
5 - 1

Module 5
Test and Evaluate

Principles of Software Testing for
Testers

Module 5: Test & Evaluate

Topics

Agenda ...5-2

Test and Evaluate Workflow: Test..5-4

Defining Test Techniques ..5-6

Individual Techniques ...5-13

Using Techniques Together ...5-64

How To Adopt New Techniques/Review ...5-68

Principles of Software Testing for Testers

5 - 2

Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques—the primary types and
styles of functional testing
Individual techniques
Using techniques together

In the next module:
Analyze test failures
Report problems

 Module 5 - Test and Evaluate

 5 - 3

Review: Where We’ve Been

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

Review: Where We’ve Been

In the last module, we
covered the workflow detail
Define Evaluation Mission
The Mission focuses on the
high-level objectives of the
test team for the current
iteration

What things should motivate
us to test?
Why these things (and not
others)?

Principles of Software Testing for Testers

5 - 4

Test and Evaluate Workflow: Test

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Test and Evaluate – Part One: Test

In this module, we drill into
Test and Evaluate
This addresses the “How?”
question:

How will you test those
things?

The purpose of this workflow detail is to achieve appropriate breadth and depth of
the test effort to enable a sufficient evaluation of the Target Test Items — where
sufficient evaluation is governed by the Test Motivators and Evaluation Mission.

For each test cycle, this work is focused mainly on:

• Achieving suitable breadth and depth in the test and evaluation work

This is the heart of the test cycle, doing the testing itself and analyzing the results.

 Module 5 - Test and Evaluate

 5 - 5

Test and Evaluate – Part One: Test

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

Test and Evaluate – Part One: Test
This module focuses
on the activity
Implement Test
Earlier, we covered
Test-Idea Lists, which
are input here
In the next module,
we’ll cover Analyze
Test Failures, the
second half of Test
and Evaluate

Here are the roles, activities and artifacts RUP focuses on in this work.

In earlier modules, we discussed how identifying test ideas is a useful way to reason

about tests early in the lifecycle without needing to completely define each specific
test.

In this module we’ll look at a selection of techniques that can be used to apply those
test ideas.

In the next module, we’ll talk more about evaluating the output of the tests that have
been run.

Note that diagram shows some grayed-out elements: these are additional testing
elements that RUP provides guidance for which not covered directly in this course.
You can found out more about these elements by consulting RUP directly.

Principles of Software Testing for Testers

5 - 6

Defining Test Techniques

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques
Using techniques together

 Module 5 - Test and Evaluate

 5 - 7

Review: Defining the Test Approach

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

Review: Defining the Test Approach

In Module 4, we covered Test Approach
A good test approach is:

Diversified
Risk-focused
Product-specific
Practical
Defensible

The techniques you apply should follow
your test approach

In Module 4, we discussed Test Approach and mentioned techniques. Here we’ll
drill into the techniques that you might use.

Principles of Software Testing for Testers

5 - 8

Discussion Exercise 5.1: Test Techniques

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 8

Discussion Exercise 5.1: Test Techniques

There are as many as 200 published testing
techniques. Many of the ideas are
overlapping, but there are common themes.
Similar sounding terms often mean different
things, e.g.:

User testing
Usability testing
User interface testing

What are the differences among these
techniques?

 Module 5 - Test and Evaluate

 5 - 9

Dimensions of Test Techniques

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Dimensions of Test Techniques

Think of the testing you do in terms of five
dimensions:

Testers: who does the testing.
Coverage: what gets tested.
Potential problems: why you're testing (what
risk you're testing for).
Activities: how you test.
Evaluation: how to tell whether the test passed
or failed.

Test techniques often focus on one or two
of these, leaving the rest to the skill and
imagination of the tester.

Examples of the dimensions:

1. Testers: User testing is focused on testing by members of your target market,
people who would normally use the product.

2. Coverage: User interface testing is focused on the elements of the user interface,
such as the menus and other controls. Focusing on this testing involves testing
every UI element.

3. Potential problems: Testing for usability errors or other problems that would
make people abandon the product or be unhappy with it.

4. Activities: Exploratory testing.

5. Evaluation: Comparison to a result provided by a known good program, a test

oracle.

Functional testing is roughly synonymous with “behavioral testing” or “black box”
testing. The fundamental idea is that your testing is focused on the inputs that you
give the program and the responses you get from it. A wide range of techniques fit
within this general approach.

Principles of Software Testing for Testers

5 - 10

Test Techniques—Dominant Test Approaches

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

Test Techniques—Dominant Test Approaches

Of the 200+ published Functional Testing
techniques, there are ten basic themes.
They capture the techniques in actual practice.
In this course, we call them:

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

No one uses all of these techniques. Some companies focus primarily on one of them
(different ones for different companies). This is too narrow—problems that are easy to

find under one technique are much harder to find under some others.

We’ll walk through a selection of techniques, trying to get a sense of what it’s like to
analyze a system through the eyes of a tester who focuses on one or another of these
techniques.

You might be tempted to try to add several of these approaches to your company’s
repertoire at the same time. That may not be wise. You might be better off adding

one technique, getting good at it, and then adding the next. Many highly effective
groups focus on a few of these approaches, perhaps four, rather than trying to be
excellent with all of them.

 Module 5 - Test and Evaluate

 5 - 11

“So Which Technique Is the Best?”

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

“So Which Technique Is the Best?”

Testers
Coverage

Potential problems
Activities

Evaluation

Technique A

Technique B

Technique C

Technique E

Technique F

Technique G

Technique H

Each has
strengths and
weaknesses

Think in
terms of
complement

There is no
“one true way”

Mixing
techniques
can improve
coverage

Technique D

Principles of Software Testing for Testers

5 - 12

Apply Techniques According to the LifeCycle

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

Inception Elaboration Construction Transition

Apply Techniques According to the LifeCycle

Test Approach changes over the project
Some techniques work well in early phases;
others in later ones
Align the techniques to iteration objectives

A limited set of focused tests Many varied tests

A few components of software under test Large system under test

Simple test environment Complex test environment

Focus on architectural & requirement risks Focus on deployment risks

In Module 3, we introduced the concept of RUP phases and iterations within the
phases. In considering and planning test techniques for an iteration, it is important to

look at the techniques according to several characteristics.

The techniques that are appropriate in early iterations may lose their effectiveness in
later iterations, when the software under test is more robust. Similarly, techniques
that are useful in late iterations may be inefficient if applied too early.

 Module 5 - Test and Evaluate

 5 - 13

Individual Techniques

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Principles of Software Testing for Testers

5 - 14

At a Glance: Function Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

At a Glance: Function Testing

SimpleComplexity

Black box unit testingTag line

Any stageSUT readiness

VariesHarshness

Whatever worksEvaluation

Whatever worksActivities

A function does not work in isolationPotential problems

Each function and user-visible variableCoverage

AnyTesters

Test each function thoroughly, one at a
time.Objective

 Module 5 - Test and Evaluate

 5 - 15

Strengths & Weaknesses: Function Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

Strengths & Weaknesses: Function Testing

Representative cases
Spreadsheet, test each item in isolation.
Database, test each report in isolation

Strengths
Thorough analysis of each item tested
Easy to do as each function is implemented

Blind spots
Misses interactions
Misses exploration of the benefits offered by the
program.

