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Abstract

The previous work of the authors has shown that phys-
iological information on the face can be extracted from
thermal infrared imagery and can be used as a biometric.
Although, that work has proved the feasibility of physio-
logical face recognition, the experimental results revealed
high false acceptance rates due to methodological weak-
nesses in the feature extraction and matching algorithms.
This paper, presents a new methodology that corrects these
problems and yields high recognition rates. Specifically, a
post-processing algorithm removes fake vascular contours,
which degraded performance. Also, a new vascular net-
work matching algorithm copes with deformations caused
by varying facial pose and expressions. First, it estimates
the facial pose in the test image and then calculates the de-
formation of the vascular network in the database image.
Next, it registers test and database vascular networks us-
ing a dual bootstrap ICP matching algorithm. Finally, it
computes a matching score between the vascular networks,
which is a function of overlapping vessel pixels. Extensive
experiments have been undertaken to test the new method.
The results highlight its superiority.

1. Introduction

Face recognition stands as the most appealing biomet-
ric modality, since it is the natural mode of identification
among humans and is totally unobtrusive. At the same time,
however, it is one of the most challenging modalities [17].
Several face recognition algorithms have been developed in
recent years mostly in the visible and a few in the infrared
domain. A serious problem in visible face recognition is
light variability, due to the reflective nature of incident light
in this band. This clearly can be seen in Figure 1. The visi-
ble image of the same person in Figure 1(a) acquired in the
presence of normal light appears totally different from that
in Figure 1(b), which was acquired in low light.

Figure 1. Example showing illumination effect on visible and ther-
mal infrared images. All the images were acquired from the same
subject at the same time. (a) Visible image in normal light. (b)
Visible image in low light. (c) Thermal infrared image in normal
light. (d) Thermal infrared image in low light.

Many of the research efforts in thermal face recogni-
tion were narrowly aiming to see in the dark or reduce the
deleterious effect of light variability (Figure 1) [14, 11].
Methodologically, such approaches did not differ very much
from face recognition algorithms in the visible band, which
can be classified as appearance-based [7] and feature-based
[4]. Recently, attempts have been made to fuse the visible
and infrared modalities to increase the performance of face
recognition [12, 16, 8, 10].

The authors have previously presented a physiological
facial recognition method that promotes a different way of
thinking about face recognition in thermal infrared [6, 3, 5].
This work has shown that facial physiological informa-
tion, extracted in the form of superficial vascular network,
can serve as good and time-invariant feature vector for
face recognition. However, the methodology in that pi-
lot work had some weak points. The recognition perfor-
mance reported from the past experiments [6] can be sub-
stantially improved by curing these weaknesses. This paper
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Figure 2. Methodological architecture.

presents an advanced methodological framework that as-
pires to transform physiological face recognition from fea-
sible to viable. Specifically, the main contributions in the
paper are:

• A new vessel segmentation post-processing algorithm
that removes fake vascular contours detected by the
top-hat vessel segmentation method

• A new vascular network matching algorithm that is ro-
bust to non-linear deformations due to facial pose and
expression variations.

• Extensive comparative experiments to evaluate the per-
formance of the new method with respect to previous
methods.

The rest of the paper is organized as follows. Section 2
presents an overview of the new methodology. Section 3
presents in detail the vessel segmentation post-processing
algorithm. Section 4 discusses the new vascular network
matching algorithm. Section 5 presents the experimental
results and attempts a critical evaluation. The paper con-
cludes in Section 6.

