
Principles of Software Testing for
Testers

Module 8: The RUP Workflow As Context

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Objectives

 Identify the remaining workflow details of
the RUP Test Discipline.
 Identify some additional key practices for

successful software testing.
 Understand the testing workflow in the

context of an Iteration

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

Review: Where We’ve Been

 Quick Review of RUP
Workflow Details

 So far, we have
covered:
Define Evaluation

Mission
Test and Evaluate
Achieve Acceptable

Mission

Presenter
Presentation Notes
In the previous modules, we discussed many of the core activities that test teams undertake.In this module, we’ll talk about some additional practices to help make your iterative testing effort more successful.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Verify Test Approach
Other Workflow Details
Verify Test Approach
Validate Build Stability
Improve Test Assets

Review Test Workflow

Presenter
Presentation Notes
The purpose of this workflow detail is to achieve appropriate breadth and depth of the test effort to enable a sufficient evaluation of the Target Test Items — where sufficient evaluation is governed by the Test Motivators and Evaluation Mission.For each iteration, this work focuses on:Early verification that Test Approach will workEstablishing the supporting infrastructure Obtaining the required testability Identifying the scope, boundaries, limitations and constraints of each technique

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

Verify Test Approach - Content Outline

 Overall focus is on the workflow detail:
Verify Test Approach
Definition of the workflow detail

• Brief overview of activities and artifacts typical
of the work

Checking whether your approach is workable
Considerations for testability

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Verify Test Approach – Activities and Artifacts
 This section focuses

on proving that the
approach you plan to
use is workable.

 We will spend time
looking at activities
that support the
concept of
Testability.

 Note that it is a good
practice to implement
tests as concrete
proof that the
approach will work.

Presenter
Presentation Notes
Here are the roles, activities and artifacts RUP focuses on in this work.In the previous modules, we discussed many of the core activities that test teams undertake.In this module, we’ll talk about considerations for ensuring your test approach is appropriate and workable.Note that diagram shows some lightly shaded elements: these are additional testing elements that RUP provides guidance for which are not covered directly in this course. You can find out more about these elements by consulting RUP directly.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

Verify Test Approach - Purpose

Will the approach work and produce
accurate results?
Will it fit the project constraints?
 Do the techniques give us adequate

coverage?
What risks remain?

Presenter
Presentation Notes
Show that the various techniques outlined in the Test Approach will support the required testing. It is useful to verify by demonstration that the approach will work, produce accurate results and is appropriate for the available resources. The objective is to gain an understanding of the constraints and limitations of each technique, and to either find an appropriate implementation solution for each technique or find alternative techniques that can be implemented. This helps to mitigate the risk of discovering too late in the project life-cycle that the test approach is unworkable.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 8

Discussion Exercise 8.1: Testing Project Risks

What are the most common risks in testing
projects?
What do you do about them?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Checking Whether Your Approach is Workable

 Risk analysis is a fundamental activity in RUP
 Analyze the risks in your plan for testing
 Ask how workable your test approach will be
 There are an infinite number of tests for your program

• What tests are you implicitly choosing not to run and
what issues will you miss?

 How much time can you spend not immediately finding
defects?
• Project management, training, documentation, …

 If you skimp on those other tasks…
• How much can you learn and improve?
• How can complex tasks succeed?

Presenter
Presentation Notes
Equipment availability: Do you have what you need, for as long as you need it? You need:Equipment for compatibility testingEquipment capable of running the productEquipment of the kinds that have been high risk – resulted in many technical support problems – in the pastSpace (physical lab space, places for your to-be-hired staff to sit)Do you have the budget for your equipment?When will you order it?If your equipment is “only” for compatibility testing, will you test briefly and then surrender it? If so, what if there are defects or relevant code changes? Can you get it back to retest it?Staff skills and trainingIf you expect them to rely on a tool, have them demonstrate competence with the tool early, in time to send them for training if necessary. If they just got back from training, have them demonstrate competence with the tool, on problems of the kind you have to solve.Information availability: If your approach assumes the availability of artifacts from other people (e.g. models or specifications of certain features or activities)Do you know whether those artifacts are being created?Do you know when they will be available?Do you know how good (realistic, detailed, comprehensible) they are likely to be?If the information is unavailable, what is your contingency plan?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

Improving Testability

 Testability involves
Visibility – the tester can see (and understand)

what is going on
Control – the tester can force something to

happen.
 Systems don’t magically become testable.

