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Abstract— When a sensor network is deployed in hostile
environments, the adversary may compromise some sensor nodes,
and use the compromised nodes to inject false sensing reports or
modify the reports sent by other nodes. In order to defend against
the attacks with low cost, researchers have proposed symmetric
group key-based en-route filtering schemes, such as SEF [1]
and I-LHAP [2]. However, if the adversary has compromised
a large number of nodes, many group keys can be captured,
and the filtering schemes may become ineffective or even useless.
To deal with node compromise, the compromised nodes should
be identified and the innocent nodes should update their group
keys. Some existing intruder identification schemes can be used to
identify the compromised nodes, but most existing group rekeying
schemes are not suitable for sensor networks since they have
large overhead and are not scalable. To address the problem, we
propose a family of predistribution and local collaboration-based
group rekeying (PCGR) schemes. These schemes are designed
based on the ideas that future group keys can be preloaded to the
sensor nodes before deployment, and neighbors can collaborate
to protect and appropriately use the preloaded keys. Extensive
analyses and simulations are conducted to evaluate the proposed
schemes, and the results show that the proposed schemes can
achieve a good level of security, outperform most previous group
rekeying schemes, and significantly improve the effectiveness of
filtering false data.

Index Terms: System design, simulations, sensor networks,

security, group rekeying.

I. INTRODUCTION

When a sensor network [3] is deployed in unattended and

hostile environments such as battlefield, the adversary may

capture and reprogram some sensor nodes, or inject some

sensor nodes into the network and make the network accept

them as legitimate nodes [4]. After getting control of a few

nodes, the adversary can mount various attacks from inside

the network. For example, a compromised node (intruder)

may inject false sensing reports or maliciously modify reports

that go through it. Under such attacks, the sink may receive
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incorrect sensing data and make wrong decisions, which may

be dangerous in scenarios such as battlefield surveillance and

environmental monitoring.

To defend against such attacks, the digital signature-based

technique can be used to authenticate and filter false messages.

However, this technique has high overhead both in terms of

computation and bandwidth [5], which makes it unsuitable for

sensor networks [6]. Therefore, researchers proposed to adopt

symmetric cryptographic techniques such as the statistical en-

route filtering (SEF) scheme [1] and the interleaved hop-

by-hop authentication (I-LHAP) scheme [2], to address the

problem. The basic idea of these schemes is as follows: Sensor

nodes are randomly divided into multiple groups. Nodes in

the same group share a symmetric group key and the final

receiver (sink) knows all the group keys. Each message is

attached with multiple MACs, each is generated using one

group key. When such a message is forwarded along a path

to the receiver, an en-route node may use its group key to

verify the MACs carried in the message. Normally, an en-route

node only knows one group key, so it cannot change a passing

message or inject a false message without being detected by

other en-route nodes who know different group keys. However,

if the adversary has compromised a large number of nodes,

many group keys may be captured, and the en-router filtering

mechanisms may become inefficient or even useless. To deal

with node compromises, the compromised nodes should be

identified, and the innocent nodes should update their group

keys to prevent the adversary from utilizing the captured keys.

To identify the compromised nodes, each node can use the

watchdog mechanism [7] to monitor its neighbors and identify

the compromised nodes when observing misbehaviors. The

collaborative intruder identification scheme proposed by Wang



et al. [8] can also be used to improve the accuracy.

The group key updating problem has been extensively

studied in the context of secure multicast in wired or wireless

networks. Many centralized solutions [9], [10], [11], [12]

and a few distributed solutions [13] have been proposed.

However, most of them are not suitable for sensor networks.

For example, in SKDC [9], each key updating requires N

encryptions (N is the number of nodes in the networks) and N

key transmissions from the central controller to each individual

node, which results in very high communication overhead

and rekeying delay. The logic tree-based schemes proposed

by Wallner et al. [10], Wong et al. [11], and Balenson et

al. [12] can achieve logarithmic broadcast size, storage, and

computational cost. However, the communication cost and the

rekeying delay are still high when applied to a large scale

network. Furthermore, the central controller has to trace the

status of all nodes, and maintain a large logic tree connecting

all the trusted nodes, which incurs high management overhead.

As a distributed solution, Blundo’s scheme [13] allows a set of

nodes to set up a group key in a distributed way. However, it is

still not scalable since the storage cost of each node increases

rapidly as the group size increases and each node must know

other trusted members in the same group.

To address the drawbacks of the existing group rekeying

schemes, we propose a family of distributed and localized

group rekeying schemes, called the predistribution and local

collaboration-based group rekeying (PCGR) schemes. The

design of these schemes are motivated by the following

ideas: (1) Future keys can be preloaded to individual nodes

before deployment to avoid the high overhead of securely

and reliably disseminating new keys from a central key server

to all trusted nodes at the key updating time. (2) Neighbors

can collaborate with each other to effectively protect and

appropriately use the preloaded keys; the local collaboration

also relieves the high cost of the centralized management.

Based on these ideas, we first propose a basic PCGR (B-

PCGR) scheme. To address some security limitations of B-

PCGR, we propose two enhanced PCGR schemes, i.e., the

cascading PCGR (C-PCGR) scheme and the random variance-

based PCGR (RV-PCGR). Extensive analyses are conducted

to evaluate the security level and the performance of the

proposed schemes, as well as comparing the performance

of the proposed schemes with some existing group rekeying

schemes. Simulations are used to evaluate the effectiveness

of the proposed group rekeying scheme in filtering false data.

