
7 - 1

Module 7
Achieve Acceptable Mission

Principles of Software Testing for
Testers

Module 7: Achieve Acceptable Mission

Topics

Outline ...7-2

Achieve an Acceptable Mission Workflow ...7-4

Reporting the Status of Testing ..7-6

Review ...7-22

Principles of Software Testing for Testers

7 - 2

Outline

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Module 7 - Content Outline

� Definition of the workflow:
Achieve Acceptable Mission

� Reporting the status of testing

 Module 7 - Achieve Acceptable Mission

 7 - 3

Review: Where We’ve Been

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

Review: Where We’ve Been

� In the last two modules, we
covered the workflow detail
Test and Evaluate

� In part one, we looked at
techniques for
implementing tests, and in
part two, we looked at
analyzing failures and
writing change requests.

Principles of Software Testing for Testers

7 - 4

Achieve an Acceptable Mission Workflow

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Achieve an Acceptable Mission

� In this module, we’ll look at
monitoring that the Mission
is being achieved and
reporting the status of the
test effort

The purpose of this workflow detail is to deliver a useful evaluation result to the
stakeholders of the test effort—where useful evaluation result is assessed in terms of
the Evaluation Mission. In most cases that will mean focusing your efforts on helping
the project team achieve the Iteration Plan objectives that apply to the current test
cycle.

For each test cycle, this work is focused mainly on:

• Actively prioritizing the minimal set of necessary tests that must be conducted to
achieve the Evaluation Mission

• Advocating the resolution of important issues that have a significant negative

impact on the Evaluation Mission

• Advocating appropriate quality

• Identifying regressions in quality introduced between test cycles

• Where appropriate, revising the Evaluation Mission in light of the evaluation
findings so as to provide useful information to the project team

 Module 7 - Achieve Acceptable Mission

 7 - 5

Achieve an Acceptable Mission

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

Achieve an Acceptable Mission
� This module focuses

on Assessment of
the test effort
reporting an
evaluation summary
of the test results

� In the last module,
we discussed change
requests which are
used here to help
evaluate status.

� We will look mainly at
producing Evaluation
Summaries.

Here are the roles, activities and artifacts RUP focuses on in this work.

In the previous module, we discussed analyzing failures and reporting change

requests.

In this module, we’ll talk about producing summary evaluations from the change
request and other test result information.

Note that diagram shows some lightly shaded elements: these are additional testing
elements that RUP provides guidance for which are not covered directly in this
course. You can find out more about these elements by consulting RUP directly.

Principles of Software Testing for Testers

7 - 6

Reporting the Status of Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Module 7 - Content Outline

� Definition of the workflow:
Achieve Acceptable Mission
� Reporting the status of testing

 Module 7 - Achieve Acceptable Mission

 7 - 7

Discussion Exercise 7.1: Reporting Status

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

Discussion Exercise 7.1: Reporting Status

� Pick a project and a point in time.
� You are the test manager.
� The project manager asks you:
� How far are you with testing?

� How much do you have left to do?

� How do you answer?

Principles of Software Testing for Testers

7 - 8

Status Reporting

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 8

Status Reporting

� Key questions: How far are we? How much
is left to do?
� Experienced test managers have very

different answers
� Complex, multidimensional question
�Many types of data explain “extent of testing”
�Simple metrics are often profoundly misleading
� The best status reports consider several

dimensions together

� Eight different categories of information

 Module 7 - Achieve Acceptable Mission

 7 - 9

Dimensions of “Extent of Testing”

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Dimensions of “Extent of Testing”

� We’ve worked 80 hours a week on this
for 4 months. We’ve run 7,243 tests.

Effort

� We’ve discovered 593 bugs.Results

� We’ve run 80% of the test cases that we
had planned to run.

Plan

� We’ve tested 80% of the lines of code.Product

Common answers are based on the:

Principles of Software Testing for Testers

7 - 10

Dimensions of “Extent of Testing”

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

Dimensions of “Extent of Testing”

� At this milestone on previous projects, we had
fewer than 12.3712% of the bugs found still
open. We should be at that percentage on this
product too.

