
of Artifacts as input. This includes the source code itself, as well as the models, 

documents, and other products of the lifecycle. The UML provides notation for 
representing many of the artifacts of the development process. 

Some other basic terminology in the Rational Unified Process:  

• Concepts – provide information which is important for understanding the 
workflow. 

• Guidelines – provides artifact guidelines with descriptive information about an 
artifact type, and work guidelines containing practical information about how to 
perform certain tasks. 

• Tool Mentors – offer support for software-engineering tools. 

• Checkpoints – provide a quick reference to help you assess the quality and 
completeness of an artifact. 

• Templates – a number of ready-to-use templates for certain artifacts are 
provided. 



 Module 3 - The RUP Test Discipline 

 3 - 11 

Roles Are Used for Resource Planning

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

Resource

Paul

Mary

Joe

Sylvia

Jane

Roles Are Used for Resource Planning

Each individual in
the project is
assigned to one or
more roles

Role

Architect

System Analyst

Requirements Specifier

Test Analyst

Tester

Activities

Identify Design Mechanisms

Find Actors and Use Cases

Detail a Use Case

Identify Test Ideas

Analyze FailureOne role can be
assigned to one or
more individuals

 

In developing a project plan, a project manager assigns the available individuals to 
roles according to their skills and abilities. The project manager assigns each 

individual on the project to one or more roles. The association of individuals to roles 
is dynamic over time.   

A project team member often fulfills many different roles. Roles are not individuals; 
instead, they describe how individuals behave in the business and what 
responsibilities these individuals have. 

An individual may act as several different roles during the same day.  We can 

informally call this “wearing several hats.” For example, Sylvia may be both a 
Requirements Specifier and a Test Analyst.  

Several individuals may act in the same role to perform a certain activity as a team. 
For example, Mary, Joe and Sylvia may all serve as Use-Case Specifiers. 

Artifacts are the responsibility of a single role, to help manage accountability. 
However, even though one role "owns" the artifact, different roles usually collaborate 
in evolving the artifact throughout its life. 



Principles of Software Testing for Testers 

3 - 12  

Roles in the Test Discipline

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

Module 3 - Agenda

Overview of the software lifecycle in RUP
Overview of the building blocks of RUP
Roles in the Test Discipline
Workflow Details in the Test Discipline

 

In this section, we introduce the test-related roles in the Rational Unified Process. 



 Module 3 - The RUP Test Discipline 

 3 - 13 

RUP Test Manager Role, Activities, and Artifacts

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

RUP Test Manager Role, Activities, and Artifacts

Test Manager Test Plan Test Evaluation
Summary

Test Manager
Agree Mission Identify Test

Motivators
Obtain

Testability
Commitment

Assess and
Advocate
Quality

Assess and
Improve Test

Effort

Activities:

Artifacts:

The Test Manager role is tasked with the overall
responsibility for the test effort's success.

 

The Test Manager role is tasked with the overall responsibility for the test effort's 
success. The role involves quality and test advocacy, resource planning and 

management, and resolution of issues that impede the test effort.  



Principles of Software Testing for Testers 

3 - 14  

RUP Test Analyst Role, Activities, and Artifacts

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

RUP Test Analyst Role, Activities, and Artifacts

Test Analyst
Identify Targets

of Test
Identify Test

Ideas
Define Test

Details
Define Assessment

and Traceability
Needs

Determine
Test Results

Test Analyst
Test Ideas

List
Test Case Workload

Analysis Model
Test Data Test Results

The Test Analyst role is responsible for initially identifying
and defining the required tests, and subsequently
evaluating the results of the test effort.

Activities:

Artifacts:

 

The Test Analyst role is responsible for initially identifying and defining the required 
tests, and subsequently evaluating the results of the test effort. This involves 

monitoring the test coverage and evaluating the perceived software quality 
experienced during testing. This role also involves specifying required Test Data.  

Sometimes this role may be referred to as the Test Designer, or considered part of the 
Tester role. 

The Test Analyst role is the primary role that this course focuses on. 



 Module 3 - The RUP Test Discipline 

 3 - 15 

RUP Test Designer Role, Activities, and Artifacts

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

RUP Test Designer Role, Activities, and Artifacts

Test Designer
Define Test
Approach

Define Test
Environment

Configurations

Identify
Testability

Mechanisms

Structure the
Test

Implementation

Define
Testability
Elements

Develop Test
Guidelines

Test Automation
Architecture

Test
Guidelines

Test Interface
Specification

Test Environment
Configuration

Test
Suite

Test Designer

The Test Designer role is responsible for defining the test
approach and ensuring its successful implementation.

Activities:

Artifacts:

 

The Test Designer role is responsible for defining the test approach and ensuring its 
successful implementation. The role involves identifying the appropriate techniques, 

tools and guidelines to implement the required tests, and to give guidance on the 
corresponding resources requirements for the test effort. 

