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Abstract  

Software development for information systems can be characterized by the development of three kinds of 
models: (1) business models for business goals and requirements, (2) logical models for the solution 
design, and (3) physical models for actual implementation. The concept of transactions can beneficially be 
applied to these models. Past efforts for applying low-level transaction concepts to higher-level models 
focused on the atomicity, consistency, isolation, and durability (ACID) properties supported by traditional 
relational DBMS. We propose a novel transaction model that (1) refines the formalism of the ACID 
properties, and (2) adds blockchain-inspired formalism and properties including statefulness, privacy, 
and accountability. It supports transaction decomposition to sub-transactions, thus enabling multi-
layered transactions. The proposed model is based on our experience on developing a proof-of-concept 
prototypical Model-Based Systems Engineering (MBSE) model repository using the blockchain platform 
Hyperledger’s Fabric. A use case of the prototype is used as the illustrative example. 

Keywords 

Business Process Modeling, Blockchain, Business Model, Transaction Model, Model-Driven Software 
Development  

Introduction 

Software development can be characterized by the construction of a sequence of models with increasing 
fidelity for eventual implementation. In Model-Driven Software Development (MDSE), the active uses of 
models are elevated to a central role in the software development process (Brambilla, Cabot & Wimmer 
2017) to examine, specify, design, simulate, implement, test, verify, deploy, and maintain the final 
systems (Cuadrado, Guerra & de Lara 2014). In information systems, the concept of transactions can be 
very beneficial for the development and transformation of these models. Business processes commonly 
involve transactional properties that need to be reliably assured and executed (Garcia et al. 2012). 

Past efforts for applying low-level physical transactional concepts to business transactions in higher-level 
models focused on the atomicity, consistency, isolation, and durability (ACID) properties supported by 
traditional relational DBMS (Allweyer 2016, OASIS 2002). However, business transactions are more 
complex, span longer durations, involve more parties, and are usually implemented by multiple physical 
transactions. The semantic and requirement gaps between business transactions and physical 
transactions have not been addressed entirely satisfactorily. To bridge this gap, this paper proposes a 
multi-layered transaction model in which a transaction can recursively be decomposed into sub-
transactions. Inspired by blockchain, the proposed Blockchain-Inspired Multi-Layered Transaction Model 
(BMTM) includes several useful blockchain transaction properties to serve as the basis of its formulation. 
The paper also re-examines the ACID properties within BMTM. 

The remaining of the paper is organized in the following manner. The rest of this section provides a brief 
background on blockchain. BMTM is based on our experience on developing a proof-of-concept 
prototypical Model-Based Systems Engineering (MBSE) model repository using the blockchain platform 
Hyperledger’s Fabric. This section also presents the necessary context of the blockchain prototype and 
elaborates a selected use case, which will serve as a unifying illustrative example for BMTM. The Business 
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Models, Processes, and Software Development section discusses the context and benefits of how a 
transaction model may fit in business process modeling and software development processes. The next 
section discusses the ACID properties and the basic formulation of BMTM. The Blockchain Transaction 
Properties section elaborates how selected blockchain properties can be used to scaffold and enhance 
BMTM. We draw our conclusions and discuss future research directions in the last section. 

Blockchain Technology (BCT) 

A blockchain is a distributed, decentralized, and highly tamper-resistant digital ledger of transactions 
stored identically in nodes of a distributed peer-to-peer network (Zheng et al. 2017).  The entire history of 
all transaction records is stored in blocks cryptographically linked in a chain. Blockchains can be viewed 
as distributed state machines in which the most recent transaction data on all assets represent the current 
system state (Yue, et al. 2021a). A blockchain transaction changes the system from one consistent state to 
another consistent state. A block contains the hash of the previous block and a timestamp (Nakamoto 
2019). Any retroactive tampering of a transaction will change the containing block, its hash, and thus all 
subsequent blocks in the chain, resulting in the invalidation of the chain. Consequentially, blockchains 
can also be considered as write-once, append-only storage systems. This tamper-resistant immutability 
allows users to effectively verify and audit transactions to ensure authenticity, and thus accountability. 