History
across

projects

� Beta testers have found 30 bugs that we
missed. Our regression tests seem ineffective.

Quality of
Testing

� We’re getting a lot of complaints from beta
testers and we have 400 bugs open. The
product can’t be ready to ship in three days.

Risks

� We’ve been plugging away but we can’t be
efficient until X, Y, and Z are dealt with.

Obstacles

� Common answers are based on the:

 Module 7 - Achieve Acceptable Mission

 7 - 11

Status Reports – Extent of Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

Status Reports – Extent of Testing

� Each dimension addresses a different issue
� At times, each may be important to management

� Build status report around a cluster of dimensions
� Successful status reports provide range of

different types of information, to give management
a better context for decisions

These reports will go to a diverse audience, probably including executives.

Typical recipients include the project team, managers of the members of the project

team, the manager of the manager of the project manager, and other people in the
company who have asked for the report or are entitled to it by virtue of their
position. These reports are sometimes posted to the company intranet, visible to even
more people.

• Each of these dimensions addresses a different issue that will, at times, be

important to management.

• Rather than trying to structure a status report around one of these, it is more

helpful to provide a cluster of them.

• Status reports that we have seen from different, successful test managers are

different in their details, but they all provide a range of different types of
information, to give management a better context for decisions.

Principles of Software Testing for Testers

7 - 12

The Overall Structure of a Common Report

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

The Overall Structure of a Common Report

� Here’s one structure that some managers
find works well for them:
� The report has four parts, each part starts a

separate page.
�Part 1 Risks and responsibilities
�Part 2 Progress against plan or some other

multidimensional chart
�Part 3 Project bug metrics
�Part 4 Deferred and no-fix bugs to approve

 Module 7 - Achieve Acceptable Mission

 7 - 13

The Overall Structure of a Common Report

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

The Overall Structure of a Common Report

� Part 1: Risks and responsibilities
� Highlights current problems, such as:

• Artifacts due into testing but not arrived
• Artifacts that due out of testing but not yet completed
• Staff turnover that threatens the schedule
• Equipment acquisition problems that might threaten

the schedule.
� A project slips one day at a time

• It can be recovered one day at a time
• Encourage addressing the problems that cause slips

� Good status reports show fine grain detail whenever it is
likely that a reader could intervene and help the project,
if only the reader understood (or was aware of) the
problems that cry out for help

Principles of Software Testing for Testers

7 - 14

The Overall Structure of a Common Report

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

The Overall Structure of a Common Report

• Part 2
Progress against plan or multidimensional chart

Elisabeth Hendrickson’s report.
� Note how this covers progress against a plan,

risks/obstacles, effort and results, all in one chart

Component Test
Type

Tester Total
Tests
Planned /
Created

Tests
Passed /
Failed /
Blocked

Time
Budget

Time
Spent

Projected
effort for
Next
Build

Notes

 Module 7 - Achieve Acceptable Mission

 7 - 15

The Overall Structure of a Common Report

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

The Overall Structure of a Common Report

� Part 2
Progress against plan or multidimensional chart

� James Bach’s project dashboard
� Note how this covers areas, progress against

plan, current effort, key results and risks, and
obstacles.

☺MedMedLowView

1621/LowMedBlockedInsert

1345, 1410.LowHighHighFile/edit

CommentsQualityCoverage
Achieved

Coverage
Planned

EffortArea

Build
32

Updated
11/1/00

Testing Dashboard

Principles of Software Testing for Testers

7 - 16

The Overall Structure of a Common Report

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

The Overall Structure of a Common Report

� Part 3
Project bug metrics
� These charts show find / fix rates over the

course of the project.
�Useful to give a sense of the rate at which

problems are being repaired.
� If the repair rate near the end of the project is

slow compared to the find rate, the schedule is
at risk.
� It is too easy to over-interpret these charts

 Module 7 - Achieve Acceptable Mission

 7 - 17

Bug Counts and Extent of Testing?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

Bug Counts and Extent of Testing?

� Some people believe they can measure testing progress
by plotting a project’s bug numbers against a theoretical
curve of expected find rates over time.

What Is This Curve?