Sometimes this role is referred to as the Test Architect, Test Automation Architect or 
Test Automation Specialist. 

Where test automation is being conducted, the Test Designer role plays an important 
part in the work required to successfully achieve automation. 

The Test Designer role is a secondary role that this course focuses on. 



Principles of Software Testing for Testers 

3 - 16  

RUP Tester Role, Activities, and Artifacts

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

RUP Tester Role, Activities, and Artifacts

Implement Test Implement Test
Suite

Execute Test
Suite

Analyze Test
FailureTester

Test
Scripts

Test LogTester

The Tester role is responsible for the core activities of the
test effort, which involves conducting the necessary tests
and logging the outcomes of that testing.

Activities:

Artifacts:

 

The Tester role is responsible for the core activities of the test effort, which involves 
conducting the necessary tests and logging the outcomes of that testing. 

Where test automation is being conducted, the Tester role plays a large part in the 
work required to successfully achieve automation. 

The Tester role is a secondary role that this course focuses on. 



 Module 3 - The RUP Test Discipline 

 3 - 17 

Workflow Details in the Test Discipline

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

Module 3 - Agenda

Overview of the software lifecycle in RUP
Overview of the building blocks of RUP
Roles in the Test Discipline
Workflow Details in the Test Discipline

 

In this section, we introduce collections of Roles, Activities and Artifacts that 
collaborate to achieve meaningful goals. 



Principles of Software Testing for Testers 

3 - 18  

Discipline Workflows Guide Iterative Development

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

Discipline Workflows Guide Iterative Development

Example Workflow:

Test

Example Workflow:

Requirements

 

Within a discipline, workflows sequence groups of activities that are done together 
into workflow details.  The Discipline workflows will be enacted to various levels of 

completeness, largely dependent on the lifecycle phase of the current iteration. 



 Module 3 - The RUP Test Discipline 

 3 - 19 

Discipline Workflows Sequence the Workflow Details

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Discipline Workflows Sequence the Workflow Details

Example Workflow Detail: Validate Build Stability

 

This graphic illustrates the high-level view of the Test Discipline Workflow. Each 
workflow detail on the workflow flowchart contains finer-grained process guidance, 

as shown in the example workflow detail diagram. 

The workflow detail diagram shows a set of activities that are often performed 
together to achieve a useful strategic objective. It also shows input and output 
artifacts (indicated with arrows), as well as the roles involved in conducting the work. 

We’ll briefly define the workflows in the next few slides, and will use them to 
structure the discussion in much of the rest of the class. 

Note that within an iterative development lifecycle, each of these areas of activity will 
typically be addressed to some degree within each iteration. 

Sometimes an area of activity will not require any work, in which case you will simply 
review it and verify that no work is required. In other situations, you may decide that 
entire areas of activity are not relevant in the context of the current iteration. 

Note: The remaining slides in this module are designed to give you some context for 
the content covered in the subsequent modules of this course. We will look at the 

work involved in each of these workflow details in much more detail during each 
subsequent module. For now, we just want to expose you to the range of work being 
done in an iteration of testing. 



Principles of Software Testing for Testers 

3 - 20  

The RUP Test Discipline Workflow

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

The RUP Test Discipline Workflow

Define Evaluation Mission
Identify the appropriate focus of
the test effort for the iteration.
Gain agreement with
stakeholders on the
corresponding goals that will
direct the test effort.

 

The purpose of this workflow detail is to: 

Identify the appropriate focus of the test effort for the iteration. 

Gain agreement with stakeholders on the corresponding goals that will direct the test 
effort. 

For each iteration, work is focused mainly on: 

• Identifying the objectives for, and deliverables of, the testing effort  

• Identifying a good resource utilization strategy  

• Defining the appropriate scope and boundary for the test effort  

• Outlining the approach that will be used  

• Defining how progress will be monitored and assessed. 



 Module 3 - The RUP Test Discipline 

 3 - 21 

The RUP Test Discipline Workflow

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

The RUP Test Discipline Workflow

Test and Evaluate
Achieve appropriate breadth and
depth of testing to enable a
sufficient evaluation of the
targeted test items.

 

The purpose of this workflow detail is to: 

Achieve appropriate breadth and depth of the test effort to enable a sufficient 

evaluation of the Target Test Items—where sufficient evaluation is governed by the 
Test Motivators and Evaluation Mission. Typically performed once per test cycle, this 
work involves performing the core tactical work of the test and evaluation effort: 
namely the implementation, execution and evaluation of specific tests and the 
corresponding reporting of incidents that are encountered. 

For each test cycle, this work is focused mainly on: 

• Providing ongoing evaluation and assessment of the Target Test Items  

• Recording the appropriate information necessary to diagnose and resolve any 

identified Issues  

• Achieving suitable breadth and depth in the test and evaluation work  

• Providing feedback on the most likely areas of potential quality risk 



Principles of Software Testing for Testers 

3 - 22  

The RUP Test Discipline Workflow

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

The RUP Test Discipline Workflow

Achieve Acceptable Mission
Deliver a useful evaluation result
to the stakeholders of the test
effort.
Actively prioritize the test work
that remains to be conducted.

