
8 - 1

Module 8
The RUP Workflow As Context

Principles of Software Testing for
Testers

Module 8: The RUP Workflow As Context

Topics

 Objectives ..8-2

Verify Test Approach...8-4

Validate Build Stability ..8-13

Improve Test Assets...8-21

Review ...8-32

Principles of Software Testing for Testers

8 - 2

Objectives

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Objectives

Identify the remaining workflow details of
the RUP Test Discipline.
Identify some additional key practices for
successful software testing.
Understand the testing workflow in the
context of an Iteration

Module 8 - The RUP Workflow As Context

8 - 3

Review: Where We’ve Been

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

Review: Where We’ve Been

Quick Review of RUP
Workflow Details
So far, we have
covered:

Define Evaluation
Mission
Test and Evaluate
Achieve Acceptable
Mission

In the previous modules, we discussed many of the core activities that test teams
undertake.

In this module, we’ll talk about some additional practices to help make your iterative
testing effort more successful.

Principles of Software Testing for Testers

8 - 4

Verify Test Approach

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Verify Test Approach

Other Workflow Details
Verify Test Approach

Validate Build Stability
Improve Test Assets

Review Test Workflow

The purpose of this workflow detail is to achieve appropriate breadth and depth of
the test effort to enable a sufficient evaluation of the Target Test Items — where
sufficient evaluation is governed by the Test Motivators and Evaluation Mission.

For each iteration, this work focuses on:

• Early verification that Test Approach will work

• Establishing the supporting infrastructure

• Obtaining the required testability

• Identifying the scope, boundaries, limitations and constraints of each technique

 Module 8 - The RUP Workflow As Context

 8 - 5

Verify Test Approach - Content Outline

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

Verify Test Approach - Content Outline

Overall focus is on the workflow detail:
Verify Test Approach

Definition of the workflow detail
• Brief overview of activities and artifacts typical

of the work
Checking whether your approach is workable
Considerations for testability

Principles of Software Testing for Testers

8 - 6

Verify Test Approach – Activities and Artifacts

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Verify Test Approach – Activities and Artifacts
This section focuses
on proving that the
approach you plan to
use is workable.
We will spend time
looking at activities
that support the
concept of
Testability.
Note that it is a good
practice to implement
tests as concrete
proof that the
approach will work.

Here are the roles, activities and artifacts RUP focuses on in this work.

In the previous modules, we discussed many of the core activities that test teams

undertake.

In this module, we’ll talk about considerations for ensuring your test approach is
appropriate and workable.

Note that diagram shows some lightly shaded elements: these are additional testing
elements that RUP provides guidance for which are not covered directly in this
course. You can find out more about these elements by consulting RUP directly.

 Module 8 - The RUP Workflow As Context

 8 - 7

Verify Test Approach - Purpose

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

Verify Test Approach - Purpose

Will the approach work and produce
accurate results?
Will it fit the project constraints?
Do the techniques give us adequate
coverage?
What risks remain?

Show that the various techniques outlined in the Test Approach will support the
required testing. It is useful to verify by demonstration that the approach will work,

produce accurate results and is appropriate for the available resources.

The objective is to gain an understanding of the constraints and limitations of each
technique, and to either find an appropriate implementation solution for each
technique or find alternative techniques that can be implemented. This helps to
mitigate the risk of discovering too late in the project life-cycle that the test approach
is unworkable.

Principles of Software Testing for Testers

8 - 8

Discussion Exercise 8.1: Testing Project Risks

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 8

Discussion Exercise 8.1: Testing Project Risks

What are the most common risks in testing
projects?
What do you do about them?

 Module 8 - The RUP Workflow As Context

 8 - 9

Checking Whether Your Approach is Workable

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Checking Whether Your Approach is Workable

Risk analysis is a fundamental activity in RUP
Analyze the risks in your plan for testing
Ask how workable your test approach will be

There are an infinite number of tests for your program
• What tests are you implicitly choosing not to run and

what issues will you miss?
How much time can you spend not immediately finding
defects?
• Project management, training, documentation, …

If you skimp on those other tasks…
• How much can you learn and improve?
• How can complex tasks succeed?

Equipment availability: Do you have what you need, for as long as you need it? You
need:

• Equipment for compatibility testing

• Equipment capable of running the product

• Equipment of the kinds that have been high risk – resulted in many technical
support problems – in the past

• Space (physical lab space, places for your to-be-hired staff to sit)

Do you have the budget for your equipment?

When will you order it?

If your equipment is “only” for compatibility testing, will you test briefly and then
surrender it? If so, what if there are defects or relevant code changes? Can you get it
back to retest it?