2. Methodology
Figure 2 shows the methodological architecture. The

method operates in the following two modes:
Off-line Mode: The thermal facial images are captured

by a Mid-Wave Infrared (MWIR) camera. For each sub-
ject to be registered in the database, the feature extraction
algorithm extracts the feature vector form the facial image
and links it to the subject’s record. The feature extraction
algorithm has four steps:

First, a Bayesian face segmentation separates facial tis-
sue from background. Second, face segmentation post-
processing corrects face segmentation errors, which are due
to occasional overlapping between portions of the tissue
and background distributions. Third, a top-hat vessel seg-
mentation algorithm extracts the vascular network from the
facial segment after an anisotropic diffuser clarifies fuzzy
edges, due to heat diffusion. These three steps have been
adopted from [6]. Fourth, a new vessel segmentation post-
processing algorithm, which is one of this paper’s contriu-
tions, corrects vessel segmentation. The vessel segmenter
occasionally is fooled by areas of high contrast (e.g., hair-
line and skin edges) and reports them as vascular contours.
These fake vascular contours participate in the matching
process with deleterious effects.

On-line Mode: Given a query image, its vascular net-
work is extracted using the feature extraction algorithm out-
lined in the off-line mode, and it is matched against vascular
networks stored in the database. The new matching algo-
rithm, which is another of this paper’s contributions, has
two stages:

First, a face pose estimation algorithm estimates the
pose of the incoming test image, which is required to cal-
culate the vascular network deformation between it and
database images. Second, a dual bootstrap ICP matching
algorithm registers the test and database vascular networks.
The matching score between the two depends on the amount
of overlapping.

3. Vessel Segmentation Post-Processing

A vessel’s superficial thermal imprint is at a higher tem-
perature than surrounding tissue due to convective heat pro-
duced from the flow of ‘hot’ arterial blood. The top-hat seg-



Figure 3. Errors from the top-hat segmentation algorithm for vas-
culature extraction: (a) Outliers due to facial hair; (b) Outliers due
to glasses.

mentation algorithm is succesful in localizing vessels be-
cause it targets tansitions from hot to cold to hot. In some
instances, such transitions are not due to the presence of
vessels. Examples include tissue between hairlines or tis-
sue between glasses and eyebrows (see Figure 3).

It is essential to detect and remove these outliers from the
vascular network before applying a matching algorithm. To
study in depth the properties of these outliers, the authors
selected 25 representative subjects from the University of
Houston dataset (kindly released for use) and analyzed the
segmentation errors. Specifically, the authors identified the
locations of both true vessels and outliers. Then, they drew
measurement lines across each of the vessels and outliers
and plotted the corresponding temperature profiles. They
noticed that the variance between minimum and maximum
temperature values was much larger in outliers than in true
vessels. Indeed, the gradient in outliers is quite steep (sev-
eral ◦C), as it is formed between facial hair or glasses and
tissue. By contrast, in true vessels, the gradient is quite
small (only tenths of ◦C), as it is formed between the pro-
jection of the vessel’s lumen and surrounding tissue (Fig-
ure 4). Figure 5 shows the difference between minimum
and maximum temperatures (Tmax − Tmin) across all the
selected line profiles from the 25 representative subjects.

The new segmentation post-processing algorithm re-
moves outliers based on the above findings. Specifically,
it is carried out in the following steps:

Step 1: Skeletonize the vascular network to one pixel
thickness;

Step 2: Draw a normal parallelogram across each skeleton
pixel, and gather all the pixels covered by this parallel-
ogram;

Step 3: Apply K-Means (with K = 2) on the pixels cov-
ered by this parallelogram. If the difference between
the centers of each cluster is greater than 1.5, then
mark it as an outlier pixel;

Step 4: Remove all the branches from the vascular net-
work that have more than 50% of their pixels marked
as outliers.

Figure 4. Temperature profiles of lines drawn across outliers and
true vessels.

Figure 5. Difference between minimum and maximum tempera-
tures for all the selected line profiles: (a) outliers; (b) true vessels.

After deleting the outliers from the vascular network, the
remaining vascular map can be strored in the database.

4. Vascular Network Matching
The matching method presented in [6] could not cope

with non-linearities in the deformation of the vascular net-
work, due to variations in facial pose and expression. This
paper presents a new vascular network matching algorithm
that is robust to non-linear deformations.

