

Nobel for Magnetic Resonance

Richard Ernst, Zurich,

Nobel Prize in Chemistry, 1991

For his fundamental contributions to NMR methodology-Nuclear Magnetic Resonance Fourier Transform Spectroscopy

>

Kurt Wüthrich Nobel Prize in Chemistry, 2002 NMR studies of structure and function of biological macromolecules.

http://www.nobel.se/chemistry/laureates/2002/wuthrich-lecture.html

Table 1.1 Nuclear properties of some of the elements							
	Element	Atomic mass	Spin I	Natural abundance (%)	Receptivity $(^{13}C = 1.00)$	Quadrupole moment (10 ³⁰ m ²)	Resonant frequency (MHz) at 2.348 T
NMD Dariadia Tabla	Hydrogen	1	1/2	99.985	5670	None	100.00
	Deuterium	2	1	0.015	0.0082	0.287	15.35
	Helium	3	1/2	6 00014	0.0035	None	76.18
	Lithium	6	1	7.42	3.58	-0.064	14.72
	Lithium	7	3/2	92.58	1540	-3.7	38.87
	Beryllium	9	3/2	100	78.8	5.3	15.06
	Boron	10	3/2	19.58	22.1 754	7.4 4.1	10.75
NMR "active" Nuclear Spin (I) = $\frac{1}{2}$	Carbon	13	1/2	1.108	1.00	None	25.15
	Nitrogen	14	1	99.63	5.70	1.67	7.23
¹ H. ¹³ C. ¹⁵ N. ¹⁹ F. ³¹ P	Nitrogen	15	1/2	0.37	0.022	None	10.14
biological and charted valories	Fluorine	19	1/2	100	4730	-2.0 None	94.09
biological and chemical relevance	Neon	21	3/2	0.257	0.0036	9	7.90
Odd atomic mass	Sodium	23	3/2	100	524	10	26.43
	Magnesium	25	5/2	10.13	1.54	22	6.13
$I = +\frac{1}{2} & -\frac{1}{2}$	Silicon	29	1/2	4.7	2.1	None	20.08
1 /2 0 /2	Phosphorus	31	1/2	100	377	None	40.48
	Sulfur	33	3/2	0.76	0.098	-6.4	7.67
NMD "inactive" Nuclear Chin (I) - O	Chlorine	35(37)	3/2	93.1	20.2	-8.2	9.81
NIVIR mactive Nuclear Spin $(1) = 0$.	Calcium	43	7/2	0.145	0.053	-5	6.74
120 160	Scandium	45	7/2	100	1720	-22	24.33
0, 0	Titanium	49(47)	7/2	5.51	1.18	24	5.64
Even atomic mass & number	Chromium	51(50)	3/2	99.76	0.49	-5.2	20.55
	Manganese	55	5/2	100	1014	40	24.84
	Iron	57	1/2	2.19	0.00425	None	3.24
Quadrupole Nuclei Nuclear Spin (I) > 1/-	Cobalt	59	7/2	100	1560	42	23.73
	Copper	63(65)	3/2	69.09	368	-22	26.51
¹⁴ N, ² H, ¹⁰ B	Zinc	67	5/2	4.11	0.67	15	6.25
E se standa e se O selata e se bas	Gallium	71(69)	3/2	39.6	322	11	30.58
Even atomic mass & odd number	Arsenic	73	3/2	100	0.62	-17	3.48 17.18
$I = \pm 1 \ 0 \ 2 \ 1$	Selenium	77	1/2	7.58	3.02	None	19.07
$I = \pm 1, 0 \propto -1$	Bromine	81(79)	3/2	49.46	279	27	27.10
	Krypton	83	3/2	11.55	1.24	2/	3.86
	Strontium	87	9/2	7.02	1.08	15	4.35
	Yttrium	89	1/2	100	0.676	None	4.92
	Zirconium	91	5/2	11.23	6.05	-21	9.34
	Molybdenum	95(97)	5/2	15.72	2.92	-52	6.55
	Technetium	99	9/2	Radioactive	-	-0.13	22.51
	Ruthenium	99(101)	5/2	12.72	0.815	7.6	4.61
	Palladium	105	5/2	22.23	1.43	65	5.10 4.58
	Silver	109(107)	1/2	48.18	0.28	None	4.65
	Cadmium	113(111)	1/2	12.26	7.69	None	22.18