Staff skills and training

• If you expect them to rely on a tool, have them demonstrate competence with
the tool early, in time to send them for training if necessary.

• If they just got back from training, have them demonstrate competence with the
tool, on problems of the kind you have to solve.

Information availability: If your approach assumes the availability of artifacts from
other people (e.g. models or specifications of certain features or activities)

• Do you know whether those artifacts are being created?

• Do you know when they will be available?

• Do you know how good (realistic, detailed, comprehensible) they are likely to
be?

If the information is unavailable, what is your contingency plan?

Principles of Software Testing for Testers

8 - 10

Improving Testability

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

Improving Testability

Testability involves
Visibility – the tester can see (and understand)
what is going on
Control – the tester can force something to
happen.

Systems don’t magically become testable.
Testability is designed in (or not).

Testability features are built into a program, and
should be discussed when product
requirements are discussed.
It’s up to you to ask for them.

See Lessons Learned, Lesson 137, “Testability is Visibility and Control”.

The discussion in RUP of testability looks at it from three different angles.

• First, there is the idea of improving testability by asking for testability features,
early enough in the project that they can be designed in. Our question should
be, what features would help us test this product much more efficiently?

• Second, there are the lesser improvements that you can ask for later in the
project, when time is more constrained.

• (Third) Both of the preceding consider testability as an attribute of the product

under test. We can also think in terms of our ability to test some aspect of the
product, and review, item by item, what information we have and what we can
get, what tactics are available to us, for testing that item.

 Module 8 - The RUP Workflow As Context

 8 - 11

Improving Testability: Examples

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

Improving Testability: Examples

Visibility
Component-based architecture
Instrumentation for tracing and profiling

Visibility:

• Use standard UI controls, to facilitate GUI-level regression testing

• Unique error information for every error message. Let the tester put the program

into a chatty (e.g. debug) mode. An error message reports the function that
generated the error, plus additional information about the type of internal test
that was failed, the variable that failed it, and any notes from the programmer
about what this might mean.

• Trace logs

Component-based architecture:

• API layer, beneath the user interface, that gives the tester programmatic control
over anything that the UI exposes to the customer. For example, if the UI has a

feature that lets the customer add two numbers, the API would give access to the
same additional call. The UI may change (location of the dialog, visual design,
language, etc.) but the API will change much less often.

• Exposing interface contracts

• This lets the tester create automated tests of the underlying logic of the program,
which will need less maintenance, and which will probably survive longer.

Principles of Software Testing for Testers

8 - 12

Exercise 8.2: Improving Testability

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

Exercise 8.2: Improving Testability

1. Pick a product
2. Form project teams

a. Each team takes a different part of a product
b. Be specific about the part of a product

3. List 10 useful testability features
a. 5 for visibility
b. 5 for control

4. For each, answer:
a. Is it available today?
b. If so, do you use it?
c. When would you have to request this to get it?
d. What would it take (work / cost) to get it?

Optional Exercise

 Module 8 - The RUP Workflow As Context

 8 - 13

Validate Build Stability

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

Validate Build Stability

Other Workflow Details
Verify Test Approach
Validate Build Stability

Improve Test Assets

Review Test Workflow

The purpose of this workflow detail is to Validate that the build can be tested /
evaluated. This helps to prevent wasted testing effort.

For each build to be tested, this work focuses on:

• Assessing the stability and testability of the build

• Confirming the expectation of the development work delivered in the build

• Deciding to accept the build as worth further testing, guided by the evaluation

mission

• If new build is rejected, current build is still used

This work is also referred to as a smoke test, build verification test, build regression
test, sanity check or acceptance into testing.

Principles of Software Testing for Testers

8 - 14

Validate Build Stability - Content Outline

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

Validate Build Stability - Content Outline

Overall focus is on the workflow detail:
Validate Build Stability

Definition of the workflow detail
• Brief overview of activities and artifacts typical

of the work
Why build verification testing is so important
The scope of build verification tests
Automation

 Module 8 - The RUP Workflow As Context

 8 - 15

Validate Build Stability – Activities and Artifacts

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

Validate Build Stability – Activities and Artifacts
This section focuses
on Build Verification
Tests (BVT’s)
We will discuss
some key issues
associated with
BVT’s including
deciding on
appropriate Test
Suites.
A BVT is specialized
Test and Evaluate
work, so you will
notice many
common elements.

Here are the roles, activities and artifacts RUP focuses on in this work.

In the previous section, we discussed verifying your approach.

In this module, we’ll talk about assessing whether a software build is stable enough to
conduct detailed testing work against it.