4.1. Registration of Vascular Networks

The aim is to register the vascular network of the test
image with that of the database image, so that they can be
aligned. The iterative closest point (ICP) algorithm has ap-



pealing properties for point-based registration [2]. ICP re-
quires proper initialization, as different instantiations of the
ICP algorithm use different combinations of image points,
distance metrics, and transformation models. In [15], Stew-
art et al. developed a variation of the ICP algorithm, called
dual bootstrap ICP, that works well when initialization pro-
vides just a “toe hold” on the correct estimate of the trans-
formation, and successfully registers elongated structures
such as vasculature. Specifically, they reported good re-
sults on registration of retinal vascular images in the visible
band. Since superficial vasculature extracted in thermal in-
frared has morphological resemblance to retinal vasculature
in visible, the authors adopted the dual bootstrap algorithm
for the registration task at hand.

After successful registration of the test and database vas-
cular images, the matching score is computed based on the
number of overlapping vessel pixels. If Itest represents the
test vascular image with Ntest vessel pixels, and Idb rep-
resents the database vascular image with Ndb vessel pixels,
the matching score is:

Score =
Noverlap

max(Ntest, Ndb)
∗ 100, (1)

where Noverlap represents the number of vessel pixels in
Itest with a corresponding vessel pixel in Idb within a cer-
tain distance.

Figure 6 shows some examples of the performance of
the dual bootstrap ICP algorithm in registering vascular im-
ages in thermal infrared. The example at the bottom row
of the figure features substantial pose variation between the
test and database images. The larger the pose variation the
more difficult it becomes for the dual bootstrap ICP to cope
successfully. This can be improved by estimating the pose
of the test and database images, and setting the threshold
value Thr accordingly. The pose estimation algorithm that
was developed for this purpose, is presented in the next sec-
tion.

4.2. Face Pose Estimation

At a neutral pose (Pose = 0o) the nose is at center of
the face, i.e., the position of the nose is halfway between the
left and right ends of the face. From the face segmentation
algorithm presented in [6], one can find the left and right
ends of the face. Hence, if one localizes the nose, he/she
can estimate the facial pose.

In a thermal infrared image, the nose is typically at a
gradient with its surroundings, as shown in Figure 7. This
is because of the tissue’s shape (tubular cavity), its com-
position (artilage), and the forced circulation of air, due to
breathing. The combinaion of all three, creates a nasal ther-
mal signature which is different than that of the surrounding
solid, soft tissue.

Figure 6. Registration performance examples: (a) Test vascular
networks. (b) Database vascular networks. (c) Registration results.

Figure 7. Nose edge extraction from thermal facial image: (a) ther-
mal facial image; (b) edges extracted using canny edge detection
algorithm; (c) color map

Figure 8. Pose estimation performance examples: (a) Thermal fa-
cial images. (b) Nose detection using Hausdorff-based matching.
(c) Pose estimates.

By using a standard edge detection algorithm, one can
extract the nose edges from the facial image. The next step
is to search for the nose edge model in the facial edge map.
The authors used a Hausdorff-based matching algorithm to
localize the nose model in the face edge image [9]. Fig-
ure 8 shows some performance examples of the face pose
estimation algorithm.



Figure 9. Sample subject from FEDS dataset: (a) One gallery im-
age at neutral pose and expression; (b) Five probe images at vary-
ing facial expressions.

5. Experiments
The authors conducted several experiments to validate

the performance of the new physiological face recognition
method. This section presents the experimental setup and
results in detail.

5.1. Experiments on the University of Houston
Database

The authors have collected a huge thermal facial dataset
at the University of Houston (UH) database for the pur-
sposes of this evaluation. This database has thermal facial
images of varying expressions and poses from 300 subjects.
The images were captured using a high quality Mid-Wave
Infra-Red (MWIR) camera.

5.1.1 Facial Expression Dataset (FEDS)

To test the performance of the new method in the presence
of varying facial expressions between gallery and probe
images, the authors created the facial expression dataset
(FEDS) out of the UH database as follows: From each of the
300 subjects one frontal facial image at 0o pose and neutral
expression was used as a gallery image. Then, five differ-
ent facial images at 0o pose but with varying facial expres-
sions were used as probe images for each subject. Hence,
FEDS has a total of 300 gallery images and 1500 probe im-
ages from 300 subjects. Figure 9 shows a sample subject set
from FEDS.