Some function testing tasks:

• Identify the program’s features / commands

• From specifications or the draft user manual

• From walking through the user interface

• From trying commands at the command line

• From searching the program or resource files for command names

• Identify variables used by the functions and test their boundaries.

• Identify environmental variables that may constrain the function under test.

• Use each function in a mainstream way (positive testing) and push it in as many
ways as possible, as hard as possible.

Many companies use a function testing approach early in testing, to check
whether the basic functionality of the program is present and reasonably stable.

Take Home Exercise (~1 Hour)

1. Agree on a familiar part of a familiar program for everyone to use (e.g. the Bullets
and Numbering command in MS Word).

2. Break into pairs, with one computer per pair.

3. Go through the function testing tasks above and make notes.

4. Photocopy your notes, share with other teams and discuss.

Principles of Software Testing for Testers

5 - 16

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

 Module 5 - Test and Evaluate

 5 - 17

At a Glance: Equivalence Analysis (1/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

At a Glance: Equivalence Analysis (1/2)

Partitioning, boundary analysis, domain
testingTag line

Data, configuration, error handlingPotential problems

All data fields, and simple combinations
of data fields. Data fields include input,
output, and (to the extent they can be
made visible to the tester) internal and
configuration variables

Coverage

AnyTesters

There are too many test cases to run.
Use stratified sampling strategy to
select a few test cases from a huge
population.

Objective

Glenford J. Myers described equivalence analysis in The Art of Software Testing
(1979). It is an essential technique in the arsenal of virtually every professional tester.

To quote from RUP:

Equivalence partitioning is a technique for reducing the required number of
tests. For every operation, you should identify the equivalence classes of the
arguments and the object states. An equivalence class is a set of values for which
an object is supposed to behave similarly. For example, a Set has three
equivalence classes: empty, some element, and full.

Principles of Software Testing for Testers

5 - 18

At a Glance: Equivalence Analysis (2/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

At a Glance: Equivalence Analysis (2/2)

SimpleComplexity

Any stageSUT readiness

Designed to discover harsh single-variable
tests and harsh combinations of a few
variables

Harshness

Determined by the dataEvaluation

Divide the set of possible values of a field into
subsets, pick values to represent each subset.
Typical values will be at boundaries. More
generally, the goal is to find a “best
representative” for each subset, and to run
tests with these representatives.
Advanced approach: combine tests of several
“best representatives”. Several approaches to
choosing optimal small set of combinations.

Activities

Prof. Kaner draws this comparison:

Public opinion polls like Gallup apply the method of stratified sampling.
Pollsters can call up 2000 people across the US and predict with some accuracy
the results of the election. It’s not a random sample. They subdivide the
population into equivalence classes. It’s not just people who make lots of money,
people who make a fair amount of money, people who don’t make quite as
much, and people who really should make a lot more. That’s one dimension, but
we also have where people live, what their gender is, what their age is, what
their race is, and what kind of car they drive as other variables. But we end up
picking somebody who is a point on many different places – this kind of car, that
age, and so forth, and we say they represent a bunch of other people who have
this kind of car or this kind of income group, and so forth. What you want as a
representative -- the best representative from the point of view of pollsters -- is
the most typical representative, the one who would vote the way most of them
would vote.

They’re dividing the world 3 or 4 or 5 dimensionally, but they still end up with
equivalence classes. And then they call up their list of 2000 great representatives
and weight them according to how often that subgroup fits into the population
and then predict on what these folks say what the whole subgroup would do.
They actually take more than one representative from each subgroup just in case.

That’s called stratified sampling. You divide your population into different strata,
into different layers, and you make sure you sample from each one. We’re doing
stratified sampling when we do equivalence class analysis. These strata are just
equivalence classes. The core difference between testing and Gallup-poll-type
sampling is that, when we pick somebody in this case, we’re not looking for the
test case that is most like everybody else, we’re looking for the one most likely to
show a failure.

 Module 5 - Test and Evaluate

 5 - 19

Strengths & Weaknesses: Equivalence Analysis

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Strengths & Weaknesses: Equivalence Analysis

Representative cases
Equivalence analysis of a simple numeric field.
Printer compatibility testing (multidimensional variable,
doesn’t map to a simple numeric field, but stratified
sampling is essential)

Strengths
Find highest probability errors with a relatively small set
of tests.
Intuitively clear approach, generalizes well

Blind spots
Errors that are not at boundaries or in obvious special
cases.
The actual sets of possible values are often
unknowable.

Some of the Key Tasks

If you wanted to practice your domain testing skills, here are things that you would
practice:

• Partitioning into equivalence classes

• Discovering best representatives of the sub-classes

• Combining tests of several fields

• Create boundary charts

• Find fields / variables / environmental conditions

• Identify constraints (non-independence) in the relationships among variables.

Ideas for Exercises

• Find the biggest / smallest accepted value in a field

• Find the biggest / smallest value that fits in a field

• Partition fields

• Read specifications to determine the actual boundaries

• Create boundary charts for several variables

• Create standard domain testing charts for different types of variables

• For finding variables, see notes on function testing

Further reading

The classic issue with Equivalence Analysis is combinatorial explosion – you get too
many test cases. One technique worth learning for reducing the combinations is All

Pairs. See Lessons Learned, pp. 52-58.

Principles of Software Testing for Testers

5 - 20

Optional Exercise 5.2: GUI Equivalence Analysis

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

Optional Exercise 5.2: GUI Equivalence Analysis

Pick an app that you know and some dialogs
MS Word and its Print, Page setup, Font format dialogs

Select a dialog
Identify each field, and for each field
• What is the type of the field (integer, real, string, ...)?
• List the range of entries that are “valid” for the field
• Partition the field and identify boundary conditions
• List the entries that are almost too extreme and too

extreme for the field
• List a few test cases for the field and explain why the

values you chose are the most powerful
representatives of their sets (for showing a bug)

• Identify any constraints imposed on this field by other
fields

Optional Exercise

 Module 5 - Test and Evaluate

 5 - 21

Optional Exercise 5.3: Data Equivalence

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

Optional Exercise 5.3: Data Equivalence

The program reads three integer values
from a card. The three values are
interpreted as representing the lengths of
the sides of a triangle. The program prints a
message that states whether the triangle is
scalene, isosceles, or equilateral.

From Glenford J. Myers, The Art of Software Testing (1979)

Write a set of test cases that would
adequately test this program.

Optional Exercise

Myers’ Triangle is probably the best known example of an equivalence problem. It is
typical of the cases one would examine for pure data analysis.

It is also characteristic of the analysis you would do for API testing, where a function
takes a certain number of arguments and issues a return value.

Principles of Software Testing for Testers

5 - 22

Exercise 5.3: Myers’ Answers

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

Exercise 5.3: Myers’ Answers

Test case for a valid scalene triangle
Test case for a valid equilateral triangle
Three test cases for valid isosceles triangles

(a=b, b=c, a=c)
One, two or three sides has zero value (5 cases)
One side has a negative
Sum of two numbers equals the third (e.g. 1,2,3)

Invalid b/c not a triangle (tried with 3 permutations
a+b=c, a+c=b, b+c=a)

Sum of two numbers is less than the third
(e.g. 1,2,4) (3 permutations)

Non-integer
Wrong number of values (too many, too few)

List 10 tests that you’d run that aren’t in Myers’ list:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

 Module 5 - Test and Evaluate

 5 - 23

Optional Exercise 5.4: Numeric Range with Output

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 23

Optional Exercise 5.4: Numeric Range with Output

The program:
K = I * J
I, J and K are integer variables

Write a set of test cases that would
adequately test this program

Optional Exercise

This is a typical case with a broad range of values with issues of data type. It is
applicable for testing at the GUI or the API.