The analyses and simulation results show that the proposed

schemes can achieve a good level of security, outperform most

previously proposed schemes, and significantly improve the

effectiveness of filtering false data with low overhead.

The rest of the paper is organized as follows: The next

section presents the system model. In Section III, we describe

and analyze the basic PCGR scheme. The enhanced PCGR

schemes are presented in Section IV. Section V reports the

performance evaluation results. Section VI discusses some

issues related to the proposed schemes. Section VII concludes

the paper.

II. THE SYSTEM MODEL

We consider a large scale wireless sensor network which

is deployed in a hostile environment; e.g., a sensor network

deployed in a battlefield for tracking enemy tanks [14], [15].

The network is composed of low-complexity sensor nodes, e.g.

the Berkeley MICA mote [16], which has a processor running

at 4 MHz and a 4KB RAM for data storage. These nodes

have limited power supply, storage space, and computation

capability. Therefore, public key-based operations cannot be

afforded. On the other hand, each node has enough space for

storing a few kilobytes of keying information.

Node deployment is managed by a central controller (setup

server), which is responsible for assigning group keys and

preloading some keying information to a node before it is

deployed. We assume that each node is innocent before de-

ployment, and cannot be compromised during the first several

minutes after deployment [17] since compromising a node

takes some time. Also, each pair of neighboring nodes can

establish a pairwise key using some existing techniques [18],

[19], [20], [21]. When two neighbors exchange some messages

for key updating, the messages must be encrypted using their

pairwise key to prevent eavesdropping.

To defend against compromised nodes (or outside intruders)

from injecting false reports or modifying the reports generated

by other innocent nodes, the statistical en-route filtering (SEF)

mechanism [1] is used to detect and drop false messages. We

assume that a compromised node can eventually be detected by

most of its neighbors within a certain time period. To achieve

this, the watchdog mechanism [7] and some collaborative

intruder detection and identification schemes [8] can be used.

We also assume that nodes are loosely synchronized, and

group rekeying is started periodically [22].



III. THE BASIC PREDISTRIBUTION AND LOCAL

COLLABORATION-BASED GROUP REKEYING (B-PCGR)
SCHEME

In this section, we first present the basic idea of the B-

PCGR scheme and then give a detailed description. Finally,

we analyze its security property.

A. The Basic Idea

The B-PCGR scheme includes the following three steps.

1) Group Key Predistribution: Before a node is deployed,

it is randomly assigned to a group, and is preloaded with

the current and all future keys of the group. The keys are

represented by a polynomial called group key polynomial (g-

polynomial). Compared to most existing group rekeying proto-

cols, in which new group keys are generated and distributed at

the key updating time, the B-PCGR scheme can significantly

reduce the communication overhead and the key updating

delay, since the keys are preloaded.

2) Local Collaboration-Based Key Protection: Since all

group keys are preloaded, it is important to protect the keys

from being exposed to intruders. For this purpose, nodes

should not explicitly keep the future group keys, because

the keys can be captured by an adversary when the node is

compromised. Based on the assumption that every node is

innocent at least during the first few minutes after deployment,

we propose a local collaboration-based group key protection

technique as follows:

• Each node randomly picks a polynomial, called en-

cryption polynomial (e-polynomial), to encrypt its g-

polynomial. We call the encrypted g-polynomial g’-

polynomial.

• Some shares of the e-polynomials are distributed to its

neighbors.

• The node removes its g-polynomial and e-polynomial, but

keeps its current key and its g’-polynomial.

After the above steps, a node can not access its future group

keys without collaborating with a certain number of neighbors,

each of which has a share of its e-polynomial.

3) Local Collaboration-Based Group Key Updating: At

the time of group key updating, every innocent node needs

to receive a certain number of e-polynomial shares from its

trusted neighbors. Also, the received shares can only be used to

calculate one instance of the e-polynomial which is necessary

for computing the new group key. This group key updating

mechanism guarantees that a node can compute its new group

key as long as it is trusted by a certain number of neighbors;

meanwhile, the node can not derive any group keys that should

not be disclosed at this time.

B. Detailed Description of B-PCGR

1) Predistributing g-Polynomials: Initially, the setup server

decides the total number of groups. For each group i, a unique

t-degree (t is a system parameter) univariate g-polynomial

gi(x) is constructed over a prime finite field F (q) to represent

the keys of the group, where gi(0) is the initial group key,

gi(j) (j ≥ 1) is the group key of version j, and q is a large

prime whose size can accommodate a group key.

Before a node Nu is deployed, the setup server randomly

assigns it to a group, and preloads the g-polynomial of the

group, denoted as g(x), to it.

2) Encrypting g-Polynomials and Distributing the Shares

of the e-Polynomials: After Nu has been deployed and has

discovered its neighbors, it randomly picks a bivariate e-

polynomial

eu(x, y) =
∑

0≤i≤t,0≤j≤µ

Ai,jx
iyj , (1)

where µ is a system parameter.