Note that diagram shows some lightly shaded elements: these are additional testing
elements that RUP provides guidance for which are not covered directly in this
course. You can find out more about these elements by consulting RUP directly.

Principles of Software Testing for Testers

8 - 16

Why Build Verification Tests are So Important (1/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

Why Build Verification Tests are So Important (1/2)

Frequent builds are a valuable risk
management activity

Errors detected early
Errors traceable quickly to a small number of
changes
Design changes reviewed quickly
As the project nears completion, more people
depend on details of the user interface and
functionality of the program. They need to know
about changes (and to review them) as soon as
possible.

Costs of inefficient build management:

• New version comes to testing

• Everyone loads the new version, run their initial tests (such as regression tests of

allegedly fixed bugs, and tests of other key features of interest to that tester.)

• It has critical problems – result is that the intended tests are invalid (will be

ignored), all that time spent was wasted

• Everyone unloads it, gossips about the sloppiness of the programming team,

eventually go back to previous version

Rapid building, in companies that don’t have efficient BVTs, burns so much testing
time that it is called “churning” and programming groups are discouraged from
building more than once per week.

 Module 8 - The RUP Workflow As Context

 8 - 17

Why Build Verification Tests are So Important (2/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

Why Build Verification Tests are So Important (2/2)

Bad builds can waste an enormous amount
of testing time
Build verification is part of the configuration
management process. It prevents versions

Delivered with wrong components
With key test-blocking errors, or without critical
(agreed) fixes to errors, or without key features
That are less efficiently testable than planned

Who runs the Build Verification Test?

Consider having the Release Engineering Team run the BVT as part of the build
process. (It is still responsibility of the Test Team to create and maintain the BVT.)

How many tests should be in the Build Verification Test Suite?

The primary goal is to confirm that this build is worth further testing. The primary

testing will be done AFTER the program passes the BVT. Therefore, the BVT is a
broad test but not a thorough one.

• Relaxed standards for including a test in the BVT is a risk if there are too many

tests in the BVT. In this case, failing the BVT is noticed, but doesn’t force a stop in
using the build (resulting in immediate fix to the build-breaking bug). These
“BVT” suites are more like traditional regression test suites. They are useful, but if
there are many builds, your group would probably want to qualify an individual
build before proceeding to the regressions.

Some groups include in the build test only those tests that would cause them to kick
the build out of testing.

• We keep to minimum set if tests are manual, or if we have fragile (easy-to-break,
high maintenance cost) automation.

• Some groups add tests to the BVT in an area when there is instability and change
in that area. If cleanup of that area is the essential agreed benefit of a series of
builds, added BTV tests can make sense. But these groups often prune their BVT
suite regularly, so that tests that were tactically important a month ago are culled.

Principles of Software Testing for Testers

8 - 18

Organizational Considerations

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

Organizational Considerations

Who should run the BVT?
Programmers? Testers? Configuration mgmt
technicians? Release engineering team?

Who should create and maintain the BVT?
Group independence matters less for BVT

Structure the BVT so that any authorized
person can run it, from any group
Allow different groups to add cases to the BVT,
but leave pruning to the test group

An important concern with this approach is:

• We hinted at the group independence and redundancy problem earlier, when

we talked about private vs. public bugs. The functional tester looks for different
problems, in different ways from the programmer.

• Some test groups create large automated test suites that they pass to the

programming team, who then use these as primary tests for the code they are
writing and maintaining. This can be a serious mistake.

• White box methods are more efficient, in the hands of the programmer, than

black box methods. If the programmer relies primarily on these functional tests,
we lose the benefit of the white box testing that would otherwise be done.

• The extent to which this is a problem varies across companies. In some

companies, even the build verification test has become a prop—to decide
whether a build is ready for testing, these programmers decide to rely exclusively
on the BVT instead of using it to supplement their own work. Their work is

essential, because they understand the risks associated with the changes they
have just made. The BVT is standard, and is blind to build-to-build risks. It is not
effective at exposing most problems. Problems that should have been found in
programmer-test, that make it past the BVT, will take much more time and work
to find in functional testing.

 Module 8 - The RUP Workflow As Context

 8 - 19

Automation of BVTs and Build Process

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Automation of BVTs and Build Process

Most of the BVTs should be automated
Rapid ROI: you run the tests every build anyway

BVTs allow an automated build-verify-deploy
sequence

Maintain / refactor BVTs to prevent false negatives

Mixed BVTs often desirable
Primarily automated, extended with
Manual testing for short term issues
• Build-critical bugs are fixed
• Specific work items delivered

If the program goes through many builds, most or all of the BVT tests should be
automated.

It doesn’t take much time to realize a return on this investment, because you
would run the tests every build even if you were testing manually.