Figures 10(a) and 10(b) show respectively the CMC
and ROC curves of the FEDS experiments using the TMP
matching algorithm reported in [6] versus the dual bootstrap
ICP matching algorithm.

Figure 10. Experimental results on the FEDS dataset using dual
bootstrap ICP versus TMP matching: (a) CMC curves. (b) ROC
Curves.

The results demonstrate that the dual bootstrap ICP
matching outperforms the TMP matching algorithm. In the
case of TMP matching, the CMC curve shows that rank
1 recognition is 86%, whereas for the for dual bootstrap
ICP is 97%. Also, the dual bootstrap ICP matching method
achieves a high positive detection rate at very low false de-
tection rates, as shown in Figure 10(b). This indicates that
the ICP matching algorithm is highly robust to deforma-
tions caused in the vascular network by facial expression
variations.

5.1.2 Facial Pose Dataset (FPDS)

To test the performance of the new method in the presence
of varying poses between gallery and probe images, the au-
thors created the facial pose dataset (FPDS) out of the UH
database as follows: From each of the 300 subjects one
frontal facial image at 0o pose and neutral expression was
used as a gallery image. Then, four different facial images
at neutral facial expression, but at varying poses between
−30o and 30o were used as probe images. Hence, FPDS
has a total of 300 gallery images and 1200 probe images
from 300 subjects. Figure 11 shows a sample subject set



Figure 11. Sample subject from FPDS dataset: (a) One gallery
image at neutral pose and expression. (b) Four probe images at
varying poses.

from FPDS.
Figures 12(a) and 12(b)show the results of the FPDS

experiments using the dual bootstrap ICP matching algo-
rithm. The results demonstrate that the algorithm copes well
with facial pose variations between gallery and probe im-
ages. Specifically, the CMC curve shows that rank 1 recog-
nition is 89%, and the ROC curve shows that it requires a
false acceptance rate over 5% to reach a positive acceptance
rate above the 90% range. One can notice that the false ac-
ceptance rate on FPDS experiments is a bit higher than on
FEDS experiments. This is to be expected, as variations
in pose typically cause more non-linear deformations in the
vascular network than those caused by variations in facial
expressions.

5.2. Experiments on the University of Notre Dame’s
Database

A major challenge associated with thermal face recogni-
tion is the recognition performance over time [13]. Facial
thermograms may change depending on the physical condi-
tion of the subject making it difficult to acquire similar fea-
tures for the same person over time. Previous face recog-
nition methods in thermal infrared that used raw thermal
data reported degraded performance over time [7, 8]. Fa-
cial physiological information, however, remains invariant
to physical conditions because the thermal contrast between
the vascular and surrounding pixels is maintained (natural
constant).

Since most of the subjects in the UH database had im-
ages collected during the same session, no statistically sig-
nificant quantification of the low permanence problem was
possible. For this reason, the authors obtained clearance to

Figure 12. Experimental results on the FPDS dataset using the
dual bootstrap ICP matching algorithm: (a) CMC curve. (b) ROC
Curve.

apply the method on another data set, that of the University
of Notre Dame (UND) [1]. This database has a large col-
lection of visible and thermal facial images acquired with
a time-gap. The database consists of 2294 images acquired
from 63 subjects during 9 different sessions under specific
lighting (LF - central light turned off, LM - all three lights
on) and facial expression conditions (FA - neutral expres-
sion, FB - smiling expression).