Principles of Software Testing for Testers

5 - 24

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 24

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

 Module 5 - Test and Evaluate

 5 - 25

At a Glance: Specification-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 25

At a Glance: Specification-Based Testing

Depends on the specComplexity

AnyTesters

Verify every claimTag line

As soon as modules are availableSUT readiness
Depends on the specHarshness

Does behavior match the spec?Evaluation

Write & execute tests based on the spec’s.
Review and manage docs & traceability

Activities

Mismatch of implementation to specPotential
problems

Documented reqts, features, etc.Coverage

Check conformance with every statement in
every spec, requirements document, etc.

Objective

Common Tasks in Spec-Driven Testing

• Review specifications for

• Ambiguity

• Adequacy (it covers the issues)

• Correctness (it describes the program)

• Content (not a source of design errors)

• Testability support

• Create traceability matrices

• Document management (spec versions, file comparison utilities for comparing
two spec versions, etc.)

• Participate in review meetings

Ideas for Mixing Techniques

Medical device and software makers provide an interesting example of a mixed
strategy involving specification-based testing. The Food and Drug Administration
requires that there be tests for every claim made about the product. Those tests are
normally documented in full detail, and often automated.

However, this is a minimum set, not the level of testing most companies use. Even if
the product meets FDA standards, it may be unsafe. The company will therefore run
many additional tests, often exploratory. These don’t have to be reported to the FDA
unless they expose defects. (In which case, the tests are probably added to the
regression test suite.)

Principles of Software Testing for Testers

5 - 26

Strengths & Weaknesses: Spec-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 26

Strengths & Weaknesses: Spec-Based Testing

Representative cases
Traceability matrix, tracks test cases associated with
each specification item.
User documentation testing

Strengths
Critical defense against warranty claims, fraud charges,
loss of credibility with customers.
Effective for managing scope / expectations of
regulatory-driven testing
Reduces support costs / customer complaints by
ensuring that no false or misleading representations are
made to customers.

Blind spots
Any issues not in the specs or treated badly in the
specs /documentation.

Some of the Skills Involved in Spec-Based Testing

• Understand the level of generality called for when testing a spec item. For

example, imagine a field X:

• We could test a single use of X

• Or we could partition possible values of X and test boundary values

• Or we could test X in various scenarios

• Which is the right one?

• Ambiguity analysis

• Richard Bender teaches this well. If you can’t take his course, you can find
notes based on his work in Rodney Wilson’s Software RX: Secrets of
Engineering Quality Software

• Another book provides an excellent introduction to the ways in which

statements can be ambiguous and provides lots of sample exercises: Cecile
Cyrul Spector, Saying One Thing, Meaning Another : Activities for Clarifying
Ambiguous Language

 Module 5 - Test and Evaluate

 5 - 27

Traceability Tool for Specification-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 27

Traceability Tool for Specification-Based Testing

XXTest 6

XXTest 5

XXTest 4

XXXTest 3

XXTest 2

XXXTest 1

Stmt 5Stmt 4Stmt 3Stmt 2Stmt 1

The Traceability Matrix

The traceability matrix is a useful chart for showing what variables (or functions or
specification items) are covered by what tests.

• The columns can show any type of test item, such as a function, a variable, an
assertion in a specification or requirements document, a device that must be
tested, any item that must be shown to have been tested.

• The rows are test cases.

• The cells show which test case tests which items.

• If a feature changes, you can quickly see which tests must be reanalyzed,

probably rewritten.

• In general, you can trace back from a given item of interest to the tests that cover

it.

• This doesn’t specify the tests, it merely maps their coverage.

Principles of Software Testing for Testers

5 - 28

Optional Exercise 5.5: What “Specs” Can You Use?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 28

Optional Exercise 5.5: What “Specs” Can You Use?

Challenge:
Getting information in the absence of a spec
What substitutes are available?

Example:
The user manual – think of this as a commercial
warranty for what your product does.

What other “specs” can you/should you be
using to test?

Optional Exercise

Think about standards or expert documents as sources. Imagine you’re testing a
website. Consider the difference between saying. “I can’t navigate…” and saying

“This site violates these principles of Jakob Nielsen’s Designing Web Usability…”

Generally respected texts or standards may not necessarily be for your project, but
they are useful.

For example, if you criticize some aspect of the user interface, your criticism might be
dismissed as “just your opinion.” But if you make the same criticism and then show
that this aspect of the UI doesn’t conform to a published UI design guidelines
document for your platform (there are several books available), the criticism will be

taken more seriously. Even if the programmers and marketers don’t fix the problem
that you identified, they will evaluate your report of the problem as credible and
knowledgeable.

 Module 5 - Test and Evaluate

 5 - 29

Exercise 5.5—Specification-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 29

Exercise 5.5—Specification-Based Testing

Here are some ideas for sources that you can
consult when specifications are incomplete or
incorrect.

Software change memos that come with new builds of
the program
User manual draft (and previous version’s manual)
Product literature
Published style guide and UI standards

For more, see the Notes on this page of the
Course Notes.

No specification???

Companies vary in the ways they develop software. Even companies that follow the

Rational Unified Process will adapt RUP to their needs, and they may not do
everything that you might expect them to do.

Some companies write very concise specifications, or very incomplete ones, or they
don’t update their specs as the project evolves.

Testers have to know how to deal with the project as it is. Sometimes you will be able
to influence the fundamental development style of the project, but often, you will

have limited influence. In those cases, you still have to know how to do an effective
job of testing.

Principles of Software Testing for Testers

5 - 30

Exercise 5.5—Specification-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 30

Exercise 5.5—Specification-Based Testing

-- Continued (see Notes on handout)

Sources of information for spec-based testing

• Whatever specs exist

• Software change memos that come with new builds of the program

• User manual draft (and previous version’s manual)

• Product literature

• Published style guide and UI standards

• Published standards (such as C-language)

• 3rd party product compatibility test suites

• Published regulations

• Internal memos (e.g. project mgr. to engineers, describing the feature definitions)

• Marketing presentations, selling the concept of the product to management

• Bug reports (responses to them)

• Reverse engineer the program.

• Interview people, such as

• development lead, tech writer, customer service, subject matter experts,
project manager

• Look at header files, source code, database table definitions

• Specs and bug lists for all 3rd party tools that you use

 Module 5 - Test and Evaluate

 5 - 31

Exercise 5.5—Specification-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 31

Exercise 5.5—Specification-Based Testing

-- Continued (see Notes on handout)

Sources of information for spec-based testing (continued)

• Prototypes, and lab notes on the prototypes

• Interview development staff from the last version.

• Look at customer call records from the previous version. What bugs were found
in the field?

• Usability test results

• Beta test results

• Ziff-Davis SOS CD and other tech support CD’s (These are answerbooks sold to
help desks), for bugs in your product and common bugs in your niche or on your
platform

• BugNet magazine / web site for common bugs, and other bug reporting websites.

• Localization guide (probably one that is published, for localizing products on
your platform.)

• Get lists of compatible equipment and environments from Marketing (in theory,
at least.)

• Look at compatible products, to find their failures (then look for these in your
product), how they designed features that you don’t understand, and how they
explain their design. See listserv’s, NEWS, BugNet, etc.