-	% Natural Abundance	I	M.Moment µ	γ*	v MHz	B _o Telsa
¹ H	99.9844	1/2	2.7927	267.53	60	1.41
² H	0.0156	1	0.8574	41.1	60	9.23
¹² C		0				
¹³ C	1.108	1/2	0.7022	67.28	60	5.61
¹⁶ O		0				
¹⁹ F	100.0	1/2	2.6273	251.7	60	1.50
³¹ P	100.0	1/2	1.1305	108.3	60	3.49

The chemical shift

The valence electrons around the nucleus are caused to *circulate* by the applied magnetic field B. This circulation, termed a local diamagnetic current, induces a *local magnetic field dB* that is oriented to *oppose* the applied field B. The net result is that the nucleus feels a *reduced magnetic field B*_{loc}; that is, the applied field has been *shielded* by the local diamagnetic current.

 σ is a dimensionless quantity called the *shielding constant* of the nucleus.

$$\delta B = -\sigma B$$

$$B_{loc} = B + \delta B = (1 - \sigma)B$$

 $\frac{\gamma B}{2\pi}$

Since the frequency at which resonance occurs is a direct function of the effective magnetic field B_{loc} , every nucleus that is in a distinct electronic environment will undergo resonance at a different applied frequency

scanning the frequency gives a NMR spectrum

Dr. Zerong Wang at UHCL

The δ -scale of chemical shift

The resonance frequency can be expressed in terms of *chemical shift* δ , which is related to the difference between the resonance frequency, v, of the nucleus analyzed and that of a reference standard v^o:

$$\delta = \frac{v - v^o}{v^o} \times 10^6$$

For ¹H and ¹³C, the standard is tetramethylsilane, TMS: Si(CH₃)₄, for which δ =0 ppm

 \rightarrow With the δ -scale, shifts are

$$\delta = \frac{(1-\sigma)B - (1-\sigma^{\circ})B}{(1-\sigma^{\circ})B} \times 10^{6} = \frac{\sigma^{\circ} - \sigma}{1-\sigma^{\circ}} \times 10^{6} \cong (\sigma^{\circ} - \sigma) \times 10^{6}$$

Diamagnetic Contribution σ_d

***** B generates a circulation of charge in the ground-state electron distribution of the atom $\supset \delta B$ is created opposite to B, which shields the nucleus and gives rise to σ_d . σ_d depends on the

electron density around the protons. Lamb formula:

nb formula:
$$\sigma_d = \frac{e^2 \mu_0}{3m_e} \int_0^\infty r\rho(r) dr$$

 μ_0 = vacuum permeability, r = electron-nucleus distance, $\rho(r)$ is the electron density around the nucleus. Although the Lamb formula is strictly valid for spherical symmetry, when the diamagnetic contribution is dominant, it gives the right trend.

→ An electronegative atom X, directly bound to a proton (H-X) or with one carbon as intermediate (H-C-X), decreases the electron density around the proton and decreases the shielding σ_d contribution. The transition appears at high frequency, a large δ is observed.

	CHJF	CH3Cl	CH ₃ Br	CH'I	СН'Н
δ(CH _s)	4.13	2.84	2.45	1.98	0.13
Electronegativity	4.0	3.0	2.8	2.5	2.1

All groups in a molecule which contain π -electrons generate anisotropic secondary fields in response to an external magnetic field. The lines-of-force in these fields can either shield or deshield hydrogens, depending on the exact shape of the field and the location of the particular hydrogen nucleus. In the diagrams below, protons within the (+) regions of space will be shielded (smaller δ) and protons in the (-) regions will be deshielded (larger δ).

The splitting rule for ¹H NMR A Much Simpler Rule

For simple cases, the multiplicity of a signal for a particular proton is equal to the number of equivalent vicinal protons + 1.

