
Principles of Software Testing for
Testers

Module 4: Define Evaluation Mission

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Module 4 Agenda

 Definition of the workflow:
Define Evaluation Mission
 Defining the mission of the test group
 Defining the goal for test documentation

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

Review: Where We’ve Been

 In the introductory module
we discussed the concepts
of quality and test ideas

 In the last module, we
introduced some of the
basic elements in the RUP
Test content

 We’ll use those basic RUP
elements throughout the
remainder of the course to
help provide context for
what we’ll learn.

I/O
A A 9 9 9 9

A A 9 A 9 9
A 9 9 9 9 9
A A 9 A 9 9

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Define Evaluation Mission

 In this module, we begin
with the workflow detail
Define Evaluation Mission

 The Mission focuses on
the high-level objectives of
the test team for the
current iteration
 What things should motivate

us to test?
 Why these things (and not

others)?

Presenter
Presentation Notes
The purpose of this workflow detail is to:Identify the appropriate focus of the test effort for the iteration.Gain agreement with stakeholders on the corresponding goals that will direct the test effortFor each iteration, work is focused mainly on:Identifying the objectives for, and deliverables of, the testing effort Identifying a good resource utilization strategy Defining the appropriate scope and boundary for the test effort Outlining the approach that will be used Defining how progress will be monitored and assessed.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

Define Evaluation Mission
 This module focuses

on the activities that
capture the goals of
our testing efforts.

 We will look at
different Missions
that test teams use,
and consider the
implications on the
corresponding Test
Approach those
teams take.

 These are the
activities that create
the Test Plan.

Presenter
Presentation Notes
Here are the roles, activities and artifacts RUP focuses on in this work.In earlier modules, we discussed how identifying test ideas is a useful way to reason about tests early in the lifecycle without needing to completely define each specific test. We also looked at some of the basic elements that are used to define the Rational Unified Process.In this module we’ll look at a how different test teams need to use different evaluation missions, depending on their specific context.In the next module, we’ll talk more about applying different techniques in our tests effort.Note that diagram shows some light shaded elements: these are additional testing elements that RUP provides guidance for which not covered directly in this course. You can find out more about these elements by consulting RUP directly.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Module 4 Agenda

 Definition of the workflow:
Define Evaluation Mission
 Defining the mission of the test group
 Defining the goal for test documentation

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

Exercise 4.1: Which Group is Better?

 Found pre-
release

Function A 100
Function B 0
Function C 0
Function D 0
Function E 0
Total 100

Function A 50
Function B 6
Function C 6
Function D 6
Function E 6
Total 74

Two groups test the
same program.
• The functions are

equally important
• The bugs are

equally significant

Testing Group 1

Testing Group 2

From Marick,
Classic Testing
Mistakes

Presenter
Presentation Notes
Imagine giving the same product to two completely independent test groups. The product has lots of functions, but you pick out five that you consider the most important:These 5 functions are equally important.You expect that on average, the bugs found in any one of the functions will be as serious or significant as bugs found in the others.Test Group 1 starts with a broad test, trying all the functions with easy values. No obvious bugs show up in Functions B, C, D or E, but Function A is clearly broken from the start.Over the next few weeks, Test Group 1 keeps testing the program. Their goal is to find lots of bugs. They spend a little more time on Functions B, C, D and E, but primarily focus on Function A, where it is all too easy to find bugs. Test Group 1 never finds any bug in Function B, C, D, or E, but they find 100 in Function A.Test Group 2 starts with essentially the same broad test and finds the same result. Function A appears to be full of bugs. As to B, C, D, and E, no obvious bugs show up in the first round of testing.Test Group 2 follows a different testing strategy. They do a lot more testing of B, C, D, and E – even though they don’t find as many bugs in these functions, because they want to achieve a certain baseline level of coverage. As a result, they find only 50 bugs in A and a few bugs in B, C, D, and E.WHICH IS THE BETTER TESTING GROUP?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Exercise 4.2: Which Group is Better?

 Found pre-
release

Found
later

Total

Function A 100 0 100
Function B 0 12 12
Function C 0 12 12
Function D 0 12 12
Function E 0 12 12
Total 100 48 148

Function A 50 50 100
Function B 6 6 12
Function C 6 6 12
Function D 6 6 12
Function E 6 6 12
Total 74 74 148

Presenter
Presentation Notes
Here’s some more data.The company shipped the product. Six months later, we look at customer support call data and we see a bunch of new bugs found by customers.The first group found all the bugs in Function A but missed 48 bugs in B,C, D and E. The second group found half the bugs of each function.The first group found 100 of the 148 bugsThe second group found 74 of the 148 bugs, but they were more evenly distributed across functions.WHICH GROUP IS BETTER? WHY?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

So? Purpose of Testing?

 The typical testing group has two key
priorities.

 Find the bugs (preferably in priority order).
 Assess the condition of the whole product

(as a user will see it).