Using the e-polynomial (i.e., eu(x, y)), as shown in Figure

1 (b), Nu encrypts its g-polynomial (i.e., g(x)) to get its g’-

polynomial (denoted as g′(x)). The encryption is conducted

as follows:

g′(x) = g(x) + eu(x, u). (2)

After that, as shown in Figure 1 (c), Nu distributes the

shares of eu(x, y) to its n neighbors Nvi
(i = 0, · · · , n − 1).

Specifically, each neighbor Nvi
receives share eu(x, vi). At the

same time, Nu removes eu(x, y) and g(x), but keeps g′(x).
The final distribution of g′(x) and eu(x, vi) is illustrated in

Figure 1 (d).

3) Key Updating: Each node maintains a rekeying timer,

which is used to periodically notify the node to update its

group key, and the current version of the group key (denoted

as c). Note that c is initialized to 0 when the node is deployed.

To update group keys, each innocent node Nu increases its

c by one, and returns share evi
(c, u) to each trusted neighbor

Nvi
. Meanwhile, as shown in Figure 2 (a), Nu receives a share

eu(c, vi) from each trusted neighbor Nvi
. Having received µ+

1 shares, which are denoted as {〈vi, eu(c, vi)〉, i = 0, · · · , µ},

Nu can reconstruct a unique µ-degree polynomial

eu(c, y) =
µ∑

j=0

Bjy
j , (3)
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by solving the following µ+1 (µ+1)-variable linear equations:
µ∑

j=0

(vi)jBj = eu(c, vi), i = 0, · · · , µ. (4)

Having known eu(c, x), as shown in Figure 2 (b), Nu can

compute its new group key g(c) = g′(c) − eu(c, u).

C. Security Analysis

The following theorem shows the security property of the

B-PCGR scheme.

Theorem 1: For a certain group, its g-polynomial g(x) is

compromised if and only if:

(1.1) a node (Nu) of the group is compromised, and

(1.2) at least µ + 1 neighbors of Nu are compromised;

or

(2) at least t+1 past keys of the group are compromised.

Proof: (sketch) First, we prove that: if condition (1.1) and

(1.2) or (2) is satisfied, g(x) can be compromised.

Assume that Nu and its µ + 1 neighbors, i.e., Nvi
(i =

0, · · · , µ), have been compromised. The adversary can obtain

g′(x) and eu(x, vi) (i = 0, · · · , µ). For an arbitrary x′, a

unique polynomial

eu(x′, y) =
µ∑

j=0

B′
jy

j (5)

can be reconstructed by solving the following µ + 1 (µ + 1)-
variable linear equations:

µ∑
j=0

(vi)jB′
j = eu(x′, vi), where i = 0, · · · , µ. (6)

Knowing eu(x′, y), g(x′) can be computed as follows:

g(x′) = g′(x′) − eu(x′, u) (7)

Similarly, we can prove that: if condition (2) is satisfied, g(x)
can be compromised.

Second, we prove that: if condition (1.1) is satisfied, but

condition (1.2) and (2) are not satisfied, g(x) can not be



compromised. Assume that Nu and its m ≤ µ neighbors,

i.e., Nvi
(i = 0, · · · ,m − 1), are compromised. Thus, for an

arbitrary x′, the adversary can obtain g′(x′) and eu(x′, vi)
(i = 0, · · · ,m − 1). Since m ≤ µ and eu(x′, y) is a µ degree

polynomial of variable y, similar to the proof in [13], we prove

in the following that the adversary can not find out eu(x′, u):
We consider the worst case that m = µ. Suppose the ad-

versary guesses eu(x′, u) = a. A unique polynomial eu(x′, y)
(shown in Eq. (5)), which is a µ-degree polynomial of y, can

be constructed by solving the following linear equations{ ∑µ
j=0(vi)jB′j = eu(x′, vi), i = 0, · · · , µ − 1∑µ
j=0 ujB′j = a.

(8)

However, since a can be an arbitrary value in F (q), the

adversary can construct q different polynomials eu(x′, y).
Also, since eu(x, y) is randomly chosen and hence eu(x′, y)
can be an arbitrary polynomial; i.e., the q polynomials the

adversary can construct are equally likely to be the actual

eu(x′, y). Formally,

∀a, Pr(eu(x′, u) = a | {eu(x′, vi), 0 ≤ i ≤ µ − 1})
≡ Pr(eu(x′, u) = a). (9)

Therefore, the adversary can not derive eu(x′, u).
Without knowing eu(x′, u), the adversary can not find out

g(x), which is equal to g′(x) − eu(x, u). On the other hand,

since condition (2) is not satisfied, we assume that the adver-

sary also knows l ≤ t keys of the considered group. Without

loss of generality, we further assume that the compromised

keys are g(0), g(1), · · · , g(l − 1). Because l ≤ t and g(x) is a

t-degree polynomial of variable x, the adversary can not find

out g(x′), either.

Similar to the above proof, we can also prove that: if

condition (1.2) is satisfied, but condition (1.1) and (2) are not

satisfied, g(x) can not be compromised.

IV. ENHANCEMENTS

The B-PCGR scheme is effective on the condition that: (1)

no node will be compromised together with µ + 1 or more

neighbors, and (2) the adversary can not obtain t + 1 or more

keys from the same group. In some hostile scenarios, the above

conditions can be violated. To deal with these limitations, we

propose two enhancements.