To the extent that the BVT is automated, it can be included in an automated build-
verify-deploy sequence.

Companies that build frequently (e.g. nightly builds) need to automate the full
build process (including the BVT as part of it) as much as possible.

Companies with a purely manual BVT probably cannot afford to run nightly
builds.

Some groups use primarily automated BVTs but allow manual testing for issues that
are short term (e.g. check that build-critical bugs were fixed—these specific tests will
come and go, and may or may not be efficient to automate.)

Be sure to review the BVT at each iteration exit and consider pruning unnecessary
tests from it.

Principles of Software Testing for Testers

8 - 20

Discussion Exercise 8.3: Build Verification Tests

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

Discussion Exercise 8.3: Build Verification Tests

Describe your build process
Describe your build verification testing

How successful or unsuccessful is your BVT?

What would you change?

 Module 8 - The RUP Workflow As Context

 8 - 21

Improve Test Assets

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

Improve Test Assets

Other Workflow Details
Verify Test Approach
Validate Build Stability
Improve Test Assets

Review Test Workflow

The purpose of this workflow detail is to maintain and improve the test assets. This is
important especially if the intention is to reuse the assets developed in the current
test cycle in subsequent test cycles.

For each test cycle, this work is focused mainly on:

• Assembling Test Scripts into additional appropriate Test Suites

• Removing test assets that no longer serve a useful purpose or have become

uneconomic to maintain

• Maintaining Test Environment Configurations and Test Data sets

• Exploring opportunities for reuse and productivity improvements

• Conducting general maintenance of and making improvements to the

maintainability of test automation assets

• Documenting lessons learned—both good and bad practices discovered during

the test cycle

Principles of Software Testing for Testers

8 - 22

Improve Test Assets - Content Outline

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

Improve Test Assets - Content Outline

Overall focus is on the workflow detail:
Improve Test Assets

Definition of the workflow detail
• Brief note of activities and artifacts typical of

the work
Considerations for Improving Test Assets
Maintenance Costs
Artifacts you might consider improving

 Module 8 - The RUP Workflow As Context

 8 - 23

Improve Test Assets – Activities and Artifacts

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 23

Improve Test Assets – Activities and Artifacts
This section
focuses on making
sure regular
improvements are
made to the test
effort.
We will discuss
some of the key
concerns in making
ongoing
improvements to
test assets and
activities.

Here are the roles, activities and artifacts RUP focuses on in this work.

In the previous module, we discussed Build Verification Testing.

In this module, we’ll talk about ongoing improvement of test assets over the course of
the iteration, and the life of the project.

Note that diagram shows some lightly shaded elements: these are additional testing
elements that RUP provides guidance for which are not covered directly in this
course. You can find out more about these elements by consulting RUP directly.

Principles of Software Testing for Testers

8 - 24

Considerations for Improving Test Assets

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 24

Considerations for Improving Test Assets

Point of this workflow detail is simple and direct.
You make a large investment in test ideas, test cases
and scripts (whether manual or automated), test
documentation, tester training materials, and so on.
These are your long term assets.
It is important to protect and increase their value.

Every iteration in every project involves change.
Changes may make parts of some assets outdated.
Change is inevitable, so plan a maintenance strategy.
If you cannot maintain your assets efficiently, you risk
losing their value over time.

The point is to maintain and improve the test assets.

This is important if you will reuse test assets, especially where considerable time or

expense has been expended developing the assets in the first place.

 Module 8 - The RUP Workflow As Context

 8 - 25

Discussion Exercise 8.4: Cost Considerations

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 25

Discussion Exercise 8.4: Cost Considerations

What Assets need to be maintained?
Test Scripts?
Test Suites?
Test Cases?
Test-Ideas Lists?
Change Requests?
Test-Idea Catalogs?
Automation Frameworks?
Others?

Can you afford to maintain them all?

You won’t have time or resources to maintain and improve all of your test assets to
the level you would like. You will need to make trade-offs and decide which assets

are the most beneficial and economical to maintain.

Over time, the effort spent on maintenance activity will indicate which assets are of
more or less value to maintain. Take the time to understand this important feedback
so you can make the best use of your limited resources in each subsequent test cycle
or iteration.

Principles of Software Testing for Testers

8 - 26

Workbook Page: Artifacts To Consider Improving (1/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 26

Workbook Page: Artifacts To Consider Improving (1/2)

Test guidelines
Test approach
Test ideas catalog
Test automation

Test data
Test script
Test suite
Test automation architecture
Test environment configuration
Test plan
Test evaluation summary

Test guidelines

• A documented record of any of the following: process control and enactment

decisions, standards to be adhered to, or good-practice guidance generally to be
followed by the practitioners on a given project.