 Sometimes, these conflict
 The mission of assessment is the underlying

reason for testing, from management’s
viewpoint. But if you aren’t hammering hard on
the program, you can miss key risks.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

Missions of Test Groups Can Vary

 Find defects
 Maximize bug count
 Block premature product releases
 Help managers make ship / no-ship decisions
 Assess quality
 Minimize technical support costs
 Conform to regulations
 Minimize safety-related lawsuit risk
 Assess conformance to specification
 Find safe scenarios for use of the product (find

ways to get it to work, in spite of the bugs)
 Verify correctness of the product
 Assure quality

Presenter
Presentation Notes
Even if the test group has an overall mission, its objectives will vary over the life of the project. For example, a group whose primary role was defect-hunting through most of the project might be expected to provide quality evaluations as the project gets closer to its planned release date.It is important for the test group to decide its guiding objectives for each iteration, and to reassess these as part of the preparation for each iteration.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

Exercise 4.3: What Is Your Mission?

 Pick a company and a product
Probably your own
 If you don’t want to use your current one, pick

one everyone knows
 Form project teams
What’s the test mission?

Presenter
Presentation Notes
Optional Exercise

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

A Different Take on Mission: Public vs. Private Bugs

 A programmer’s public bug rate includes all
bugs left in the code at check-in.
 A programmer’s private bug rate includes

all the bugs that are produced, including the
ones fixed before check-in.
 Estimates of private bug rates have ranged

from 15 to 150 bugs per 100 statements.
What does this tell us about our task?

Presenter
Presentation Notes
A programmer’s public bug rate includes all bugs left in the code when it is given to someone else (such as a tester.) Rates of one bug per hundred statements are not unusual, and several programmers’ rates are higher (such as three bugs per hundred).A programmer’s private bug rate includes all the bugs that are produced, including the ones already fixed before passing the program to testing.Estimates of private bug rates have ranged from 15 to 150 bugs per 100 statements. Therefore, programmers must be finding and fixing between 80% and 99.3% of their own bugs before their code goes into test. (Even the sloppy ones find and fix a lot of their own bugs.)What does this tell us about our task?It says that we’re looking into the programmer’s (and tools’) blind spots. Merely repeating the types of tests that the programmers did won’t yield more bugs. That’s one of the reasons that an alternative approach is so valuable.Conclusion: Unless the tester's methods are different from the programmer's, the tester will be going over already well tested grounds.�

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

Defining the Test Approach

 The test approach (or “testing strategy”)
specifies the techniques that will be used to
accomplish the test mission.
 The test approach also specifies how the

techniques will be used.
 A good test approach is:
Diversified
Risk-focused
Product-specific
Practical
Defensible

Presenter
Presentation Notes
Diversified. Include a variety of techniques. Each technique is tailored to expose certain types of problems, and is virtually blind to others. Combining them allows you to find problems that would be hard to find if you spent the same resource on a narrower collection of techniques.Risk-focused. Tests give you the opportunity to find defects or attributes of the software that will disappoint, alienate, or harm a stakeholder. You can’t run all possible tests. To be efficient, you should think about the types of problems that are plausibly in this product or that would make a difference if they were in this product, and make sure that you test for them.Product-specific. Generic test approaches don’t work. Your needs and resources will vary across products. The risks vary across products. Therefore the balance of investment in different techniques should vary across products.Practical. There’s no point defining an approach that is beyond your project’s capabilities (including time, budget, equipment, and staff skills). For example, you won’t be likely to succeed if you try to build a fully automated test plan if you have a team full of non-programmers. Defensible. Can you explain and justify the work that you are doing? Does your approach allow you to track and report progress and effectiveness? If you can’t report or justify your work, are you likely to be funded as well as you need?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

Heuristics for Evaluating Testing Approach

 James Bach collected a series of heuristics
for evaluating your test approach. For
example, he says:
 Testing should be optimized to find important

problems fast, rather than attempting to find all
problems with equal urgency.

 Please note that these are heuristics – they
won’t always the best choice for your
context. But in different contexts, you’ll find
different ones very useful.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

Module 4 Agenda

 Definition of the workflow:
Define Evaluation Mission
 Defining the mission of the test group
 Defining the goal for test documentation

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

What Test Documentation Should You Use?

 Test planning standards and templates
Examples
Some benefits and costs of using IEEE-829

standard based templates
When are these appropriate?

 Thinking about your requirements for test
documentation
Requirements considerations
Questions to elicit information about test

documentation requirements for your project

Presenter
Presentation Notes
IEEE Standard 829 for software test documentation is a standard initially published by the Institute for Electrical and Electronics Engineers (1983) and later approved by the American National Standards Institute.The standard describes a wide range of types of information that can be included in test documentation. For examples, see the next slide.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

IEEE Standard 829 for Software Test Documentation

 Test plan
 Test-design specification
 Test-case specification
 Test-case specification identifier
 Test items
 Input specifications
 Output specifications
 Environmental needs
 Special procedural requirements
 Intercase dependencies

 Test-procedure specification
 Test-item transmittal report
 Test-log

We often see
one or more
pages per
test case.