• Exact comparisons with products you emulate

• Content reference materials (e.g. an atlas to check your on-line geography
program)

Principles of Software Testing for Testers

5 - 32

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 32

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

 Module 5 - Test and Evaluate

 5 - 33

Definitions—Risk-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 33

Definitions—Risk-Based Testing

Three key meanings:
1. Find errors (risk-based approach to the technical

tasks of testing)
2. Manage the process of finding errors (risk-based

test management)
3. Manage the testing project and the risk posed by

(and to) testing in its relationship to the overall
project (risk-based project management)

We’ll look primarily at risk-based testing (#1),
proceeding later to risk-based test management.
The project management risks are very
important, but out of scope for this class.

Here’s an everyday analogy for thinking about risk based testing.

Hazard:

A dangerous condition (something that could trigger an accident)

Risk:

Possibility of suffering loss or harm (probability of an accident caused by a given
hazard).

Accident:

A hazard is encountered, resulting in loss or harm.

A term that is sometimes used for this is FMEA – Failure Mode Effects Analysis. In
FMEA, you start with a list of the ways that a product could fail. These are the failure
modes. Next you ask what the effects of the failure could be. Based on that analysis,
you decide how to focus your testing and what problems to look for.

Many of us who think about testing in terms of risk, analogize testing of software to
the testing of theories. Karl Popper, in his famous essay Conjectures and Refutations,
lays out the proposition that a scientific theory gains credibility by being subjected to
(and passing) harsh tests that are intended to refute the theory.

We can gain confidence in a program by testing it harshly. (We gain confidence if
it passes our best tests). Subjecting a program to easy tests doesn’t tell us much about
what will happen to the program in the field.

In risk-based testing, we create harsh tests for vulnerable areas of the program.

Principles of Software Testing for Testers

5 - 34

At a Glance: Risk-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 34

At a Glance: Risk-Based Testing

AnyComplexity

Find big bugs firstTag line

Any stageSUT readiness
HarshHarshness

VariesEvaluation

Use qualities of service, risk heuristics and
bug patterns to identify risksActivities

Identifiable risksPotential problems
By identified riskCoverage
AnyTesters

Define, prioritize, refine tests in terms of
the relative risk of issues we could test forObjective

Examples of Risk-Based Testing Tasks

• Identify risk factors (hazards: ways in which the program could go wrong)

• For each risk factor, create tests that have power against it.

• Assess coverage of the testing effort program, given a set of risk-based tests. Find
holes in the testing effort.

• Build lists of bug histories, configuration problems, tech support requests and
obvious customer confusions.

• Evaluate a series of tests to determine what risk they are testing for and whether
more powerful variants can be created.

Here’s one way: Risk-Based Equivalence Class Analysis

Our working definition of equivalence:

• Two test cases are equivalent if you expect the same result from each.

This is fundamentally subjective. It depends on what you expect. And what you
expect depends on what errors you can anticipate:

• Two test cases can only be equivalent by reference to a specifiable risk.

Two different testers will have different theories about how programs can fail, and
therefore they will come up with different classes.

A boundary case in this system is a “best representative.”

• A best representative of an equivalence class is a test that is at least as likely to
expose a fault as every other member of the class.

 Module 5 - Test and Evaluate

 5 - 35

Strengths & Weaknesses: Risk-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 35

Strengths & Weaknesses: Risk-Based Testing

Representative cases
Equivalence class analysis, reformulated.
Test in order of frequency of use.
Stress tests, error handling tests, security tests.
Sample from predicted-bugs list.

Strengths
Optimal prioritization (if we get the risk list right)
High power tests

Blind spots
Risks not identified or that are surprisingly more likely.
Some “risk-driven” testers seem to operate subjectively.
• How will I know what coverage I’ve reached?
• Do I know that I haven’t missed something critical?

Principles of Software Testing for Testers

5 - 36

Workbook Page—Risks in Qualities of Service

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 36

Workbook Page—Risks in Qualities of Service

Quality Categories:
Accessibility
Capability
Compatibility
Concurrency
Efficiency
Localizability
Maintainability
Performance
Portability
Recoverability
Installability and uninstallability -- Conformance to standards
Reliability -- Scalability -- Security
Supportability -- Testability -- Usability

Each quality category is a risk
category, as in:
“the risk of unreliability.”

Take-Home Exercises

The intent of this list of exercises is to illustrate the thinking that risk-based testers use.
You can do these at work, after the course either alone or, preferably, in pairs with
another tester.

• List ways that the program could fail. For each case:
• Describe two ways to test for that possible failure
• Explain how to make your tests more powerful against that type of possible

failure
• Explain why your test is powerful against that hazard.

• Given a list of test cases
• Identify a hazard that the test case might have power against
• Explain why this test is powerful against that hazard.

• Collect or create some test cases for the software under test. Make a variety of
tests:
• Mainstream tests that use the program in “safe” ways
• Boundary tests
• Scenario tests
• Wandering walks through the program
• If possible, use tests the students have suggested previously.

• For each test, ask:
• How will this test find a defect?
• What kind of defect did the test author probably have in mind?
• What power does this test have against that kind of defect? Is there a more

powerful test? A more powerful suite of tests?

 Module 5 - Test and Evaluate

 5 - 37

Workbook Page—Heuristics to Find Risks (1/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 37

Workbook Page—Heuristics to Find Risks (1/2)

Risk Heuristics: Where to look for errors
New things: newer features may fail.

New technology: new concepts lead to new mistakes.

Learning Curve: mistakes due to ignorance.

Changed things: changes may break old code.

Late change: rushed decisions, rushed or demoralized
staff lead to mistakes.

Rushed work: some tasks or projects are chronically
underfunded and all aspects of work quality suffer.

Here are some more risk heuristics to consider:

• Tired programmers: long overtime over several weeks or months yields
inefficiencies and errors

• Other staff issues: alcoholic, mother died, two programmers who won’t talk to
each other (neither will their code)…

• Just slipping it in: pet feature not on plan may interact badly with other code.

• N.I.H.: (Not invented here) external components can cause problems.

• N.I.B.: (Not in budget) Unbudgeted tasks may be done shoddily.

• Ambiguity: ambiguous descriptions (in specs or other docs) can lead to incorrect
or conflicting implementations.

• Conflicting requirements: ambiguity often hides conflict, result is loss of value for
some person.

• Unknown requirements: requirements surface throughout development. Failure
to meet a legitimate requirement is a failure of quality for that stakeholder.

These heuristics are adapted from a course developed by James Bach, and reprinted
in Lessons Learned, p. 61-62.

Principles of Software Testing for Testers

5 - 38

Workbook Page—Heuristics to Find Risks (2/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 38

Workbook Page—Heuristics to Find Risks (2/2)

Risk Heuristics: Where to look for errors
Complexity: complex code may be buggy.
Bugginess: features with many known bugs may also
have many unknown bugs.
Dependencies: failures may trigger other failures.
Untestability: risk of slow, inefficient testing.
Little unit testing: programmers find and fix most of their
own bugs. Shortcutting here is a risk.
Little system testing so far: untested software may fail.
Previous reliance on narrow testing strategies: (e.g.
regression, function tests), can yield a backlog of errors
surviving across versions.

more risk heuristics (continued):

• Evolving requirements: people realize what they want as the product develops.