Week

B
u

g
s

P
er

W
ee

k

For a more extensive discussion of these notes, see Cem Kaner, “Measurement of the
Extent of Testing”, Proceedings of the Pacific Northwest Software Quality Conference,

Portland, Oregon, October 2000. For further background information on the
problem of construct validity and measurement and the problem of measurement
dysfunction, see Robert Austin, Measuring & Managing Performance in Organizations,
Dorset House, 1996.

Principles of Software Testing for Testers

7 - 18

Potential Side Effects of Defect Curves

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

Potential Side Effects of Defect Curves

Earlier in testing: Pressure is to increase
bug counts
�Run tests of features known to be broken or

incomplete.
�Run multiple related tests to find multiple

related bugs.
� Look for easy bugs in high quantities rather

than hard bugs.
� Less emphasis on infrastructure, automation

architecture, tools and more emphasis of bug
finding. (Short term payoff but long term
inefficiency.)

 Module 7 - Achieve Acceptable Mission

 7 - 19

Potential Side Effects of Defect Curves

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Potential Side Effects of Defect Curves

� Later in testing: Pressure to decrease find rate
� Run lots of already-run regression tests
� Don’t look as hard for new bugs.
� Shift focus to appraisal, status reporting.
� Classify unrelated bugs as duplicates
� Class related bugs as duplicates (and closed), hiding

key data about the symptoms / causes of the problem.
� Postpone bug reporting until after the measurement

checkpoint (milestone). (Some bugs are lost.)
� Report bugs informally, outside of tracking system
� Testers sent to movies before measurement milestones
� Programmers ignore their bugs until reported by testers
� Bugs are taken personally.
� More bugs are rejected.

The side effects of the bug curve and the ease of unconscious manipulation illustrate
the value of using a balanced scorecard to assess testing effort.

Principles of Software Testing for Testers

7 - 20

Bug curve counterproductive?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

Bug curve counterproductive?

� Sometimes, a drop in bug find rate reflects the declining efficiency of a
given style of testing or overreliance on a specific technique.

� Perhaps the better solution, as bug rates drop, is to switch to a more
powerful technique—such as one that had not yet been used because
it relies on stability of individual features as a prerequisite event.

Shouldn't We Strive For This ?

Week

B
u

g
s

P
er

W
ee

k

The key point here is the need for a good test approach, as we discussed in Module
5. It’s worth repeating the characteristics covered there. The test approach (and its

reports) must be:

Diversified. Include a variety of techniques. Each technique is tailored to expose
certain types of problems, and is virtually blind to others. Combining them allows you
to find problems that would be hard to find if you spent the same resource on a
narrower collection of techniques.

Risk-focused. Tests give you the opportunity to find defects or attributes of the

software that will disappoint, alienate, or harm a stakeholder. You can’t run all
possible tests. To be efficient, you should think about the types of problems that are
plausibly in this product or that would make a difference if they were in this product,
and make sure that you test for them.

Product-specific. Generic test approaches don’t work. Your needs and resources will
vary across products. The risks vary across products. Therefore the balance of
investment in different techniques should vary across products.

Practical. There’s no point defining an approach that is beyond your project’s
capabilities (including time, budget, equipment, and staff skills).

Defensible. Can you explain and justify the work that you are doing? Does your
approach allow you to track and report progress and effectiveness? If you can’t report
or justify your work, are you likely to be funded as well as you need?

For more discussion of this approach, see Chapter 11 of Lessons Learned.

 Module 7 - Achieve Acceptable Mission

 7 - 21

The Overall Structure of a Common Report

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

The Overall Structure of a Common Report

� Part 4
Deferred and no-change change requests
�Every project team fixes some bugs and rejects

or defers others.
• At some point, there must be management

review of the collection of problems that will
not be fixed.

�Rather than save up the list for the end of the
project, list the new not-to-be-fixed change
requests every week.

Principles of Software Testing for Testers

7 - 22

Review

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

Module 7 - Review

� Keep Status reporting frequent, simple and
easy to understand.
� Select an appropriate way to measure the

extent of testing.
� Use a standard reporting format that

highlights important information
appropriately.
� A “dashboard” is a useful summary tool.