A. Cascading PCGR (C-PCGR) Scheme

The C-PCGR scheme is proposed to address the first limi-

tation of B-PCGR. In this scheme, the e-polynomial shares of

Nu are distributed to its multi-hop neighbors, instead of only
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Fig. 3. C-PCGR: Polynomial Decryption and Share Distribution (c = 0)

to its one-hop neighbors; at the same time, the e-polynomial

shares are distributed/collected in a cascading way, and hence

does not introduce much communication/storage overhead.

1) The Scheme: The C-PCGR scheme is designed based

on the B-PCGR scheme, and it also includes three steps.

However, it differs from B-PCGR in the second and the third

steps, which are described in the following. To simplify the

presentation, we only describe the case where the e-polynomial

shares are distributed to its 1- and 2-hop neighbors, while the

scheme can be extended to more general cases.

Polynomial Encryption and Share Distribution

After each node (Nu) has been deployed and has discovered

its neighbors, it randomly picks two e-polynomials: one is

called 0-level e-polynomial (denoted as eu,0(x, y)), and the

other is called 1-level e-polynomial (denoted as eu,1(x, y)).
In both e-polynomials, the degree of x and y are t and µ,
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respectively.

Using the 0-level e-polynomial (i.e., eu,0(x, y)), each node

Nu can encrypt its g-polynomial (i.e., g(x)) to get its g’-

polynomial (i.e., g′(x)). The encryption is conducted as fol-

lows:

g′(x) = g(x) + eu,0(x, u). (10)

After that, as shown in Figure 3 (a), Nu keeps g(0) (i.e.,

the current group key), removes g(x) and eu,0(x, u), and dis-

tributes the shares of eu,0(x, y) to its neighbors. Specifically,

each neighbor Nv is given eu,0(x, v).
Having received 0-level e-polynomial shares from its neigh-

bors, as shown in Figure 3 (b), each node (say Nv) uses its

1-level e-polynomial (i.e., ev,1(x, y)) to encrypt each received

0-level share (i.e., eu,0(x, v)) to obtain

e′u,0(x, v) = eu,0(x, v) + ev,1(x − 1, v) (11)

After that, Nv keeps e′u,0(x, v) and eu,0(c+1, v), which will be

returned to Nu at the next key updating time. It also removes

eu,0(x, v), and distributes the shares of its 1-level e-polynomial

(ev,1(x, y)) to its neighbors. Figure 3 illustrates how the e-

polynomial shares of Nu are distributed to its 1-hop and 2-hop

neighbors.

Key Updating

To update keys, as shown in Figure 4 (a), each innocent

node Nu increases its c by one, and returns shares ev,0(c, u)
and ev,1(c, u) to each trusted neighbor Nv (Here, we assume

that Nu has received shares ev,0(x, u) and ev,1(x, u) from Nv

before.). At the same time, Nu receives its own 0-level and

1-level e-polynomial shares from its neighbors (i.e., eu,0(c, v)
and eu,1(c, v) from each trusted neighbor Nv).

Having received µ + 1 0-level e-polynomial shares, as

shown in Figure 4 (a), Nu reconstructs a unique polynomial

eu,0(c, x). Knowing eu,0(c, x), Nu can compute its new group

key g(c) = g′(c) − eu,0(c, u).
Having received µ+1 1-level e-polynomial shares, as shown

in Figure 4 (a), Nv computes a unique polynomial ev,1(c, x),
and then generates a share eu,0(c + 1, v) = e′u,0(c + 1, v) −
ev,1(c, v), which will be returned to neighbor Nu at the next

key updating time.

2) Security Analysis: The security property of the C-PCGR

scheme can be expressed by Theorem 2.

Theorem 2: For a certain group, its g-polynomial g(x) can

be compromised if and only if:

(1.1) a node Nu in the group is compromised, and

(1.2) the adversary has compromised at least µ + 1
neighbors of Nu, each of which also has µ+1 neighbors

compromised;

or

(2) at least t + 1 past keys of group i are compromised.

Proof: Similar to the proof of Theorem 1.

B. Random Variance-Based PCGR (RV-PCGR) Scheme

The RV-PCGR scheme aims to address another limitation

of B-PCGR. Specifically, as shown in Figure 5 (a), if the

adversary has obtained t + 1 keys of a certain group, e.g.,

g(0), g(1), · · · , g(t), the adversary can break the g-polynomial

of the group (i.e., g(x)) based on these keys.

1) Basic Idea: The basic idea of the RV-PCGR scheme

is illustrated in Figure 5 (b). Let the length of g(j) be 2L

bits. We can add a L bit random number (called random

variance) σj to g(j) to obtain gr(j), such that the highest L

bits of gr(j) are the same as those of g(j), but the lowest

L bits are different. This can be achieved by constructing

the polynomials and conducting the addition/multiplication

operations over an extended finite field [23] F (22L), in which

the addition operation is defined as modulo-2 addition. Using

some techniques (presented next), we can guarantee that the

adversary can obtain only gr(j), not knowing the original g(j).
Based on gr(j) (j = 0, · · · , t), the adversary can construct a

t-degree polynomial gr(x), but gr(x) is different from g(x).
That is, the adversary cannot break the future keys of the

group.
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Certainly, the adversary may guess each σj and attempts to

find out each original g(j) (g(j) = gr(j)⊕σj). However, since

each σj can be an arbitrary number picked from {0, · · · , 2L −
1}, the probability of guessing correctly is 1

2(t+1)L . Consider

an example, in which t = 9 and L = 64, the probability is as

low as 1
2640 . In the following, the scheme for implementing

the above basic idea is described in detail.