Adhering to a start-of-the-project requirements list may meet contract but fail
product. (check out http//www.agilealliance.org/)

• Weak testing tools: if tools don’t exist to help identify / isolate a class of error (e.g.

wild pointers), the error is more likely to survive to testing and beyond.

• Unfixability: risk of not being able to fix a bug.

• Language-typical errors: such as wild pointers in C. See

• Bruce Webster, Pitfalls of Object-Oriented Development

• Michael Daconta et al. Java Pitfalls

• Criticality: severity of failure of very important features.

• Popularity: likelihood or consequence if much used features fail.

• Market: severity of failure of key differentiating features.

• Bad publicity: a bug may appear in PC Week.

• Liability: being sued.

 Module 5 - Test and Evaluate

 5 - 39

Workbook Page—Bug Patterns As a Source of Risks

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 39

Workbook Page—Bug Patterns As a Source of Risks

Testing Computer Software laid out a set of 480
common defects. To use these:

Find a defect in the list
Ask whether the software under test could have this
defect
If it is theoretically possible that the program could have
the defect, ask how you could find the bug if it was
there.
Ask how plausible it is that this bug could be in the
program and how serious the failure would be if it was
there.
If appropriate, design a test or series of tests for bugs of
this type.

Use the web: www.bugnet.com

Prof. Kaner, senior author of Testing Computer Software, says:

Too many people start and end with the TCS bug list. It is outdated. It was

outdated the day it was published. And it doesn’t cover the issues in your system.
Building a bug list is an ongoing process that constantly pays for itself.

Here’s an example and further discussion from Hung Nguyen (co-author of Testing
Computer Software):

This problem came up in a client/server system. The system sends the client a list of
names, to allow verification that a name the client enters is not new.

Client 1 and 2 both want to enter a name and client 1 and 2 both use the same
new name. Both instances of the name are new relative to their local compare list
and therefore, they are accepted, and we now have two instances of the same
name.

As we see these, we develop a library of issues. The discovery method is
exploratory, requires sophistication with the underlying technology.

Capture winning themes for testing in charts or in scripts-on-their-way to being

automated.

There are plenty of sources to check for common failures in the common platforms,
such as www.bugnet.com and www.cnet.com

Principles of Software Testing for Testers

5 - 40

Workbook Page—Risk-Based Test Management

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 40

Workbook Page—Risk-Based Test Management

Project risk management involves
Identification of the different risks to the project (issues
that might cause the project to fail or to fall behind
schedule that cost too much or dissatisfy customers or
other stakeholders)
Analysis of the potential costs associated with each risk
Development of plans and actions to reduce the
likelihood of the risk or the magnitude of the harm
Continuous assessment or monitoring of the risks (or
the actions taken to manage them)

Useful material free at http://seir.sei.cmu.edu
http://www.coyotevalley.com (Brian Lawrence)
Good paper by Stale Amland, Risk Based Testing
and Metrics, in appendix.

Common Tasks

• List all areas of the program that could require testing

• On a scale of 1-5, assign a probability-of-failure estimate to each

• On a scale of 1-5, assign a severity-of-failure estimate to each

• For each area, identify the specific ways that the program might fail and assign

probability-of-failure and severity-of-failure estimates for those

• Prioritize based on estimated risk

• Develop a stop-loss strategy for testing untested or lightly-tested areas, to check

whether there is easy-to-find evidence that the areas estimated as low risk are not
actually low risk.

 Module 5 - Test and Evaluate

 5 - 41

Optional Exercise 5.6: Risk-Based Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 41

Optional Exercise 5.6: Risk-Based Testing

You are testing Amazon.com
(Or pick another familiar application)

First brainstorm:
What are the functional areas of the app?

Then evaluate risks:
• What are some of the ways that each of these

could fail?
• How likely do you think they are to fail? Why?
• How serious would each of the failure types be?

Optional Exercise

Principles of Software Testing for Testers

5 - 42

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 42

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

 Module 5 - Test and Evaluate

 5 - 43

At a Glance: Stress Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 43

At a Glance: Stress Testing

VariesComplexity

Overwhelm the productTag line

Late stageSUT readiness
ExtremeHarshness

VariesEvaluation
SpecializedActivities
Error handling weaknessesPotential problems
LimitedCoverage
SpecialistsTesters

Learn what failure at extremes tells
about changes needed in the
program’s handling of normal cases

Objective

There are a few different definitions of stress testing. This one is focused on doing
things that are so difficult for the program to handle that it will eventually fail.

• How does it fail? Does the program handle the failure graciously?

• Is that how and when it should fail?

• Are there follow-up consequences of this failure? If we kept using the program,

what would happen?

This is a specialist’s approach. For example,

• Some security testing experts use this to discover what holes are created in the

system when part of the system is taken out of commission.

• Giving the program extremely large numbers is a form of stress testing. Crashes

that result from these failures are often dismissed by programmers, but many
break-ins start by exploiting a buffer over-run. For more on this approach, see
James Whittaker, How to Break Software (2002).

• Some people use load testing tools to discover functional weaknesses in the

program. Logic errors sometimes surface as the program gets less stable (because
of the high load and the odd patterns of data that the program has to deal with
during high load.)

• This is an extreme form of risk-based testing.

Principles of Software Testing for Testers

5 - 44

Strengths & Weaknesses: Stress Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 44

Strengths & Weaknesses: Stress Testing

Representative cases
Buffer overflow bugs
High volumes of data, device connections, long
transaction chains
Low memory conditions, device failures, viruses, other
crises
Extreme load

Strengths
Expose weaknesses that will arise in the field.
Expose security risks.

Blind spots
Weaknesses that are not made more visible by stress.

This is what hackers do when they pummel your site with denial of service attacks. A
good vision for stress testing is that the nastiest and most skilled hacker should be a

tester on your team, who uses the technique to find functional problems.

 Module 5 - Test and Evaluate

 5 - 45

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 45

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Principles of Software Testing for Testers

5 - 46

At a Glance: Regression Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 46

At a Glance: Regression Testing

VariesComplexity

Automated testing after changesTag line

For unit – early; for GUI - lateSUT readiness

VariesHarshness

VariesEvaluation

Create automated test suites and run against
every (major) buildActivities

Side effects of changes
Unsuccessful bug fixes

Potential
problems

VariesCoverage

VariesTesters
Detect unforeseen consequences of changeObjective

Regression testing refers to the automated testing of the SUT after changes. The
name implies that its primary function is to prevent regression, i.e. the reappearance
of a defect previously fixed, but in practice, the term is widely used to refer to any
test automation that repeats the same tests over and over.

Regression testing is most effective when combined with other testing techniques,
which we’ll discuss at the end of this module.

Where should you use regression testing? Where efficiency of executing the tests
time and time again is a primary concern. For example:

• Build Verification Tests (BVTs or “smoke tests”) are a form of regression testing
used to determine whether to accept a build into further testing and are covered
in Module 8 of the course.

• Configuration Tests, where you check that an application functions identically
with different operating systems, database servers, web servers, web browsers,
etc., are another example where you need highly efficient execution.

Pay careful attention to the stability of the interfaces that you use to drive the SUT.
Testing through an API is generally a better strategy than testing through the GUI, for
two reasons.

1. GUIs change much more frequently than APIs, as usability issues are discovered
and improvements are made.

2. It’s usually much easier to achieve high coverage of the underlying program logic
by using the API. The majority of the code in any modern system deals with
error conditions that may be hard to trigger through the GUI alone.