Testability is designed in (or not).
 Testability features are built into a program, and

should be discussed when product
requirements are discussed.
 It’s up to you to ask for them.

Presenter
Presentation Notes
See Lessons Learned, Lesson 137, “Testability is Visibility and Control”.The discussion in RUP of testability looks at it from three different angles.First, there is the idea of improving testability by asking for testability features, early enough in the project that they can be designed in. Our question should be, what features would help us test this product much more efficiently?Second, there are the lesser improvements that you can ask for later in the project, when time is more constrained.(Third) Both of the preceding consider testability as an attribute of the product under test. We can also think in terms of our ability to test some aspect of the product, and review, item by item, what information we have and what we can get, what tactics are available to us, for testing that item.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

Improving Testability: Examples

 Visibility
 Component-based architecture
 Instrumentation for tracing and profiling

Presenter
Presentation Notes
Visibility:Use standard UI controls, to facilitate GUI-level regression testingUnique error information for every error message. Let the tester put the program into a chatty (e.g. debug) mode. An error message reports the function that generated the error, plus additional information about the type of internal test that was failed, the variable that failed it, and any notes from the programmer about what this might mean.Trace logsComponent-based architecture:API layer, beneath the user interface, that gives the tester programmatic control over anything that the UI exposes to the customer. For example, if the UI has a feature that lets the customer add two numbers, the API would give access to the same additional call. The UI may change (location of the dialog, visual design, language, etc.) but the API will change much less often. Exposing interface contractsThis lets the tester create automated tests of the underlying logic of the program, which will need less maintenance, and which will probably survive longer.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

Exercise 8.2: Improving Testability

1. Pick a product
2. Form project teams

a. Each team takes a different part of a product
b. Be specific about the part of a product

3. List 10 useful testability features
a. 5 for visibility
b. 5 for control

4. For each, answer:
a. Is it available today?
b. If so, do you use it?
c. When would you have to request this to get it?
d. What would it take (work / cost) to get it?

Presenter
Presentation Notes
Optional Exercise

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

Validate Build Stability
Other Workflow Details
Verify Test Approach
Validate Build Stability
Improve Test Assets

Review Test Workflow

Presenter
Presentation Notes
The purpose of this workflow detail is to Validate that the build can be tested / evaluated. This helps to prevent wasted testing effort.For each build to be tested, this work focuses on:Assessing the stability and testability of the build Confirming the expectation of the development work delivered in the build Deciding to accept the build as worth further testing, guided by the evaluation missionIf new build is rejected, current build is still usedThis work is also referred to as a smoke test, build verification test, build regression test, sanity check or acceptance into testing.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

Validate Build Stability - Content Outline

 Overall focus is on the workflow detail:
Validate Build Stability
Definition of the workflow detail

• Brief overview of activities and artifacts typical
of the work

Why build verification testing is so important
 The scope of build verification tests
Automation

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

Validate Build Stability – Activities and Artifacts
 This section focuses

on Build Verification
Tests (BVT’s)

 We will discuss
some key issues
associated with
BVT’s including
deciding on
appropriate Test
Suites.

 A BVT is specialized
Test and Evaluate
work, so you will
notice many
common elements.