Blockchain was proposed and first used as the backbone of Bitcoin (Nakamoto 2019). Bitcoin uses a 
simple, Turing-incomplete scripting language that supports only a narrow class of transactions: Bitcoin 
transfers and creations. Ethereum represents the next major enhancement in BCT by introducing smart 
contracts using a Turing-complete language called Solidity (Wood 2014, Yue 2020). Ethereum can thus 
be considered as a blockchain platform that supports complex transactions using smart contracts, 
opening up blockchains for wide applications.  

Both Bitcoin and Ethereum belong to the class of public, permissionless blockchains open to public 
participation without any permission. Public blockchains are based on a trustless security model in which 
participants have no mutual trust (Zheng et al. 2017) and exceedingly strong security mechanism, such as 
the provision of Byzantine Fault Tolerance, must be supported (Sankar, Sindhu & Sethumadhavan 2017). 
As transaction data are openly accessible, privacy in public blockchains is limited. Participants are known 
to only have pseudonymity, not complete anonymity (Yue 2020). Thus, public blockchains are not 
suitable for many business cases where privacy and intellectual properties are key concerns. 

As a result, permissioned blockchain platforms, such as Hyperledger’s Fabric (Androulaki et al. 2018), 
Hyperledger’s Sawtooth (Hyperledger 2021), and Corda (Valenta & Sandner 2017), started to appear. 
Participants need permissions to join permissioned blockchains with varying roles and privileges. These 
blockchain platforms provide varying membership service provisions to support nuanced privacy 
requirements needed by many business models and collaborations. Permissioned blockchains are thus 
used to support private blockchains and consortium blockchains for many business cases. 

A Blockchain-Based MBSE Model Repository Prototype 

Model-Based Systems Engineering (MBSE) is the “formalized application of modeling to support system 
requirements, design, analysis, verification and validation activities” (Hart 2015). In MBSE, models are 
developed using formal and executable modeling languages such as System Modeling Language (SysML) 
(Friedenthal, Moore & Steiner 2014) and UML (Larman 2012) to allow a large number of collaborating 
organizations to use the same language and system model to develop modern, large, complex and 
interdisciplinary systems-of-systems (Ramos, Ferreira & Barceló 2012). MBSE provides many significant 
advantages but requires effective management of an authoritative Single Source of Truth (SST) MBSE 
model repository with desirable features such as the provision of nuanced privacy models, decentralized 
governance policies, immutability, process automation, and performance (Yue, et al. 2021a). BCT can 
support many of these desirable features. Funded by NASA to investigate opportunities and challenges in 
applying blockchain on MBSE, our team built a proof-of-concept prototype using Fabric (with a secondary 
prototype covering a small subset of functionality built using Sawtooth) to implement a number of use 
cases identified and specified by the MBSE lead of a NASA aeronautical project (Yue, et al. 2021a). MBSE 
artefacts are stored as blockchain assets in the prototype. To help exploring blockchain opportunities and 
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resolving many challenges in applying BCT on MBSE, the team developed BMTM. It is thus appropriate to 
employ a use case in our prototyping experiment as an exemplary example. 

A MBSE Use Case, UC1 

In a large-scale MBSE project, an SST model repository stores MBSE artefacts: models, sub-models, 
components, sub-components, etc. A consortium of organizations collaborates on model development and 
usually has a lead organization, C (e.g., NASA). Participating organizations have nuanced semi-trust 
relationships with each other to protect their intellectual properties, as they may also be competitors 
elsewhere. In this use case, named UC1, organization O1 is responsible for the development of the artefact 
A (e.g., an SysML model). The most recent approved version of A in the repository is V2.1. Organization 
O2 is permitted to access all approved versions of A as O2 may need it to develop other components. On 
the other hand, A may not be visible to organization O3 at all. To evolve A to the next approved version, 
such as V2.2, the associated business process (called BT1) goes through several steps. 