If you have a highly stateful application, you may want to combine tests where you
stimulate through the API and observe at the GUI, or vice-versa.

 Module 5 - Test and Evaluate

 5 - 47

Strengths & Weaknesses—Regression Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 47

Strengths & Weaknesses—Regression Testing
Representative cases

Bug regression, old fix regression, general functional
regression
Automated GUI regression test suites

Strengths
Cheap to execute
Configuration testing
Regulator friendly

Blind spots
“Immunization curve”
Anything not covered in the regression suite
Cost of maintaining the regression suite

Lessons Learned, Chapter 5, has useful guidance for regression testing.

In planning regression testing, be sure that you understand the extent to which you

can vary the tests effectively for coverage and track the variance in the test results.

• Use different sequences (see scenario testing)

• Apply data for different equivalence class analyses

• Vary options and program settings, and

• Vary configurations.

Carefully plan the testability of the software under test to match the capabilities of
any test tool you apply.

Do testing that essentially focuses on similar risks from build to build but not
necessarily with the identical test each time.

There are a few cases (such as BVTs) where you may want to limit the variation.

Principles of Software Testing for Testers

5 - 48

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 48

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

 Module 5 - Test and Evaluate

 5 - 49

At a Glance: Exploratory Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 49

At a Glance: Exploratory Testing

VariesComplexity

Simultaneous learning, planning, and
testingTag line

Medium to late: use cases must workSUT readiness
VariesHarshness

VariesEvaluation
Learn, plan, and test at the same timeActivities

Everything unforeseen by planned
testing techniquesPotential problems

Hard to assessCoverage
ExplorersTesters

Simultaneously learn about the
product and about the test strategies
to reveal the product and its defects

Objective

With exploratory testing you simultaneously:

• Learn about the product

• Learn about the market

• Learn about the ways the product could fail

• Learn about the weaknesses of the product

• Learn about how to test the product

• Test the product

• Report the problems

• Advocate for repairs

• Develop new tests based on what you have learned so far.

Everyone does some exploratory testing. For example, whenever you do follow-up testing to try
to narrow the conditions underlying a failure or to try to find a more serious variation of a
failure, you are doing exploratory testing. Most people do exploratory testing while they design
tests. If you test the program while you design tests, trying out some of your approaches and
gathering more detail about the program as you go, you are exploring.

If you do testing early in the process – during elaboration or in the first few iterations of
implementation – the product is still in an embryonic state. Many artifacts that would be
desirable for testing are just not available yet, and so the testers either have to not do the
testing (this would be very bad) or learn as they go.

Acknowledgement: Many of these slides are derived from material given to us by James Bach
(www.satisfice.com) and many of the ideas in these notes were reviewed and extended at the
7th Los Altos Workshop on Software Testing. We appreciate the assistance of the LAWST 7
attendees: Brian Lawrence, III, Jack Falk, Drew Pritsker, Jim Bampos, Bob Johnson, Doug
Hoffman, Cem Kaner, Chris Agruss, Dave Gelperin, Melora Svoboda, Jeff Payne, James
Tierney, Hung Nguyen, Harry Robinson, Elisabeth Hendrickson, Noel Nyman, Bret Pettichord,
& Rodney Wilson.

Principles of Software Testing for Testers

5 - 50

Strengths & Weaknesses: Exploratory Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 50

Strengths & Weaknesses: Exploratory Testing
Representative cases

Skilled exploratory testing of the full product
Rapid testing & emergency testing (including thrown-
over-the-wall test-it-today)
Troubleshooting / follow-up testing of defects.

Strengths
Customer-focused, risk-focused
Responsive to changing circumstances
Finds bugs that are otherwise missed

Blind spots
The less we know, the more we risk missing.
Limited by each tester’s weaknesses (can mitigate this
with careful management)
This is skilled work, juniors aren’t very good at it.

Doing Exploratory Testing

• Keep your mission clearly in mind.

• Distinguish between testing and observation.

• While testing, be aware of the limits of your ability to detect problems.

• Keep notes that help you report what you did, why you did it, and support your
assessment of product quality.

• Keep track of questions and issues raised in your exploration.

Problems to Be Aware Of

• Habituation may cause you to miss problems.

• Lack of information may impair exploration.

• Expensive or difficult product setup may increase the cost of exploring.

• Exploratory feedback loop my be too slow.

• Old problems may pop up again and again.

• High MTBF may not be achievable without well defined test cases and
procedures, in addition to exploratory approach.

The question is not whether testers should do exploratory testing (that’s like asking
whether people should breathe). Instead, we should ask:

• How systematically should people explore?

• How visible should exploratory testing practices be in the testing process?

• How much exploratory training should testers have?

 Module 5 - Test and Evaluate

 5 - 51

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 51

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Principles of Software Testing for Testers

5 - 52

At a Glance: User Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 52

At a Glance: User Testing

VariesComplexity

Strive for realism
Let’s try real humans (for a change)Tag line

Late; has to be fully operableSUT readiness
LimitedHarshness

User’s assessment, with guidanceEvaluation
Directed by userActivities

Items that will be missed by anyone
other than an actual userPotential problems

Very hard to measureCoverage
UsersTesters

Identify failures in the overall
human/machine/software system.Objective

Beta testing is normally defined as testing by people who are outside of your
company. These are often typical members of your market, but they may be selected
in other ways.

Beta tests have different objectives. It’s important to time and structure your test(s) in
ways that help you meet your goals:

• Expert advice—the expert evaluates the program design. It is important to do this
as early as possible, when basic changes are still possible.

• Configuration testing—the beta tester runs the software on her equipment, and
tells you the results.

• Compatibility testing—the beta tester (possibly the manufacturer of the other
software) runs the software in conjunction with other software, to see whether
they are compatible.

• Bug hunting—the beta tester runs the software and reports software errors.

• Usability testing—the beta tester runs the software and reports difficulties she had
using the product.

• Pre-release acceptance tests—the beta tester runs the product to discover
whether it behaves well on her system or network. The goal is convincing the
customer that the software is OK, so that she’ll buy it as soon as it ships.

• News media reviews—some reporters want early software. They are gratified by
corporate responsiveness to their suggestions for change. Others expect finished
software and are intolerant of pre-release bugs.

For more discussion of the diversity of beta tests, see Kaner, Falk & Nguyen, Testing
Computer Software, pp. 291-294.

 Module 5 - Test and Evaluate

 5 - 53

Strengths & Weaknesses—User Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 53

Strengths & Weaknesses—User Testing

Representative cases
Beta testing
In-house lab using a stratified sample of target market
Usability testing

Strengths
Expose design issues
Find areas with high error rates
Can be monitored with flight recorders
Can use in-house tests focus on controversial areas

Blind spots
Coverage not assured
Weak test cases
Beta test technical results are mixed
Must distinguish marketing betas from technical betas

Prof. Kaner comments:

There is a very simple example of something that we did at Electronic Arts. We

made many programs that printed in very fancy ways on color printers. We gave
you the files to print as part of the beta, you made print outs and wrote on the back
of the page what your printer was and what your name was. If you were confused
about the settings, when we got your page back, we called you up. We had a large
population of people with a large population of strange and expensive printers that
we couldn't possibly afford to bring in-house.

So we could tell whether it passed or failed, we also did things like sending people
parts of the product and a script to walk through and we would be on the phone
with them and say what do you see on the screen? We wanted to do video
compatibility where they’re across the continent.