The database is divided into four different gallery and
probe sets [7]: LF + FA, LF + FB, LM + FA, LM +
FB. Each of the gallery sets (say LF—FA) can be tested
against the other three probe sets (say LF—FB, LM—FA,
and LM—FB). Thus, 12 different pairs of gallery and probe
sets were used for testing. The performance of the new
dual-bootstrap ICP matching algorithm was compared to
that of TMP matching [6], and PCA matching [7] algo-
rithms. Table 1 summarizes the rank 1 recognition results of
these algorithms on each of the 12 experiments. Each entry
in the left column of the table corresponds to a gallery set,
and each entry in the top row corresponds to a probe set.
From the table, it can be clearly seen that the new matching
algorithm yields better recognition results even in the pres-
ence of time and temperature variations, thus, outperform-
ing the TMP (legacy physiology-based) and PCA (legacy
raw thermal-based) recognition algorithms.



Probe
Gallery FA—LF FA—LM FB—LF FB—LM
FA—LF - 86.54% (DBICP) 84.38% (DBICP) 83.33% (DBICP)

- 82.65% (TMP) 80.77% (TMP) 81.33% (TMP)
- 78.74% (PCA) 76.83% (PCA) 75.77% (PCA)

FA—LM 83.65% (DBICP) - 84.24% (DBICP) 82.45% (DBICP)
81.46% (TMP) - 79.38% (TMP) 80.25% (TMP)
79.23% (PCA) - 75.22% (PCA) 73.56% (PCA)

FB—LF 85.48% (DBICP) 88.87% (DBICP) - 85.82% (DBICP)
80.27% (TMP) 81.92% (TMP) - 80.56% (TMP)
74.88% (PCA) 76.57% (PCA) - 74.23% (PCA)

FB—LM 83.39% (DBICP) 87.34% (DBICP) 85.56% (DBICP) -
80.67% (TMP) 82.25% (TMP) 79.46% (TMP) -
69.56% (PCA) 74.58% (PCA) 78.33% (PCA) -

Table 1. Rank1 recognition performance of Dual Bootstrap Iterative Closest Point (DBICP) vascular network matching algorithm, Thermal
Minutia Point (TMP) matching algorithm [6], and PCA algorithm [8] on each of the 12 experiments on the UND database.

5.3. Experiments on the University of Arizona’s
Database

The authors have also acquired permission to use data
from a stress experiment carried out by the University of
Arizona (UA). These data, although acquired within a few
minutes for each subject, feature dramatic changes in the
facial thermal map due to the onset of stress. In fact, in a
few minutes a lot more variability is present than the one in
UND, which took months to assemble. The length of each
experiment is approximately 20 minutes. For each sub-
ject, the authors extracted around five, equally time-spaced
frames from the interview. One sample subject from the
database is shown in Figure 13. It can clearly be seen from
the visualization on forehead and neck that the thermal map
changed significantly between database (Figure 13(a)) and
test images (Figure 13(b)).

Figure 14(a) shows the the Cumulative Math Charac-
teristic (CMC) curves and Figure 14(b) shows the ROC
curves of the UA experiments using the dual bootstrap ICP
matching versus the TMP matching algorithms. The results
demonstrate that the dual bootstrap ICP matching algorithm
again outperforms the TMP matching algorithm [6]. In the
case of TMP matching, the CMC curve shows that rank 1
recognition is 83.6% whereas for ICP is 93.2%. Also, the
dual bootstrap ICP matching method achieves a high posi-
tive detection rate at very low false detection rates, as it is
shown in Figure 14(b).

6. Conclusions

This paper presents new algorithms that substantially im-
prove the performance of physiology-based face recogni-
tion in the thermal infrared. Specifically, a vascular network
post-processing algorithm removes fake contours detected
by vessel segmentation algorithm. A new vascular network

Figure 13. Sample subject from UA dataset: (a) One database im-
age extracted at 2 minutes 6 seconds of the interview; (b) Four test
images extracted at 6 minutes, 9 minutes 18 seconds, 13 minutes
22 seconds, and 17 minutes 40 seconds of the interview respec-
tively. (c) Thermal color map used for visualization.

matching algorithm can cope with non-linear deformations
between test and database vascular networks.

The experimental results on UH, UND, and UA
databases, which are non-trivial sets, confirm the superior-
ity of the new method.
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