1. Internal development by O1: the intermediate development versions, such as V2.1.5.1 and V2.1.5.2 
in Figure 1 are accessible only by permitted users within O1 to protect its intellectual property. Not 
even the lead organization C can access these versions. 

2. Collaboration between O1 and C: When a newer version of A is deemed ready by O1, O1 starts the 
collaboration process with C so that C can ensure that the newer version satisfies the proper 
requirements and is correctly integrated. The sequence of collaborative versions (e.g., V2.1.6 and 
V2.1.7) can be accessed only by the collaborators O1 and C. 

3. Approval process: When ready, the resulting version is submitted by C to an approval board (AB) 
for approval. Changes can be made and the intermediate versions (e.g., V2.2.a.1 and V2.2.a.2) can 
be accessed only by C and AB. 

4. Approval: When A is finally approved by AB, the newly approved version V2.2 is accessible to C, 
O1, O2 and AB, but not O3. 

Figure 1 summarizes the version changes with the organizational visibility of UC1. These varying versions 
may be scattered (as in the legacy system) or collectively stored in a repository (as in our prototype). 

 

Figure 1 Version Changes of a MBSE Model Repository's Example, UC1 

Business Models, Processes, and Software Development 

In information systems, software applications are developed to support business functions and processes, 
which in terms are used to support business goals and strategies. From the perspective of MDSE, the 
software development process is the construction of a sequence of models with increasing fidelity for 
eventual implementation (Brambilla, Cabot & Wimmer 2017). Figure 2 shows the usual classifications of 
these models into a three-layered architecture with business models, logical models, and physical models.  
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Figure 2 Transaction Models and a Three-Layered Model Architecture 

In this paper, we use the term business model (Box 1 in Figure 2) from the perspective of software 
development to contain the business and requirement aspects of the desirable information systems: from 
business strategies, business models (Osterwalder, Pigneur & Tucci 2005), business goals (Henderson & 
Venkatraman 1999), to business functions and process requirements that satisfy the goals (de Oca, et al. 
2015). Accordingly, business models are relatively vague and coarse-grained as they focus on high level 
strategies and goals. For example, in the use case UC1, a business model may call for having a business 
process/transaction (BT1 above) to approve and update the version of the artefact A, such as from V2.1 to 
V2.2. The middle logical model (Box 2 in Figure 2) is mainly for the design of solutions. For example, in 
UC1, a logical transaction (named LT1) for a solution design for the collaboration sub-process between O1 
and C may call for the communications of the MBSE artefact A through email, and the storage and 
management of the intermediate versions of A locally by C (this solution is used by the existing system.) 
The lowest physical level (Box 3 in Figure 2) is the actual model used to physically implement the logical 
model. In the implementation of LT1, C uses MagicDraw (Nomagic 2021), a popular modeling tool, for 
locally managing the various versions of A in the existing system. 

The boundaries of these models may not be clear cut and they can overlap. Many different formal and 
informal modeling languages (and programming languages and tools for the physical model) may be used. 
The problem of the transformations of higher-level models to lower-level models (Cuadrado, Guerra & de 
Lara 2014) can be difficult as each model may have its own goals, constraints, languages, patterns, and 
best practices. Conversely, features and constraints of the lower-level models can and should also affect 
decisions in constructing higher-level models (Edges 4, 5 and 6 in Figure 2). 

Three major reasons making object-oriented modeling (OOM) with UML (Larman 2012) a popular 
general-purpose methodology are (1) OOM provides a language and methodologies that can apply to all 
three levels of models, thus facilitating transformations and feedbacks between models, (2) UML provides 
varying degrees of fidelity to suit different phases of the software process and different levels of modeling, 
and (3) UML is flexible and extensible for different domains. The concepts of transaction are important in 
all levels of models, but they usually have different meanings. In the coming sections, we propose a 
common transaction model (Box 7 in Figure 2) that can be used to analyze all levels of models (Edges 8, 9 
and 10 in Figure 2). Furthermore, the model, BMTM, is also flexible and supports varying fidelity. 