Presenter
Presentation Notes
Here are the roles, activities and artifacts RUP focuses on in this work.In the previous section, we discussed verifying your approach.In this module, we’ll talk about assessing whether a software build is stable enough to conduct detailed testing work against it.Note that diagram shows some lightly shaded elements: these are additional testing elements that RUP provides guidance for which are not covered directly in this course. You can find out more about these elements by consulting RUP directly.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

Why Build Verification Tests are So Important (1/2)

 Frequent builds are a valuable risk
management activity
Errors detected early
Errors traceable quickly to a small number of

changes
Design changes reviewed quickly
As the project nears completion, more people

depend on details of the user interface and
functionality of the program. They need to know
about changes (and to review them) as soon as
possible.

Presenter
Presentation Notes
Costs of inefficient build management:New version comes to testingEveryone loads the new version, run their initial tests (such as regression tests of allegedly fixed bugs, and tests of other key features of interest to that tester.) It has critical problems – result is that the intended tests are invalid (will be ignored), all that time spent was wastedEveryone unloads it, gossips about the sloppiness of the programming team, eventually go back to previous versionRapid building, in companies that don’t have efficient BVTs, burns so much testing time that it is called “churning” and programming groups are discouraged from building more than once per week.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

Why Build Verification Tests are So Important (2/2)

 Bad builds can waste an enormous amount
of testing time
 Build verification is part of the configuration

management process. It prevents versions
Delivered with wrong components
With key test-blocking errors, or without critical

(agreed) fixes to errors, or without key features
 That are less efficiently testable than planned

Presenter
Presentation Notes
Who runs the Build Verification Test?Consider having the Release Engineering Team run the BVT as part of the build process. (It is still responsibility of the Test Team to create and maintain the BVT.)How many tests should be in the Build Verification Test Suite?The primary goal is to confirm that this build is worth further testing. The primary testing will be done AFTER the program passes the BVT. Therefore, the BVT is a broad test but not a thorough one.Relaxed standards for including a test in the BVT is a risk if there are too many tests in the BVT. In this case, failing the BVT is noticed, but doesn’t force a stop in using the build (resulting in immediate fix to the build-breaking bug). These “BVT” suites are more like traditional regression test suites. They are useful, but if there are many builds, your group would probably want to qualify an individual build before proceeding to the regressions.Some groups include in the build test only those tests that would cause them to kick the build out of testing.We keep to minimum set if tests are manual, or if we have fragile (easy-to-break, high maintenance cost) automation.Some groups add tests to the BVT in an area when there is instability and change in that area. If cleanup of that area is the essential agreed benefit of a series of builds, added BTV tests can make sense. But these groups often prune their BVT suite regularly, so that tests that were tactically important a month ago are culled.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

Organizational Considerations

Who should run the BVT?
Programmers? Testers? Configuration mgmt

technicians? Release engineering team?
Who should create and maintain the BVT?
 Group independence matters less for BVT
Structure the BVT so that any authorized

person can run it, from any group
Allow different groups to add cases to the BVT,

but leave pruning to the test group

Presenter
Presentation Notes
An important concern with this approach is:We hinted at the group independence and redundancy problem earlier, when we talked about private vs. public bugs. The functional tester looks for different problems, in different ways from the programmer.Some test groups create large automated test suites that they pass to the programming team, who then use these as primary tests for the code they are writing and maintaining. This can be a serious mistake.White box methods are more efficient, in the hands of the programmer, than black box methods. If the programmer relies primarily on these functional tests, we lose the benefit of the white box testing that would otherwise be done.The extent to which this is a problem varies across companies. In some companies, even the build verification test has become a prop—to decide whether a build is ready for testing, these programmers decide to rely exclusively on the BVT instead of using it to supplement their own work. Their work is essential, because they understand the risks associated with the changes they have just made. The BVT is standard, and is blind to build-to-build risks. It is not effective at exposing most problems. Problems that should have been found in programmer-test, that make it past the BVT, will take much more time and work to find in functional testing.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Automation of BVTs and Build Process

 Most of the BVTs should be automated
 Rapid ROI: you run the tests every build anyway