Test data

• The definition (usually formal) of a collection of test input values that are
consumed during the execution of a test, and expected results referenced for
comparative purposes during the execution of a test.

Test script

• The step-by-step instructions that realize a test, enabling its execution. Test
Scripts may take the form of either documented textual instructions that are

executed manually or computer readable instructions that enable automated test
execution.

Test suite

• A package-like artifact used to group collections of Test Scripts, both to sequence

the execution of the tests and to provide a useful and related set of Test Log
information from which Test Results can be determined.

 Module 8 - The RUP Workflow As Context

 8 - 27

Workbook Page: Artifacts To Consider Improving (2/2)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 27

Workbook Page: Artifacts To Consider Improving (2/2)

-- notes continued from previous slide

Test automation architecture

• A composition of various test automation elements and their specifications that

embody the fundamental characteristics of the test automation software system.
The Test Automation Architecture provides a comprehensive architectural
overview of the test automation system, using a number of different architectural

views to depict different aspects of the system.

Test environment configuration

• A specific arrangement of hardware, software, and the associated environment

settings required to conduct accurate tests that enable the evaluation of the
Target Test Items.

Test plan

• The definition of the goals and objectives of testing within the scope of the

iteration (or project), the items being targeted, the approach to be taken, the
resources required and the deliverables to be produced. Test evaluation
summary

Test Evaluation Summary

• Organizes and presents a summary analysis of the Test Results and key measures

of test for review and assessment, typically by key quality stakeholders. In
addition, the Test Evaluation Summary may contain a general statement of
relative quality and provide recommendations for future test effort.

Principles of Software Testing for Testers

8 - 28

Module 8 - Content Outline (Agenda)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 28

Module 8 - Content Outline (Agenda)

Other Workflow Details
Verify Test Approach
Validate Build Stability
Improve Test Assets

Review Test Workflow

 Module 8 - The RUP Workflow As Context

 8 - 29

Review: Iterations

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 29

Review: Iterations

Each iteration results in an executable release (internal or
external). Iterations are the “heartbeat” or rhythm of the
project and a governing principle for testing in RUP.

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel.
Iteration

Devel.
Iteration

Devel.
Iteration

Transition
Iteration

Transition
Iteration

Inception Elaboration Construction Transition

In Module 3, we covered iterations. There are often multiple iterations per phase of
the lifecycle.

Principles of Software Testing for Testers

8 - 30

The Test Workflow Occurs in Each Iteration

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 30

The Test Workflow Occurs in Each Iteration

This diagram represents
testing work within an
Iteration.
All workflow details can be
performed in a single
Iteration.
There are usually several
Test Cycles within the
Iteration.

Every iteration will potentially involve all of the workflow details we have discussed
during this course. Although you may decide in a given iteration that specific

workflow details will not be performed, it is important to have considered each one
and arrived at a reasoned conclusion why that work doesn’t need to be undertaken.

Within each Iteration, there will be one or more Test Cycles. Each test cycle
represents testing work undertaken against a specific software build.

There may also be multiple techniques to verify as being appropriate and useful
within the project context. As the project progresses, you may need to verify changes

to the existing techniques or introduce new ones. To help focus this work, it can be
useful to scope it based on a single technique, or a limited subset of them.

 Module 8 - The RUP Workflow As Context

 8 - 31

Each Build Is a Candidate for a Cycle of Testing

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 31

Each Build Is a Candidate for a Cycle of Testing

As discussed at the start of this course, assessment activities – which include testing –
form a part of the software lifecycle in each iteration.

Within an iteration, each software build is a potential candidate to be tested. Within
each iteration – and for each build to be tested within the iteration – the challenge is
to:

• Focus on the most important factors that will motivate the test effort

• Target your approach accordingly

• Conduct appropriate tests to explore each motivating factor

• Provide ongoing objective assessment of your findings in a timely manner

These are all aspects of what is often referred to as “Context-Driven Testing”.

Note that there are various considerations why a build may or may not be tested:

• The build cycle is too frequent (e.g. daily), requiring too much overhead to

complete a cycle of testing for each build.

• The build is too unstable and/ or incomplete. Again, build verification testing

helps to address this risk.

In cases where a specific software build won’t be tested, it typical for testing to
continue on an earlier build.

Principles of Software Testing for Testers

8 - 32

Review

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 32

Module 8 - Review

What does it mean to Verify the Test
Approach?

Name one key aspect that needs to be
considered?

Why are Build Verification Tests
Important?
When should you consider improving
your test assets?