ACID Properties and BMTM 

The studies of transactions related to business processes have been researched for a long time. For 
example, properties of workflow transactions have been investigated, including those related to the data 
consistency properties as provided by databases (Georgakopoulos, Hornick & Sheth 1995). The ACID 
transaction model of traditional relational databases is a physical transaction model in which the DBMS 
guarantees a set of four properties for concurrency control (Gray & Reuter 1992): 

1. Atomicity: all or none of the operations of a transaction are completed. 

2. Consistency: the database preserves its consistency after a transaction. 
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3. Isolation: transient internal states within a transaction should be isolated. The effect of a 
transaction is not visible to other concurrent tasks until the transaction is completed. 

4. Durability: database changes as a result of a transaction completion are permanent. 

ACID transactions support effective concurrency control and recovery in the low, physical 
implementation level, preserving data consistency, and making modeling in the higher level easier. The 
ACID transaction model can gainfully be adapted in many directions for higher-level models as well as 
different domains. For example, NoSQL database is an attempt to improve performance and scalability by 
modifying it to a Basically Available, Soft state, Eventual consistency (BASE) model (Nayak, Poriya & 
Poojary 2013). Likewise, ACID properties have been used to establish a business-aware Web services 
transaction model (Papazoglou & Kratz 2006), the Business Transaction Protocol (BTP) for higher logical 
modeling (OASIS 2002), or a business process model (Garcia et al. 2012). 

Since the goals and requirements of higher-level models and domains are different, the low-level ACID 
properties may need to be adapted, relaxed, or enhanced. For an example, the traceability and correct 
execution properties are also supported by a transaction model for business process systems (Garcia et al. 
2012). Likewise, the all-or-nothing atomicity property is relaxed for a business-aware transaction model 
(Papazoglou & Kratz 2006) in which business-level atomicity criteria can be classified as vital (always 
included in a transaction) or non-vital (can be replaced by contingent activities when fail). 

The ACID model has also been adapted for Business Process Modeling (BPM). OASIS developed BTP to 
manage business interactions in loosely coupled, asynchronous environments such as the Internet (OASIS 
2002). Comparing to ACID transactions, the logical transactions required by the business models usually 
span much longer durations (e.g., a customer may have 24 hours to complete the purchase of a reserved 
air ticket) and the partial result may need to be somewhat visible (e.g., for the customer to know that the 
air ticket reservation has been successful). Thus, the transaction model of BTP is based on relaxed and 
modified ACID properties (OASIS 2002). BTP transactions distinguish between two kind of behaviors: (1) 
BTP atomic behaviors in which ACID properties are only slightly relaxed, and (2) cohesive behaviors in 
which ACID properties are more significantly relaxed to accommodate business needs. These ACID 
properties of these two types of behaviors are shown in columns 2 and 3 of Table 1. Since isolation is one 
particular setting value of visibility, Table 1 states ‘isolation’ as ‘isolation/visibility.’ 

ACID Property BTP Atoms BTP Cohesions BPMN BMTM 

Atomicity Yes Negotiated No Yes, but layered 

Consistency Yes Yes, but nuanced No Yes 

Isolation/Visibility Relaxed, controlled by 
the service 

Relaxed, controlled by 
the service 

No Yes, but layered 

Durability Yes Mostly, but some may 
be volatile 

No Yes 

Table 1. Built-in Support of ACID Properties of Some Business Process Models 

Note that for BTP atoms, isolation in BTP is relaxed and the visibility of transactional effects are 
controlled by the service provider. Although this relaxation provides the needed business flexibility, it has 
two disadvantages: (1) it is too flexible and ad hoc to provide consistency and to serve as a universal 
guideline, and (2) the service provider can be regarded as a central authority, which is unfavored in the 
increasingly decentralized landscape. These two disadvantages are more serious for BTP cohesions. 