 BVTs allow an automated build-verify-deploy
sequence
 Maintain / refactor BVTs to prevent false negatives

 Mixed BVTs often desirable
 Primarily automated, extended with
 Manual testing for short term issues

• Build-critical bugs are fixed
• Specific work items delivered

Presenter
Presentation Notes
If the program goes through many builds, most or all of the BVT tests should be automated.It doesn’t take much time to realize a return on this investment, because you would run the tests every build even if you were testing manually.To the extent that the BVT is automated, it can be included in an automated build-verify-deploy sequence. Companies that build frequently (e.g. nightly builds) need to automate the full build process (including the BVT as part of it) as much as possible. Companies with a purely manual BVT probably cannot afford to run nightly builds.Some groups use primarily automated BVTs but allow manual testing for issues that are short term (e.g. check that build-critical bugs were fixed—these specific tests will come and go, and may or may not be efficient to automate.)Be sure to review the BVT at each iteration exit and consider pruning unnecessary tests from it.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

Discussion Exercise 8.3: Build Verification Tests

 Describe your build process
 Describe your build verification testing
How successful or unsuccessful is your BVT?

What would you change?

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

Improve Test Assets
Other Workflow Details
Verify Test Approach
Validate Build Stability
Improve Test Assets

Review Test Workflow

Presenter
Presentation Notes
The purpose of this workflow detail is to maintain and improve the test assets. This is important especially if the intention is to reuse the assets developed in the current test cycle in subsequent test cycles.For each test cycle, this work is focused mainly on:Assembling Test Scripts into additional appropriate Test Suites Removing test assets that no longer serve a useful purpose or have become uneconomic to maintain Maintaining Test Environment Configurations and Test Data sets Exploring opportunities for reuse and productivity improvements Conducting general maintenance of and making improvements to the maintainability of test automation assets Documenting lessons learned—both good and bad practices discovered during the test cycle.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

Improve Test Assets - Content Outline

 Overall focus is on the workflow detail:
Improve Test Assets
Definition of the workflow detail

• Brief note of activities and artifacts typical of
the work

Considerations for Improving Test Assets
Maintenance Costs
Artifacts you might consider improving

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 23

Improve Test Assets – Activities and Artifacts
 This section

focuses on making
sure regular
improvements are
made to the test
effort.

 We will discuss
some of the key
concerns in making
ongoing
improvements to
test assets and
activities.

Presenter
Presentation Notes
Here are the roles, activities and artifacts RUP focuses on in this work.In the previous module, we discussed Build Verification Testing.In this module, we’ll talk about ongoing improvement of test assets over the course of the iteration, and the life of the project.Note that diagram shows some lightly shaded elements: these are additional testing elements that RUP provides guidance for which are not covered directly in this course. You can find out more about these elements by consulting RUP directly.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 24

Considerations for Improving Test Assets

 Point of this workflow detail is simple and direct.
 You make a large investment in test ideas, test cases

and scripts (whether manual or automated), test
documentation, tester training materials, and so on.
 These are your long term assets.
 It is important to protect and increase their value.

 Every iteration in every project involves change.
 Changes may make parts of some assets outdated.
 Change is inevitable, so plan a maintenance strategy.
 If you cannot maintain your assets efficiently, you risk

losing their value over time.

Presenter
Presentation Notes
The point is to maintain and improve the test assets. This is important if you will reuse test assets, especially where considerable time or expense has been expended developing the assets in the first place.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 25

Discussion Exercise 8.4: Cost Considerations

What Assets need to be maintained?
Test Scripts?
Test Suites?
Test Cases?
Test-Ideas Lists?
Change Requests?
Test-Idea Catalogs?
Automation Frameworks?
Others?

Can you afford to maintain them all?