This is called the N+1 Rule: The number of proton neighbors plus itself gives the splitting number.

Pascal's Trian	igle "T	rue" For NMR				
Splitting Patterns of Common Multiplets						
Number of equivalent protons to which H is coupled	Appearance of multiplet	Intensities of lines in multiplet				
1	Doublet	1:1				
2	Triplet	1:2:1				
3	Quartet	1:3:3:1				
4	Pentet	1:4:6:4:1				
5	Sextet	1:5:10:10:5:1				
6	Septet	1:6:15:20:15:6:1				

¹³C DEPT NMR

The DEPT(distortionless enhanced polarization transfer) experiment is a useful 1D NMR experiment that provides information on the number of protons attached to the various ¹³C resonances in a carbon NMR spectrum. In the DEPT experiment we use two rf transmitters, one to apply pulses to the ¹H spins and one to apply pulses to the ¹³C spins. We acquire the ¹³C signal during the FID time period. During the ¹³C acquisition, the ¹H transmitter is used for broad-band (BB) decoupling to remove the splitting of ¹³C signals by attached protons. For the proton channel, it is important to note that we are using the transmitter that is normally used to do decoupling and not the one that is used for routine proton acquisitions.

Results of the DEPT experiments (quaternary carbons are null in all spectra):

DEPT 45: CH, CH₂, CH₃ positive.
DEPT 90: CH positive, CH₂, CH₃ null (often a small residual signal is seen).
DEPT 135: CH, CH₃ positive, CH₂ negative.

Shoolery rules ()						
 Olefines. For alkenes we change the tables for the base values, but we also have to consider the stereochemistry of the substituent (<i>cis, trans</i>, or <i>gem</i>): So for cinnamic acid (<i>trans</i> Ph-CH^a=CH^b-COOH), we get that ôH^a = 5.25 + 1.38 + 0 + 						
0.98 = 7.61, 7.82 and 6.4	$0.98 = 7.61$, and $\delta H^{b} = 5.25 + 0.80 + 0 + 0.36 = 6.41$, pretty close to the reported values of 7.82 and 6.47 ppm.					
$b = 5.25 + R_{gem} + R_{trans} + R_{cis}$						
	Substituent	δαομ	δ _{cis}	δ _{trans}		
ľ	H-	0.0	0.0	0.0		
	Alkyl-	0.45	-0.22	-0.28		
	-OR	1.21	-0.60	-1.00		
	-COOH	0.80	0.98	0.32		
	-Ar	1.38	0.36	-0.07		
	-C=C-	1.24	0.02	-0.05		
	-OH	1.22	-1.07	-1.21		
	-CI	1.08	-0.40	-1.02		
Dr. Zerong Wang at UHCL						

Shoolery rules () • <i>Aromatics</i> . Finally, the Schoolery rules allow us to calculate the approximate chemical shifts in aromatic compounds. Again, we have a different base value of 7.26 (benzene).								
$\delta = 7.26 + R_{ortho} + R_{meta} + R_{para}$								
	Substituent	δ _{ortho}	δ _{meta}	δ _{para}				
	H-	0.0	0.0	0.0				
	CH ₃ -	-0.18	-0.10	-0.20				
	-NO ₂	0.95	0.26	0.38				
	-COOH	0.85	0.18	0.25				
	-OCH ₃	1.38	0.36	-0.07				
	-CI	1.24	0.02	-0.05				
	-F	1.22	-1.07	-1.21				
	-CONH ₂	1.38	0.36	-0.07				
	-CH=CH ₂	1.24	0.02	-0.05				
	-SO ₃ H	1.22	-1.07	-1.21				
Dr. Zerong Wang at UHCL								

Sample Factors Influencing NMR Sensitivity

- System should have short longitudinal T₁ to allow maximum number of scans
- Exhibit longest possible transverse T₂ to yield sharpest lines
- Be decoupled from other magnetically active centers so as to yield single line
- Be stable on NMR time scale
- Transfer of magnetization from adjacent scalar coupled nuclei to spin site under observation
- > Isotopic enrichment of observed nucleus