 

The purpose of this workflow detail is to: 

Deliver a useful evaluation result to the stakeholders of the test effort—where useful 

evaluation result is assessed in terms of the Evaluation Mission. In most cases that will 
mean focusing your efforts on helping the project team achieve the Iteration Plan 
objectives that apply to the current test cycle. 

For each test cycle, this work is focused mainly on: 

• Actively prioritizing the minimal set of necessary tests that must be conducted to 

achieve the Evaluation Mission  

• Advocating the resolution of important issues that have a significant negative 

impact on the Evaluation Mission  

• Advocating appropriate quality  

• Identifying regressions in quality introduced between test cycles  

• Where appropriate, revising the Evaluation Mission in light of the evaluation 

findings so as to provide useful evaluation information to the project team 



 Module 3 - The RUP Test Discipline 

 3 - 23 

The RUP Test Discipline Workflow

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 23

The RUP Test Discipline Workflow

Verify Test Approach
Demonstrate the techniques
outlined in the Test Approach
will support the required testing.
Verify that the approach will
work, produce accurate results
and is appropriate for the
available resources.

 

The purpose of this workflow detail is to: 

Show that the various techniques outlined in the Test Approach will facilitate the 

required testing. Verify by demonstration that the approach works, will produce 
accurate results and is appropriate for the available resources. 

The objective is to gain an understanding of the constraints and limitations of each 
technique, and to either find an appropriate implementation solution for each 
technique or find alternative techniques that can be implemented. This helps to 
mitigate the risk of discovering too late in the project life-cycle that the test approach 

is unworkable. 

For each iteration, this work is focused mainly on: 

• Early verification that the intended Test Approach will work and produces results 

of value  

• Establishing the basic infrastructure to enable and support the Test Approach  

• Obtaining commitment from the development team to provide and support the 

required testability to achieve the Test Approach  

• Identifying the scope, boundaries, limitations and constraints of each technique 



Principles of Software Testing for Testers 

3 - 24  

The RUP Test Discipline Workflow

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 24

The RUP Test Discipline Workflow

Validate Build Stability
Validate that the build is stable
enough for detailed test and
evaluation work to begin.

 

The purpose of this workflow detail is to: 

Validate that the build is stable enough for detailed test and evaluation effort to 

begin. This work helps to prevent the waste of test resources on a futile testing effort. 

For each build to be tested, this work is focused on: 

• Assessing the stability and testability of the build  

• Gaining an initial understanding—or confirming the expectation—of the 
development work delivered in the build  

• Deciding to accept the build as suitable for use—guided by the evaluation 

mission—in further testing, or to conduct further testing against a previous build. 

This work is also referred to as a smoke test, build verification test, build regression 
test, sanity check or acceptance into testing. 



 Module 3 - The RUP Test Discipline 

 3 - 25 

The RUP Test Discipline Workflow

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 25

The RUP Test Discipline Workflow

Improve Test Assets
Maintain and improve the
evolving test assets.

(e.g. Maintain test suites and
test data; harvest test-ideas
into catalogs; clarify change
request details)

The purpose of this workflow detail is to: 

Maintain and improve the test assets. This is important especially if the intention is to 

reuse the assets developed in the current test cycle in subsequent test cycles. 

For each test cycle, this work is focused mainly on: 

• Adding the minimal set of additional tests to validate the stability of subsequent 

Builds  

• Assembling Test Scripts into additional appropriate Test Suites  

• Removing test assets that no longer serve a useful purpose or have become 

uneconomic to maintain  

• Maintaining Test Environment Configurations and Test Data sets  

• Exploring opportunities for reuse and productivity improvements  

• Conducting general maintenance of and making improvements to the 
maintainability of test automation assets  

• Documenting lessons learned—both good and bad practices discovered during 
the test cycle. 



Principles of Software Testing for Testers 

3 - 26  

Module 3 - Review

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 26

Module 3 - Review

Presents an iterative testing process
Is Scalable and Customizable
Is designed for Flexibility

The RUP Test Discipline:

 

The RUP Test Discipline presents a process and set of recommended practices to 
guide your testing effort. Unlike traditional waterfall testing process, RUP advocates 
an iterative approach to testing. Iterative testing allows you to: 

• Mitigate high risks earlier in the development process  

• Focus your resources when and where they can have the most impact  

• Maximize your effectiveness by adapting your approach, process, or assets as you 

go 

The RUP Test Discipline is designed to be flexible and adaptable. Its process 
framework can support different sized organizations, and its recommended approach 

can be adapted to formal or informal testing styles within an organization. 

A key focus of the Test Discipline is on maximizing the effectiveness of an 
organization’s testing efforts. 

 