2) The Scheme: The RV-PCGR scheme also has three steps.

Predistributing G-Polynomials

Similar to B-PCGR, the setup server decides the total num-

ber of groups, and picks a t-degree univariate g-polynomial

for each group. Also, each node Nu is given a g-polynomial

g(x) when it is deployed.

Different from B-PCGR, each g(x) is constructed over an

extended finite field F (22L), where L is the length of a group

key (e.g., 64bits). Also, the group key of any version j is

defined as the highest L bits of g(j), instead of g(j) itself.

Encrypting G-Poly. and Distributing Components

Similar to B-PCGR, after Nu has been deployed and

has discovered its neighbors, it randomly picks a t-degree

e-polynomial eu(x)1. Using the e-polynomial (eu(x)), Nu

encrypts its g-polynomial (g(x)) to get its g’-polynomial

1In this subsection, the e-polynomial shares distributed to a neighbor is
randomly constructed, irrelevant to the identity of the receiver. Thus, we can
remove the second parameter y in the polynomial eu(x, y) as in B-PCGR.

(g′(x) = g(x)⊕ eu(x)). After that, Nu randomly decomposes

eu(x) into µ + 1 components, denoted as eu,i(x) (i =
0, · · · , µ), such that

µ∑
i=0

eu,i(x) = eu(x). (12)

These components are evenly distributed to the neighbors, and

each neighbor gets only one components.

Key Updating

To update keys, each innocent node Nu increases its key

version counter c by one, and returns

er
v,j(c) = ev,j(c) ⊕ σ′

c,v (13)

to each trusted neighbor Nv . Here, we assume that Nu has

received share ev,j(x) from Nv before, and σ′
c,v is randomly

picked from {0, · · · , 2L − 1}. At the same time, Nu also

receives er
u,i(c) from Nv .

Having received µ + 1 distinct shares 〈vi, e
r
u,i(c)〉 (i =

0, · · · , µ), Nu computes er
u(c) =

∑µ
i=0 er

u,i(c). Knowing

er
u(c), Nu can compute gr(c) = g′(c)⊕er

u(c), and the highest

L bits of gr(c) are used as the new group key.

3) Security Analysis: During the key updating process, the

share returned by each node is added a random variance

(refer to Eq. (13)). Therefore, the gr(c) calculated by node

Nu has already included a random variance. Without loss of

generality, we suppose the adversary has obtained gr(i), where

i = 0, · · · , n − 1 and n ≥ t + 1. The adversary can use the

following process to guess the original g(x), where

g(x) =
t∑

j=0

Djx
j . (14)

For every distinct (t + 1)-tuple of variances 〈σ0, · · · , σt〉,
where σj ∈ {0, 1, · · · , 2L − 1} (k = 0, · · · , t):
(1) The guessed value of each Dj , denoted as D̂j , is calcu-

lated by solving the following t+1 (t+1)-variable linear

equations:

t∑
j=0

(i)jD̂j = gr(i) ⊕ σi, where i = 0, · · · , t. (15)

(2) Let g(x) =
∑t

j=0 D̂j(x). If the highest L bits of g(i) are

the same as those of gr(i), where i = t + 1, · · · , n − 1,

this g(x) is recorded as a candidate polynomial of the

original g(x).

If the total number of the recorded candidate polynomials is

1, the candidate polynomial is the original g(x); otherwise,

one of the candidate polynomials is randomly picked as the



guessed g(x). Obviously, the original g(x) is among the

recorded candidate polynomials. However, the complexity to

find out the candidates is as high as o(2(t+1)L). For example,

if t = 9 and L = 64, the complexity is 2640.

V. PERFORMANCE EVALUATIONS

In this section, we first analytically compare the perfor-

mance of the proposed PCGR schemes and some previously

proposed group rekeying schemes. Then, we conduct simu-

lations to show that the proposed PCGR scheme can signifi-

cantly improve the performance of filtering false messages.

A. Performance Analysis

Before analyzing the performance of different schemes, we

list some notations that are used in this section as follows:

• N : the total number of nodes in the network.

• n: the average number of trusted neighbors that a node

has.

• nc: the number of (compromised) nodes that should be

evicted.

• L: the length (in bits) of a group key.

1) Comparing the Performance of the PCGR Schemes:

We compare the performance of the proposed PCGR schemes

in terms of communication cost, computation overhead, and

storage requirement. The main results are shown in Table I.

Communication Cost

In the B-PCGR scheme, each innocent node needs to send

out n messages to its trusted neighbors during each key

updating process. Each message includes one share, which

has L bits. Therefore, nL bits are sent out by each node.

Similar to B-PCGR, the C-PCGR scheme also requires

each innocent node to send out n messages for key updating.