So you are relying on their eyes to be your eyes. But you’re on the phone, you
don't ask them if it looks okay, you ask them what is in this corner? And you
structure what you're going to look at If you think you are at risk on configuration

you should have some sense of how configurations will show up the configuration
failures. Write tests to expose those, get them to your customers, and then find out
whether those tests passed or failed by checking directly on these specific tests.

Principles of Software Testing for Testers

5 - 54

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 54

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

 Module 5 - Test and Evaluate

 5 - 55

At a Glance: Scenario Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 55

At a Glance: Scenario Testing

HighComplexity

Instantiation of a use case
Do something useful, interesting, and complexTag line

Late. Requires stable, integrated functionality.SUT readiness

VariesHarshness

AnyEvaluation

Interview stakeholders & write screenplays,
then implement testsActivities

Complex interactions that happen in real use
by experienced users

Potential
problems

Whatever stories touchCoverage
AnyTesters
Challenging cases to reflect real useObjective

Scenarios are great ways to capture realism in testing. They are much more complex
than most other techniques and they focus on end-to-end experiences that users

really have.

Principles of Software Testing for Testers

5 - 56

Strengths & Weaknesses: Scenario Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 56

Strengths & Weaknesses: Scenario Testing

Representative cases
Use cases, or sequences involving combinations of use
cases.
Appraise product against business rules, customer data,
competitors’ output
Hans Buwalda’s “soap opera testing.”

Strengths
Complex, realistic events. Can handle (help with)
situations that are too complex to model.
Exposes failures that occur (develop) over time

Blind spots
Single function failures can make this test inefficient.
Must think carefully to achieve good coverage.

Scenario tests are expensive. So it’s important to get them right.

• Realism is important for credibility.

• Don’t use scenarios to find simple bugs efficiently. Scenario tests are too

complex and tied to too many features.

• Start your testing effort with simpler tests to find the simple defects. If you start

with scenario tests, you will be blocked by simple bugs.

There’s a risk of missing coverage by relying too heavily on scenario testing alone. A
mitigation strategy for that risk is to use a traceability matrix for assessing coverage, as
we’ve shown before.

 Module 5 - Test and Evaluate

 5 - 57

Workbook Page—Test Scenarios From Use Cases

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 57

Outline of a Use Case
Has one normal, basic flow (“Happy Path”)
Several alternative flows

Regular variants
Odd cases
Exceptional flows handling error situations

“Happy Path”

Workbook Page—Test Scenarios From Use Cases

Use Cases may be a good source of test scenarios. Usually, you will want to string
several use cases together as a test scenario.

Use-Case Contents

1. Brief Description
2. Flow of Events

Basic Flow of Events
Alternative Flows of Events

3. Special Requirements
4. Pre-Conditions
5. Post-Conditions
6. Extension Points
7. Relationships
8. Candidate Scenarios
9. Use-Case Diagrams
10. Other Diagrams/Enclosures
The Flow of Events of a use case contains the most important information derived
from use-case modeling work. It should describe the use case's flow of events clearly
enough for an outsider to easily understand it. Remember the flow of events should
present what the system does, not how the system is designed to perform the
required behavior.

Principles of Software Testing for Testers

5 - 58

Workbook Page—Scenarios Without Use Cases

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 58

Workbook Page—Scenarios Without Use Cases

Sometimes, we develop test scenarios
independently of use cases. The ideal scenario
has four characteristics:

It is realistic (e.g. it comes from actual customer or
competitor situations).
It is easy (and fast) to determine whether a test
passed or failed.
The test is complex. That is, it uses several
features and functions.
There is a stakeholder who has influence and will
protest if the program doesn’t pass this scenario.

Why develop test scenarios independently of use cases?

• Some development teams don’t do a thorough job of use case analysis. Certainly,
use cases play an important role in RUP. But users of RUP may not adopt all of
the RUP recommendations. The testing group has to be prepared to derive test
cases from whatever information is available.

• Even if a development team creates a strong collection of use cases, an analysis
from outside of the developers’ design thinking may expose problems that are
not obvious from analysis of the use cases. The tester, collecting data for the
scenario test, may well rely on different people’s inputs than the development
team when it developed use cases.

Some ways to trigger thinking about scenarios:

Benefits-driven: People want to achieve X. How will they do it, for the following X’s?

Sequence-driven: People (or the system) typically does task X in an order. What are
the most common orders (sequences) of subtasks in achieving X?

Transaction-driven: We are trying to complete a specific transaction, such as opening
a bank account or sending a message. What are the steps, data items, outputs,
displays etc.?

Get use ideas from competing product: Their docs, advertisements, help, etc., all
suggest best or most interesting uses of their products. How would our product do
these things?

Competitor driven: Hey, look at these cool documents they can create. Look at how
they display things (e.g. Netscape’s superb handling of malformed HTML code). How
do we handle this?

Customer’s forms driven: Here are the forms the customer produces. How can we
work with (read, fill out, display, verify, whatever) them?

 Module 5 - Test and Evaluate

 5 - 59

Workbook Page—Soap Operas

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 59

Workbook Page—Soap Operas

A Soap Opera is a scenario based on real-life
client/customer experience.
Exaggerate every aspect of it. For example:

For each variable, substitute a more extreme value
If a scenario can include a repeating element, repeat it
lots of times
Make the environment less hospitable to the case
(increase or decrease memory, printer resolution, video
resolution, etc.)

Create a real-life story that combines all of the
elements into a test case narrative.

These are example soap opera scenarios from: Hans Buwalda, Soap Opera Testing,
Software Testing Analysis & Review conference, Orlando, FL, May 2000.

Pension Fund

William starts as a metal worker for Industrial Entropy Incorporated in 1955.
During his career he becomes ill, works part time, marries, divorces, marries
again, gets 3 children, one of which dies, then his wife dies and he marries again
and gets 2 more children….

World Wide Transaction System for an international Bank

A fish trade company in Japan makes a payment to a vendor on Iceland. It should
have been a payment in Icelandic Kronur, but it was done in Yen instead. The
error is discovered after 9 days and the payment is revised and corrected,
however, the interest calculation (value dating)…

Principles of Software Testing for Testers

5 - 60

Optional Exercise 5.7: Soap Operas for Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 60

Optional Exercise 5.7: Soap Operas for Testing

1. Pick a familiar product
2. Define a scope of the test
3. Identify with the business environment
4. Include elements that would make things

difficult
5. Tell the story

Optional Exercise

 Module 5 - Test and Evaluate

 5 - 61

Module 5 Agenda

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 61

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Principles of Software Testing for Testers

5 - 62

At a Glance: Stochastic or Random Testing (1/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 62

At a Glance: Stochastic or Random Testing (1/2)

Monkey testing
High-volume testing with new cases all
the time

Tag line

Have the computer create, execute,
and evaluate huge numbers of tests.

The individual tests are not all that
powerful, nor all that compelling.
The power of the approach lies in
the large number of tests.
These broaden the sample, and
they may test the program over a
long period of time, giving us insight
into longer term issues.

Objective

The essence of this technique is that, while the strategy is designed by a human; the
individual test cases are generated by machine. Kaner’s Architectures of Test

Automation, in your student kit, discusses this in more detail.