Presenter
Presentation Notes
You won’t have time or resources to maintain and improve all of your test assets to the level you would like. You will need to make trade-offs and decide which assets are the most beneficial and economical to maintain.Over time, the effort spent on maintenance activity will indicate which assets are of more or less value to maintain. Take the time to understand this important feedback so you can make the best use of your limited resources in each subsequent test cycle or iteration.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 28

Module 8 - Content Outline (Agenda)

 Other Workflow Details
Verify Test Approach
Validate Build Stability
Improve Test Assets

 Review Test Workflow

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 29

Review: Iterations

Each iteration results in an executable release (internal or
external). Iterations are the “heartbeat” or rhythm of the
project and a governing principle for testing in RUP.

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel.
Iteration

Devel.
Iteration

Devel.
Iteration

Transition
Iteration

Transition
Iteration

Inception Elaboration Construction Transition

Presenter
Presentation Notes
In Module 3, we covered iterations. There are often multiple iterations per phase of the lifecycle.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 30

The Test Workflow Occurs in Each Iteration

 This diagram represents
testing work within an
Iteration.

 All workflow details can be
performed in a single
Iteration.

 There are usually several
Test Cycles within the
Iteration.

Presenter
Presentation Notes
Every iteration will potentially involve all of the workflow details we have discussed during this course. Although you may decide in a given iteration that specific workflow details will not be performed, it is important to have considered each one and arrived at a reasoned conclusion why that work doesn’t need to be undertaken. Within each Iteration, there will be one or more Test Cycles. Each test cycle represents testing work undertaken against a specific software build.There may also be multiple techniques to verify as being appropriate and useful within the project context. As the project progresses, you may need to verify changes to the existing techniques or introduce new ones. To help focus this work, it can be useful to scope it based on a single technique, or a limited subset of them.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 31

Each Build Is a Candidate for a Cycle of Testing

Presenter
Presentation Notes
As discussed at the start of this course, assessment activities – which include testing – form a part of the software lifecycle in each iteration.Within an iteration, each software build is a potential candidate to be tested. Within each iteration – and for each build to be tested within the iteration – the challenge is to:Focus on the most important factors that will motivate the test effortTarget your approach accordinglyConduct appropriate tests to explore each motivating factorProvide ongoing objective assessment of your findings in a timely mannerThese are all aspects of what is often referred to as “Context-Driven Testing”.Note that there are various considerations why a build may or may not be tested:The build cycle is too frequent (e.g. daily), requiring too much overhead to complete a cycle of testing for each build.The build is too unstable and/ or incomplete. Again, build verification testing helps to address this risk.In cases where a specific software build won’t be tested, it typical for testing to continue on an earlier build.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 32

Module 8 - Review

What does it mean to Verify the Test
Approach?
Name one key aspect that needs to be

considered?
Why are Build Verification Tests

Important?
When should you consider improving

your test assets?

	Slide Number 1
	Objectives
	Review: Where We’ve Been
	Verify Test Approach
	Verify Test Approach - Content Outline
	Verify Test Approach – Activities and Artifacts
	Verify Test Approach - Purpose
	Discussion Exercise 8.1: Testing Project Risks
	Checking Whether Your Approach is Workable
	Improving Testability
	Improving Testability: Examples
	Exercise 8.2: Improving Testability
	Validate Build Stability
	Validate Build Stability - Content Outline
	Validate Build Stability – Activities and Artifacts
	Why Build Verification Tests are So Important (1/2)
	Why Build Verification Tests are So Important (2/2)
	Organizational Considerations
	Automation of BVTs and Build Process
	Discussion Exercise 8.3: Build Verification Tests
	Improve Test Assets
	Improve Test Assets - Content Outline
	Improve Test Assets – Activities and Artifacts
	Considerations for Improving Test Assets
	Discussion Exercise 8.4: Cost Considerations
	Module 8 - Content Outline (Agenda)
	Review: Iterations
	The Test Workflow Occurs in Each Iteration
	Each Build Is a Candidate for a Cycle of Testing
	Module 8 - Review