However, the size of each message includes two shares, which

has 2L bits. Therefore, each node has to send out 2nL bits.

In RV-PCGR, each innocent node should send out n shares

to its trusted neighbors, and each share has 2L bits. Therefore,

each node needs to sent out 2nL bits for each key updating.

Computational Overhead

In all three schemes, each share sent/received by a node

should be encrypted/decrypted using pairwise keys to prevent

eavesdropping, and the total number of messages sent/received

is 2n during each key updating process. Therefore, each

node needs 2n encryptions/decryptions. Next, we discuss other

computation overhead of each scheme.

In the B-PCGR scheme, each node Nu first needs to

evaluate n + 1 t-degree polynomials (evi
(c) and g′(x)) to

compute n shares and g′(c), which needs o((n + 1)t2) mul-

tiplications. After receiving µ + 1 or more shares, it also

needs to solve a (µ + 1)-variable linear equation system

to compute eu(c, u), and the computational complexity of

using Gaussian elimination to solve such an equation system

is o(µ3) multiplications/divisions. The overall computational

complexity is o((n+1)t2 +µ3) multiplications/divisions over

F (q).
In C-PCGR, each node needs to compute n more shares

and solve one more (µ + 1)-variable linear equation system,

so the total computational complexity is o((2n + 1)t2 + 2µ3)
multiplications/division over F (q)

In RV-PCGR, each node also needs to evaluate n + 1 t-

degree polynomials to compute n shares and g′(c). However,

after receiving µ + 1 or more shares, it only needs to add up

these shares, instead of solving an equation system. Therefore,

the total computational complexity is o((n + 1)t2) multipli-

cations. However, the multiplications are conducted over field

F (22L).
To reduce rekeying delay caused by computations, most of

the above computations (i.e., computing and encrypting shares,

as well as computing g′(c)) can be performed beforehand,

and only a few other computations (i.e., decrypting shares

and computing eu(c, u)) should be performed during the key

updating time. To distinguish these two types of computational

overhead, as shown in Table I, we list both the computational

overhead at key updating time and the total computational

overhead for each key updating.

Storage Requirements

In the B-PCGR scheme, each node Nu needs to store the

following information:

• the g’-polynomial g′(x), which needs (t + 1) · L bits to

store its coefficients.

• the shares of its neighbors’ e-polynomials, i.e., evi
(x, u)

(i = 0, · · · , n − 1), which need n(t + 1)L bits.

The total storage requirement is (n + 1)(t + 1)L bits.

In C-PCGR, each node Nu needs to store the following

information:

• the g’-polynomial g′(x), which needs (t + 1) · L bits to

store its coefficients.

• the shares of its neighbors’ 0-level e-polynomials, i.e.,

evi,0(x, u) (i = 0, · · · , n − 1), which need n · (t + 1) · L
bits.

• the shares of its neighbors’ 1-level e-polynomials, i.e.,

evi,1(x, u) (i = 0, · · · , n − 1), which need n · (t + 1) · L



bits.

The total storage requirement is (2n + 1) · (t + 1) · L bits.

The storage requirement of the RV-PCGR scheme is similar

to B-PCGR, except that each coefficient of the polynomials

has a length of 2L. Thus, the overall storage requirement is

2(n + 1)(t + 1)L bits.

Summary

Table I compares the performance of B-PCGR, C-PCGR

and RV-PCGR. From the table, we can see that C-PCGR

and RV-PCGR have higher communication, computation, and

storage overhead than B-PCGR, but they achieve a higher level

of security.

2) Comparison with Other Group Rekeying Schemes: Table

II compares B-PCGR with some previous schemes, i.e., SKDC

[9], LKH [10] and Blundo’s scheme [13]. We only compare

the costs of these schemes related to key updating, and nc

represents the number of (compromised) nodes that should be

evicted.

In the SKDC scheme, the central controller sends a new

key to each trusted node individually. We assume that such a

message should go through
√

N/2 hops in average, and each

new key has L bits. Therefore, the total traffic introduced by

key updating is (N−nc)·L·√N
2 , and the average size of the data

sent/received by a node is (N−nc)L

2
√

N
. To finish a key updating,

each node should receive the new key, which takes o((N −
nc)+

√
N/2) units of time. The scheme is efficient in terms of

computation and storage. Each node needs only one decryption

and stores one key.

When analyzing the LKH scheme, we assume that a binary

logic key hierarchy is used. Let sc represent the size of the

common ancestor tree (CAT) [24] of the evicted nodes. This

scheme requires that each node in CAT should change its key

encryption key (KEK) and notify the KEK to its two children

(except the evicted nodes). Therefore, 2Sc−nc keys should be

transmitted. Each node should receive the keys, which results

in a rekeying delay of o(
√

N) units of time. Also, each node

in this scheme should keep logN (the height of tree) number

of KEKs, and hence the storage requirement is LlogN .

If Blundo’s scheme is used for distributedly generating a

group key for up to N members, each node needs to store

and compute a (N − 1)-variable polynomial. Assume that the

degree of the polynomial is t, the total storage requirement is

as high as N(t + 1)L bits.

Comparing our B-PCGR scheme to the previous schemes,

we can find that:

• B-PCGR has smaller rekeying delay than any other

schemes.