Noel Nyman of Microsoft coined the term “monkey testing” and has developed some
of the best material on this subject. The name was inspired by the teaser:

“If 12 monkeys pound on keyboards at random, how long will it take before they
re-create the works of Shakespeare?”

Nyman’s description and source code for “Freddy”, a monkey tester used for

compatibility testing at Microsoft, can be found in is the appendix to Tom Arnold’s VT
6 Bible. For experience reports, see Noel Nyman, “Using Monkey Test Tools,”
Software Test and Quality Engineering Magazine, January/February 2000, available at
www.stickyminds.com

Harry Robinson, also of Microsoft, has published a few papers on this style of test
generation at his site www.model-based-testing.org. In Robinson’s terminology, the
“model” is the combinatorial space and set of algorithms used to generate tests.

“Monkey testing should not be your only testing. Monkeys don’t understand your
application, and in their ignorance they miss many bugs.”

—Noel Nyman, “Using Monkey Test Tools,” STQE, Jan/Feb 2000

 Module 5 - Test and Evaluate

 5 - 63

At a Glance: Stochastic or Random Testing (2/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 63

At a Glance: Stochastic or Random Testing (2/2)

Complex to generate, but individual
tests are simpleComplexity

AnySUT readiness

Weak individual tests, but huge
numbers of themHarshness

Generic, state-basedEvaluation

Focus on test generationActivities

Crashes and exceptionsPotential problems

Broad but shallow. Problems with
stateful apps.Coverage

MachinesTesters

What do we mean by random and stochastic?

A variable that is random has a value that is basically unpredictable. If you're talking

about a set of values that are random then the set are basically unpredictable. If the
random value depends upon the sequence, then you're not just dealing with
something that is random, you're dealing with something that is randomly changing
over time -- that is a stochastic variable.

For example, if you go to Las Vegas and play Blackjack how much you will win or
lose on a given hand is a random variable, but how much is left in your pocket is a
stochastic variable. It depends not just on how much you won or lost this time but

rather on what's been going on time after time. The Dow Jones Index is a stochastic
variable. How much it changes today is the random variable.

In high-volume random testing, where you go next depends on where you are now
and the next random variable -- it is a stochastic process. An important theorem is
that a stochastic process, that depends only on current position and one random
variable to move to the next place, will reach every state that can theoretically be
reached in that system, if you run the process for a long enough time. You can prove

that over a long enough period you will have 100% state coverage, as long as you can
show that the states could ever be reached.

Principles of Software Testing for Testers

5 - 64

Using Techniques Together

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 64

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques
Using techniques together

 Module 5 - Test and Evaluate

 5 - 65

Combining Techniques (Revisited)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 65

Combining Techniques (Revisited)

A test approach should be diversified
Applying opposite techniques can improve
coverage
Often one technique can
extend another

Testers
Coverage

Potential problems
Activities

Evaluation

Technique G

Technique A

Technique B

Technique C

Technique E

Technique F

Technique H

Technique D

Earlier in this module, the concept of of complementary techniques was introduced.
Now that you have visited the techniques in detail, it’s useful to think about two

valuable ways of combining them:

1. Using opposite techniques independently

2. Using complementary techniques together

The next two slides cover examples of each.

Principles of Software Testing for Testers

5 - 66

Applying Opposite Techniques to Boost Coverage

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 66

Applying Opposite Techniques to Boost Coverage

Regression
Inputs:
• Old test cases and

analyses leading to new
test cases

Outputs:
• Archival test cases,

preferably well
documented, and bug
reports

Better for:
• Reuse across multi-

version products

Exploration
Inputs:
• models or other analyses

that yield new tests
Outputs
• scribbles and bug reports

Better for:
• Find new bugs, scout

new areas, risks, or ideas

Contrast these two techniques

Exploration Regression

Regression Testing and Exploratory Testing are perhaps the easiest techniques to
contrast. Consider the two as processes with inputs and outputs.

The regression tester starts with test cases that he will reuse and the motivations for
those test cases. The regression tester executes those tests, discovers some are out of
date, some can be stricken, and generates two different types of documents. 1) bug
reports and 2) improved tests. The regression tester is focused on creating materials
for reuse.

The exploratory tester, on the other hand, comes in with whatever information is

available, but not with defined test cases. The exploratory tester does testing and
makes notes in a private notebook. From those scribbles the exploratory tester also
writes bug reports. But the scribbles in the book are not going anywhere outside this
book. There’s nothing available for reuse – just the bug reports.

Neither technique would be safe as the only approach to testing. Applying them
both, however, significantly improves the diversification of your test approach.

 Module 5 - Test and Evaluate

 5 - 67

Applying Complementary Techniques Together

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 67

Applying Complementary Techniques Together

Regression testing alone suffers fatigue
The bugs get fixed and new runs add little info

Symptom of weak coverage
Combine automation w/ suitable variance

E.g. Risk-based equivalence analysis

Coverage of the combination
can beat sum of the parts Equivalence

Risk-based

Regression

Another way of combining techniques is to use one technique to extend another. For
example, Regression testing is much more effective when extended with other

testing techniques than when used in isolation. Examples of combination include…

• Equivalence analysis: There are many techniques available for extending test
automation with variable data and all regression tools support variable data. If
you have done good risk-based equivalence analysis, and can extend function
regression testing with good test data, you can achieve the combined benefits of
those techniques.

• Function testing: XP (eXtreme Programming) advocates that developers produce
exhaustive automated unit tests that are run after every coding task to facilitate
refactoring (changing code). Because the XP test suites are sufficiently
comprehensive and are run continuously, they provide immediate feedback of
any unforeseen breakage caused by a change. JUnit is a popular open source
tool for this.

• Specification-based testing: An important extension to spec-based testing is the
practice of Test-first Design (covered in RUP as a developer practice and also
advocated by XP). With Test-first Design, you use tests as a primary form of
requirements specification and rerun the tests on every build to provide
immediate feedback on any breakage.

• Scenario testing: Some teams have success automating simple scenarios and
interactions. This works when you can easily maintain the tests are are
conscientious about discarding tests that no longer add useful information. A
good heurisitc is to make sure that test maintenance cost is kept low to avoid
blocking any test development.

Principles of Software Testing for Testers

5 - 68

How To Adopt New Techniques/Review

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 68

How To Adopt New Techniques

1. Answer these questions:
What techniques do you use in your test approach
now?
What is its greatest shortcoming?
What one technique could you add to make the
greatest improvement, consistent with a good test
approach:

• Risk-focused?
• Product-specific?
• Practical?
• Defensible?

2. Apply that additional technique until proficient
3. Iterate

 Module 5 - Test and Evaluate

 5 - 69

Discussion 5.8: Which Techniques Should You Use

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 69

Discussion 5.8: Which Techniques Should You Use

1. Break out into workgroups
2. For your team, answer the questions on

the previous slide
3. Present your findings

Principles of Software Testing for Testers

5 - 70

Optional Review Exercise 5.9: Characterize Testing Techniques

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 70

Optional Review Exercise 5.9: Characterize Testing Techniques

Stochastic testing

Scenario testing

User testing

Exploratory testing

Regression testing

Stress testing

Risk-based testing

Specification-based
testing

Equivalence analysis

Function testing

EvaluationActivitiesProblems /
Risks

CoverageTesters

Optional Take-home Exercise

• Go back through the testing techniques and characterize the key traits of
each.

• Which techniques do you use on your current project(s)?

• Which would you try next?

• Why?