Transactions are also a key concept in business modeling languages such as the popular Business Process 
Modeling and Notation (BPMN) (Allweyer 2016). BPMN supports a business transaction model in which 
a transaction is only a special kind of sub-processes depicted with double line borders (Polančič 2013). 
Comparing to other regular tasks, a BPMN transaction just has stronger relationships and constraints. A 
BPMN transaction is typically implemented by a number of ACID transactions with the intermediate 
results visible to selected actors. Specifying ACID properties of sub-tasks of BPMN transactions are done 
through additional BPMN elements, notation extensions, and/or methods external to BPMN. Thus, as 
shown in Table 1, there is no intrinsic, direct support of ACID properties of BPMN transactions. 
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In summary, although business transactions may eventually be implemented using ACID transactions, 
past efforts in applying ACID properties to strengthen business transaction models are not entirely 
satisfactory. The conceptual gaps between business transactions and ACID transactions are large and they 
have not been rigorously investigated and bridged. BMTM is an attempt in this direction. In BMTM, a 
transaction T is characterized by its properties P(T) (Figure 3). These properties may contain the ACID 
properties as well as other properties (such as statefulness, privacy, accountability, and immutability) that 
are rooted from other perspectives (such as blockchains) and beneficial to the targeted applications. 

 

Figure 3 Transaction Properties 

In BMTM, transactions can be recursively decomposed into many levels of sub-transactions, each with 
different properties. For example, in Figure 4, the transaction T1 is decomposed into sub-transactions 
T1.1, T1.2,…,T1.n, with properties P(T1.1),P(T1.,2),…,P(T1.n) respectively. This forms the basis of a multi-
layered transaction model in which a leaf node in the transaction tree may be directly implemented as a 
single physical transaction, such as an ACID transaction. 

 

Figure 4 BMTM: A Multi-Layered Transaction Model 

In BMTM, the satisfaction of ACID properties is relative to the perspectives of the selected transactions or 
sub-transactions. As seen in Table 1, although consistency and durability are always maintained, the 
atomicity and isolation properties depend on the perspective and the actor. This will be further elaborated 
in the next section. 

Blockchain Transaction Properties 

As BCT becomes more mature, research works on the transaction models of blockchain begin to appear. 
For example, there are some efforts on applying the transaction processing perspective to understand 
blockchains, such as characterizing blockchains with a Sequential, Agreed-on, Ledgered, and Tamper-
resistant transaction processing (SALT) model (Tai, Eberhardt & Klems 2017). There are also efforts to 
implement existing transaction models on blockchains (e.g., Brahem et al. 2020). However, there is a lack 
of literature on applying the unique properties of blockchain transactions on enhancing the transaction 
models for software development processes and business process modeling. An exception is the limited 
recent research works on using aspects of blockchain transaction properties to strengthen existing 
transaction models in the domain of distributed energy. These blockchain enhancements include a cyber-
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enhanced transactive microgrid model for energy trading (Okoye et al. 2020) and a peer-to-peer (P2P), 
Industrial Internet of Thing (IIoT) direct distributed energy transaction model (Hu & Li 2020). This 
section presents how blockchain properties are used to scaffold BMTM, which is a general transaction 
model not limited to a particular domain or physical implementation. (BMTM models may be 
implemented without using blockchains.) This paper focuses on three blockchain properties: statefulness, 
privacy, and accountability. 

Statefulness 

As a distributed state machine, the concept of states plays a central role in blockchain. Many blockchain 
platforms have operations such as PutState(A) in their APIs to put an asset A (usually represented as a 
key-value pair, possibly in JSON format) into the blockchain. The most recent value of A becomes a part 
of the current system state. Thus, a blockchain transaction alters the system state, such as by executing a 
PutState operation. As distributed ledgers of all transactions, blockchains store all historical states in 
blocks. To improve performance, many blockchain platforms also store a copy of the current system state 
in a synchronized database. For example, Fabric stores the current system state in the World State 
database, which usually uses LevelDB or CouchDB. An operation such as GetState(A) in the API can be 
used to retrieve the current state of A much faster through the World State database. The immutability 
property of blockchain means that there is no update operation such as UpdateState(A) in the APIs. 
Instead, the updated content of A is stored in entirety to the blockchain by using PutState(A), even when 
the delta change is small. 