• B-PCGR generates less traffic than SKDC when the

network size (N ) is large. Also, it generates less traffic

than LHK when 2Sc − nc > n.

• As a distributed scheme, B-PCGR requires each node to

perform some computations that are performed solely by

the central controller in a centralized scheme. Therefore,

the computational cost (per node) of B-PCGR is larger

than the centralized schemes (SKDC and LHK), but it is

smaller than Blundo’s scheme. From the table, we can

see that only a small fraction of the computations are

performed at key updating time, so the rekeying delay

should not be increased too much. Furthermore, the key

updating process may be initiated once every several

hours or even a couple of days, so the computational

cost is not significant in the long term.

• The storage requirement of B-PCGR is smaller than

Blundo’s scheme, but larger than SKDC and LHK. How-

ever, the storage requirement is not very large in most

cases. For example, if n = 20, t = 30 and L = 64bits,

the required storage space is about 5KB. If the network

density is very high and each node has many neighbors,

the node may select only a subset of the neighbors to

distribute shares. Thus, the storage requirement of each

node can be reduced.

B. Simulations

We use simulations to study how the group rekeying scheme

(i.e., B-PCGR) can improve the performance of filtering false

messages.

1) Simulation Model: In the simulation, 2000 sensor nodes

are uniformly distributed to a 1000 × 800m2 field, and the

communication range of each node is 40m. The stationary

sink (base station) sits at one corner of the field.

We simulate the behavior of the adversary as follows: The

adversary keeps on capturing and compromising sensor nodes.

Every certain time interval (denoted as τc), the adversary can

compromise (reprogram) one node and obtain the keys held by

the node. After that, the node is put back to the network (with

all the keys already compromised by the adversary). Therefore,

every τc, the number of compromised nodes is increased by 1,

and the number of compromised keys may also be increased

if the newly compromised node has keys previously unknown

to the adversary. Each compromised node attacks the system

by injecting a false report every 10 second (We assume that



TABLE I

COMPARING B-PCGR, C-PCGR AND RV-PCGR

B-PCGR C-PCGR RV-PCGR
Data sent/received by each
node (bits)

nL 2nL 2nL

Rekeying delay o(1) o(1) o(1)
Computational overhead at key
updating time

n decryptions, o(µ3) multi-
plications/divisions over F (q)
(q > 2L)

n decryptions, o(µ3) multipli-
cations/divisions over F (q)

n decryptions

Total computational overhead
per node

2n encryptions/decryptions,
o(µ3 + (n + 1)t2)
multiplications/divisions
over F (q)

2n encryptions/decryptions
and o(2µ3 + (2n + 1)t2)
multiplications/divisions over
F (q)

2n encryptions/decryptions
and o((n + 1)t2)
multiplications/divisions
over F (22L)

Storage requirement per node
(bits)

(n + 1)(t + 1)L (2n + 1)(t + 1)L 2(n + 1)(t + 1)L

TABLE II

COMPARING B-PCGR WITH PREVIOUS GROUP REKEYING SCHEMES

SKDC LKH Blundo’s B-PCGR
Distributed No No Yes Yes
Data sent/received by each
node (bits)

(N−nc)L

2
√

N
(2sc − nc)L log(nc) nL

Rekeying delay o((N −nc)+
√

N
2

) o(
√

N) o(
√

N) o(1)
Maximum computational
overhead per node (at key
updating time)

1 decryption logN decryptions evaluating a t-degree
(N − 1)-variable
polynomial over F (q)
(q > 2L)

n decryptions, o(µ3)
multiplications/divisions
over F (q)

Maximum computational
overhead per node (overall)

1 decryption logN decryptions evaluating a t-degree
(N − 1)-variable
polynomial over F (q)

2n encryp-
tions/decryptions,
o(µ3 + (n + 1)t2)
multiplications/divisions
over F (q)

Storage requirement per
node (bits)

L LlogN N(t + 1)L (n + 1)(t + 1)L

an intruder will not inject false reports with higher rate, since

the intruder is easier to be detected in that case.)

The original SEF scheme [1], the SEF scheme with intruder

isolation (SEF-i) and the SEF scheme with periodical key

updating (called SEF-u) are simulated and evaluated in terms

of:

• the injected message overhead, which is the total number

of hops traversed by each injected message (before it is

dropped) in one second;

• the control message overhead, which is the total number

of hops traversed by each control message related to the

intruder isolation (identification) or key updating in one

second;

• the total message overhead, which is the sum of injected

message overhead and control message overhead.

2) Simulation Results: We first evaluate the key updating

mechanism by comparing the performance of SEF-u to SEF

and SEF-i. Figure 6 shows the results when the key updating
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Fig. 6. Performance of the key updating scheme (τc = 10min,τu =
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interval (τu) is 100 minutes and the node compromise interval

(τc) is 10 minutes. In the figure, a point corresponding to

time t refers to the average message overhead during the 10
minute-phase ending at t.

From the figure, we can see that SEF-i and SEF outperform

SEF-u at the beginning of the network lifetime. This is due to



the reason that there are very few intruders during that period.