Presenter
Presentation Notes
In the course text, Lessons Learned in Software Testing, there are two conflicting lessons: Lesson 145: Use the IEEE Standard 829 for test documentation.Lesson 146: Don't use the IEEE Standard 829.These two lessons contrast circumstances under which the standard is appropriate and under which it is not. A critical point to recognize here is that test documentation is not free and can be very expensive.It is common to see a full page of documentation for a simple test case and many pages for complex test cases. It probably takes 1 to 8 hours to write a page of test documentation (Technical writers take about 8 hours per page on software user manuals, when you include the research, writing formatting and editing time. For more on the productivity of tech writers, see JoAnn Hackos, Managing Your Documentation Projects, Wiley.)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Considerations for IEEE 829

 What is the documentation cost per test case?
 What is the maintenance cost of the

documentation, per test case?
 If software design changes create documentation

maintenance costs, how much inertia do we build
into our system? How much does extensive test
documentation add to the cost of late
improvement of the software? How much should
we add?

 What inertia is created in favor of invariant
regression testing?

 Is this incompatible with exploratory testing? Do
we always want to discourage exploration?

Presenter
Presentation Notes
Some other questions to consider are:What is the impact on high-volume test automation? If the documentation cost per test case is high, how can you afford to create a multi-million test case project?How often do project teams start to follow 829 but then give it up mid-project? What does this do to the net quality of the test documentation and test planning effort?What requirements are filled by following a template based on 829?Which stakeholders gain a net benefit from IEEE standard documentation?What benefits do they gain and why are those benefits important to them?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

Requirements for Test Documentation

 There are many different notions of what a good
set of test documentation would include. Before
spending a substantial amount of time and
resources, it’s worth asking what documentation
should be developed (and why?)

 Test documentation is expensive and it takes a
long time to produce. If you figure out some of
your main requirements first, you might be able to
do your work in a way that achieves them.

Presenter
Presentation Notes
Lessons Learned in Software Testing provides 18 questions (page 136-140) that you can use to guide your analysis of your test documentation requirements. We’ll consider one example on the next slide.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

Test Docs Requirements Questions

 Is your test documentation a product or
a tool?
A product is something that you give to

someone else to use. They pay for it. You will
probably follow whatever standard they request,
subject to their willingness to pay for it.
 In contrast, if the documentation is merely an in-

house tool, it doesn't have to be any more
complete, more organized, or more tidy than the
minimum you need to help you meet your
objectives.

Presenter
Presentation Notes
Here are some additional examples:Is software quality driven by legal issues or by market forces?How quickly is the design changing?How quickly does the design specification change to reflect design change?Is testing approach oriented toward proving conformance to specs or nonconformance with customer expectations?Does your testing style rely more on already-defined tests or on exploration?Should test docs focus on what to test (objectives) or on how to test for it (procedures)?Should the docs ever control the testing project?If the documentation controls parts of the testing project, should that control come early or late in the project?Who are the primary readers of these test documents and how important are they?How much traceability do you need? What documents (specifications or requirements) are you tracing back to and who controls them?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

Write a Purpose Statement for Test Documentation

 Try to describe your core documentation
requirements in one sentence that doesn’t
have more than three components.
 Examples:
 The test documentation set will primarily

support our efforts to find bugs in this version,
to delegate work, and to track status.
 The test documentation set will support ongoing

product and test maintenance over at least 10
years, will provide training material for new
group members, and will create archives
suitable for regulatory or litigation use.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 23

Exercise 4.4: Purpose for Your Test Documentation?

 Use the company and product from Ex. 4.3
 Reform project teams
What’s the test documentation goal?

Presenter
Presentation Notes
Optional ExerciseRegroup into your project teams and take ten minutes to discuss the exercise. Write down the answer, so you can share it with the group.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 24

Review: Define Evaluation Mission

What is a Test Mission?
What is your Test Mission?
What makes a good Test Approach (Test

Strategy)?
What is a Test Documentation Mission?
What is your Test Documentation Goal?

	Slide Number 1
	Module 4 Agenda
	Review: Where We’ve Been
	Define Evaluation Mission
	Define Evaluation Mission
	Module 4 Agenda
	Exercise 4.1: Which Group is Better?
	Exercise 4.2: Which Group is Better?
	So? Purpose of Testing?
	Missions of Test Groups Can Vary
	Exercise 4.3: What Is Your Mission?
	A Different Take on Mission: Public vs. Private Bugs
	Defining the Test Approach
	Heuristics for Evaluating Testing Approach
	Module 4 Agenda
	What Test Documentation Should You Use?
	IEEE Standard 829 for Software Test Documentation
	Considerations for IEEE 829
	Requirements for Test Documentation
	Test Docs Requirements Questions
	Write a Purpose Statement for Test Documentation
	Exercise 4.4: Purpose for Your Test Documentation?
	Review: Define Evaluation Mission