As a comparison, even though the whole state may be considered to be the entirety of the current database 
instance, it is a secondary concept in a traditional relational database. The current value of an asset A in 
traditional databases is possibly scattered in multiple tables, and is not focally managed. To emphasize 
the statefulness property, BMTM recommends: 

R1. Careful investigation of proper definition and representation of all possible consistent states to 
support the models and processes in Figure 2. In the UC1 example, states corresponding to all 
different versions of the artefact A in Figure 1 should be defined and specified. This ensures the 
consistency property of BMTM as shown in Table 1. 

R2. Persistent storage of all new consistent states. This ensures the durability property of BMTM as 
shown in Table 1. If blockchains are used in the actual implementation model, the entire history 
of consistent states is immutably stored. Even if traditional database is used, storing all new 
consistent states can easily be designed (without the historical states automatically stored.) 

R3. Inclusion of state’s meta-data. State information of an asset A can be captured as meta-data of A. 
The meta-data can be stored as an integral part of A to facilitate focused management. 

Borrowing from blockchains, state representations can be captured through the specification of two 
functions on an asset A: WriteState(A) and ReadState(A). (We do not employ the more popular low-level 
names of PutState and GetState used by many blockchain APIs to avoid confusion.)  For example, for the 
business transaction BT1 in UC1 (update the approved version of A from V2.1 to V2.2) and the logical 
transaction LT1 (update the collaborative version of A between O1 and C from V2.1.6 to V2.1.7, in which 
the intermediate versions do not require the approval by AB) may be modeled respectively as: 

BT1: WriteState(A): {A.version: V2.1 -> V2.2, A.approved: yes, …} 
LT1: WriteState(A): {A.version: V2.1.6 -> V2.1.7, A.approved: no, …} 

Both the attributes version and approved status can be considered as state’s meta-data and are stored as 
an integral part of A (recommendation R3 above). There are many formal and informal methods and 
languages for specifying states to choose from. Meta-data can be defined to satisfy specific needs and 
varying degrees of details can be captured. This focus on state representations and changes thus provides 
BMTM with the desirable varying fidelity and flexibility properties of a general-purpose methodology. 

Other transaction properties can also be modeled around state representations using ReadState and 
WriteState, as illustrated by the discussion on the privacy and accountability properties below. 
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Privacy 

Privacy is basically concerned with who can read what. In our example of UC1, it can be formulated 
through the visibility of the artefact A by various actors/organizations as defined by the returned value of 
calling ReadState(A). The isolation property of ACID, which serves a different purpose (i.e., concurrency 
control), can also be understood through having a null visibility of all internal transient states within a 
transaction when read by other concurrent tasks. To exemplify these issues, Table 2 shows the versions of 
A returned by ReadState(A) for various organizations in UC1, before, during, and after BT1 (which 
updates the version from V2.1 to V2.2). It is based on the state change diagram in Figure 1. 

Organization Before BT1 During BT1 After BT1 

C V2.1 V2.1.6, V2.1.7, V2.1.a.1, or V2.1.a.2 V2.2 

O1 V2.1 … V2.1.5.1, V.2.1.5.2, …, V2.1.6 or V2.1.7 V2.2 

O2 V2.1 V2.1 V2.2 

O3 null null null 

Table 2 Version of A Returned by ReadState(A) 

To elaborate, the privacy requirements of UC1 require that O3 has no visibility of A. BT1 is not atomic to C 
or O1 and thus some intermediate states are not isolated from them. Thus, ReadState(A) returns the most 
recent intermediate states visible to them respectively. However, unlike intermediate transient, and 
possibly inconsistent, states within ACID transactions that should be isolated, recommendations R1 and 
R2 ensure designing BMTM states to be consistent and persistently stored. By contrast, BT1 is atomic 
from the perspective of O2 and the intermediate versions are isolated from it. Thus, in BMTM, the 
atomicity and isolation properties are relative to the transactions, privacy requirements, and 
organizations. As a result, Table 1 describes and qualifies them as “Yes, but layered.” However, in the 
lowest level transactions in BMTM, ACID properties are usually expected to be fully supported without 
qualifiers to preserve proper concurrency control. 