The message overhead injected by the intruders is small, and

the intruder isolation mechanism can effectively deal with

the problem. In this case, if keys are periodically updated,

it does not add too much benefit, but increases the message

overhead since each node needs to exchange information with

its neighbors in order to update its keys.

As the attack continues, the trend is reversed and the SEF-u

outperforms the other two. As shown in the figure, the message

overhead increases rapidly in SEF and SEF-i. In SEF-u, since

the keys are updated periodically, the keys compromised by the

adversary become useless after the key updating. Therefore,

the adversary can not continuously accumulate its knowledge

about the keys to obtain a large portion or all keys. Certainly,

some intruders may remain undetected and can renew their

keys. However, these nodes have only one key after each key

updating, and hence does not have significant impact.

When the periodical key updating mechanism is used, the

total message overhead includes two components: the injected

message overhead and the control message overhead (i.e., the

messages exchanged between neighbors for key updating).

Figure 7 shows the tradeoff between these two components.

As key updating interval (τu) increases, the average control

message overhead decreases. At the same time, the average

injected message overhead increases, since the adversary can

compromise more keys to attack the network during each key

phase (i.e., the period between two consecutive key updates).

Consequently, there exist an optimal τu, at which point the

total message overhead is minimized.

From Figure 7 (a), (b) and (c), we can see the impact

of the number of groups and parameter τc on selecting the

optimal τu. When the number of groups is 10 and τc =
10min, the optimal τu is between 150-250 minutes. As the

number of groups decreases (e.g., 5), it becomes easier for

the adversary to compromise a larger portion of keys and

cheat more innocent nodes. Therefore, the injected message

overhead increases more quickly and the optimal τu becomes

smaller (i.e., 100-200 minutes). As τc increases, i.e., nodes are

compromised more slowly, the injected message overhead also

increases more slowly. Consequently, the optimal τu becomes

larger (i.e., 500-700 minutes).

VI. DISCUSSIONS

A. Detecting False Shares

In addition to breaking a group polynomial (i.e., g(x)), the

adversary may prevent a normal node from updating its group

key by returning false shares. To defend against this attack,

a node (say Nu) can keep some signatures of the correct

shares, and use them to detect and filter false shares. For

example, the key polynomial eu(x, y) can be constructed as

eu(x, y) = α(x, y) × du(x, y) + qu(x, y). After distributing

shares of eu(x, y), Nu removes eu(x, y) and α(x, y), but keeps

du(x, y) and qu(x, y). Note that Nu can deliberately select

du(x, y) and qu(x, y) such that most of the coefficients of

these polynomials are zero and hence the required storage

space is small. Based on du(x, y) and qu(x, y), Nu accepts

a received share (say êu(c, v)) from a neighbor (Nv) only if

êu(c, v) ≡ qu(c, v) mod du(c, v).

B. Node Isolation and New Node Deployment

If a large fraction of neighbors are compromised, a node

may not be able to update its group key and thus be isolated.

To deal with this problem, some new nodes may be deployed

to the isolated areas. After that, each new node distributes

shares only to other new nodes to prevent compromised nodes

from obtaining its shares. Also, an isolated innocent node can

distribute its shares to these new nodes, which can help the

node to update its group key and rejoin the network. To enable

these operations, each node should be given an initial master

key K0 before deployment. The key is used only during the

first few minutes after deployment and must be removed after

that. When a new node distributes a share to another new node,

the share will be encrypted with K0 to prevent old nodes

from obtaining it. Also, a node (say Nu) should use K0 to

encrypt its eu(x, y) before removing eu(x, y) and K0, and

keep the encrypted polynomial. When Nu is isolated later, it

sends the encrypted polynomial to the newly deployed nodes.

On receiving the encrypted polynomial, a new node (say Nv)

can decrypt it, obtain a share eu(x, v), and remove eu(x, y).

C. Other Issues

In the proposed schemes, group keys are updated period-

ically. When group keys are being updated in the network,

nodes may not be able to send information to the sink since

the group keys known by the nodes may not be consistent.

To address this problem, information sent during this period

should be authenticated using the old group keys.

If a node has many neighbors, it is not necessary to send

a share to each of them. As future work, we will further

investigate how to determine the number of neighbors that

should receive a share. If this number is too small, the

node may quickly become isolated, since some neighbors are
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Fig. 7. Tunning the key updating interval (τu)

compromised or failed and it cannot get enough number of

shares to update its group key. On the other hand, the security

level could be decreased if too many neighbors have received

key shares.

VII. CONCLUSIONS

In this paper, we proposed a family of predistribution and

local collaboration-based group rekeying (PCGR) schemes to

address the node compromise problem and to improve the

effectiveness of filtering false data in sensor networks. These

schemes are based on the idea that future group keys can be

preloaded before deployment, and neighbors can collaborate

to protect and appropriately use the preloaded keys. Extensive

analyses and simulations were conducted to evaluate the

proposed schemes, and the results show that the proposed

schemes can achieve a good level of security, outperform most

existing schemes, and significantly improve the effectiveness

of filtering false data.

In addition to filtering false data, the proposed PCGR

schemes can also be applied to other group rekeying problems,

especially for scenarios (e.g., pebblenets [25]) where a group

has a large number of widely spread members, the membership

changes frequently, or when it is very expensive to maintain

a central key manager.
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