If more fidelity is needed in a lower-level logical model, the privacy and visibility properties can be further 
refined by using additional meta-data and constructs, such as in this example by using accessibility 
matrices for BT1 as the design solution: 

Meta-data: state_type: {developing, collaborating, approving, approved} 
      E.g. state_type of approved: V2.1, V2.2; state_type of collaborating: V2.1.6, V.2.1.7; etc. 
Construct: organization_type_accessibility_matrix: which organizations can access what types of states. 
      E.g. C: {collaborating, approving, approved}, O1: {developing, collaborating, approved} 
ReadState(A) refined to ReadState(O, A, S): returns the latest version of A of state_type S visible to 
organization O. 
      E.g. During BT1: ReadState(O1, A, approved): V2.1; ReadState(O1, A, developing): V2.1.5.1, etc.;   
                                     ReadState(O1, A, approving): null; ReadState(O2, A, collaborating): null; etc. 

In the physical model, meta-data should be a part of the asset stored. Other constructs may be 
implemented in different ways. For example, the accessibility matrix can be implemented by using the 
membership service provision in Fabric. 

Accountability 

Accountability is concerned with who have written what. By managing an immutable ledger of all 
transactions, blockchains support accountability exceedingly well. In BMTM, the accountability property 
of a transaction can be specified to various degree of details by the WriteState function. For example, in 
the collaboration sub-process of UC1, the logical model may call for a design solution of not using email 
for communications (as in LT1). Alternatively, it may use a different logical transaction, LT2, to store 
collaborating versions, such as V2.1.6, into a model repository, with the authorization of both 
collaborating organizations (O1 and C) recorded for accountability and auditing. In the coarser level, LT2 
can be described by refining the function WriteState(A) to WriteState(O, A) in which O is the list of 
organizations authorizing the transaction. A proper call may look like WriteState({01, C}, A) in LT2. 
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If more details and security control are needed, the following logical model using additional meta-data 
and constructs can serve as a possible design example: 

Meta_data: consensus_method: {all, majority, …} 
       E.g. A.conensus_method: all (i.e. all endorsing organizations must authorize a transaction on A.) 
Construct: endorsing_organzations(A,S): the organizations that participate in authorizing writing A with 
state_type S. 
       E.g. endorsing_organzations(A): {O1, C} 
WriteState(A) -> WriteState(O, A): the organizations O attempt to write A. 
       E.g. for A with state_type collaborating: WriteState({O1}, A): failure; WriteState({C}, A): failure;  
               WriteState({O1, C}, A): success (endorsements of both O1 and C are needed to write A); etc.  

Again, depending on the selected blockchain platforms, there may be various means to implement the 
constructs and the WriteState function. For example, the membership service provision in Fabric can be 
used to check whether the consensus methods are satisfied by the submitting organizations, and 
WriteState can be implemented by multiple-signature transactions. 

Conclusion 

In this paper, based on our experience in building a proof-of-concept blockchain prototype of a MBSE 
model repository for a NASA project in Fabric, we present the framework a novel blockchain-inspired 
multi-layered transaction model with some potential advantages, and illustrate it with ACID properties as 
well as three blockchain transaction properties: statefulness, privacy, and accountability. There are other 
blockchain properties not discussed in this paper because of space. Transactions are an important 
component in business processes and governance. Readers interested in how these transaction properties 
may interact with various governance attributes may refer to (Yue, et al. 2021b). In the future, BMTM 
needs to be improved, refined, and further field-tested, which we plan to do in Phase 2 of building a 
research-and-development prototype that is more production-ready. As a transaction model, BMTM can 
be incorporated into existing modeling languages and tools. The team is working on extending BPMN 
notation to accommodate BMTM. Another research direction is constructing a more systematic way to 
specify state representations that can better be transformed to blockchain platforms. The team also plans 
to use BMTM to investigate related issues in the business level, such as governance (Yue, et al. 2021b). 
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