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Chapter 5

Statistical modeling
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Typewritten Text
Multipath propagation on the received
field strength and the temporal
variations (movement) assuming the transmit signal is a sinusoid.  Valid for narrow band signals although most wireless systems today are wideband (large bandwidth because of high data rates or multiple access scheme).
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A narrowband system described in 

complex notation (noise free)

 exp 2 cj f     expt j t   exp 2 cj f

Transmitter ReceiverChannel

Attenuation Phase

 x t  y t

         expA t t j t t   

      expx t A t j tIn:

               exp exp 2 exp exp 2c cy t A t j t j f t t j t j f t     Out:

It is the behavior of the channel attenuation and phase we

are going to model.
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THE RADIO CHANNEL - Path Loss

Received power [log scale]

Distance, d [log scale]

TX RX

2/1 d

4/1 d
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Break Point Model:
Exponent of -4 is a good median value. For LOS signals (GHz) curvature
of the earth will limit path distance.
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What is large scale and small scale?

fluctuations in mean power 
over these distances --> 
large-scale fading
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Deterministic
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10 λ    100 λ  Described by a mean
and the statistics of the fluctuations 
around this mean
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Small-scale Fading for two waves

Wave 2

Wave 1

ETX(t)=A cos(2fct)

ERX1(t)= E0 cos(2fct-2/*d1)  
let k0=2/

 = E1 exp(-jkod1)

ERX2(t)= A cos(2fct-2/*d2)

= E2 exp(-jkod2) E1
E2

LOS Blocking
Building

scattering -->
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Two Path Model with no direct LOS path (which is shown being
blocked by a very close and big building between the two stations)
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<-----  d1  ---------->
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<----  d2  ------------------>
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TE Waves (Vertically Polarized Waves)
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Small-scale Fading of two waves

Wave 1 + Wave 2

Wave 2

Wave 1

superposition of the two waves showing
the real part (instantaneous value) of 
the resultant plane wave at Rx
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constructive and destructive interference which is location dependent fading.
The dips and peaks are ~ 1/2 λ apart which
at 900 MHz is 16 cm
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THE RADIO CHANNEL

Small-scale fading or fast fading

Illustration of interference pattern from above

Transmitter

Reflector

Movement

Position

A B

A B

Received power [log scale]
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Re{E} & Im{E} parts are independent and normally
                            distributed (Gaussian Distribution)



Rayleigh Fading Development - Textbook
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The textbook takes two different approaches for developing a description of small-scale fading without a
dominant component.
1.  Describes a computer experiment in Section 5.4.1 consisting of 8 sinusoidal signals (waves)  E each with
     an amplitude, an angle of incidence from the interfering object (IO) and a phase. The waves are
     superimposed resulting in a summation of complex field strengths or as pictorially shown in the lecture notes,
     the vector addition of complex random phasors.  The experiment results are analyzed looking at the
     distribution of the envelope for the received signal - the amplitude and the statistics of the amplitude.
     The probability density function (pdf) of the amplitude (|E|) matches a Rayleigh distribution
     (Figure 5.13 on page 78)
2.  A mathematical derivation of the Rayleigh distribution is in Section 5.4.2  The rigorous derivation must take
     into account the Doppler Shift (to be described) of numerous plane waves created by reflection/scattering
     from different Interfering Objects (IOs).  The total field strength E is the sum of many random variables
     described as both in-phase [I(t)] and quadrature-phase [Q(t)] components.  Appendix 5.A shows that the
     amplitudes of these multipath components fulfill the central limit theorem.  The pdf of such a sum (complex)
     is a Gaussian distribution.  Appendix 5.B derives the statistics of the amplitude (r) and phase (Ø) of the
     received signal showing that the pdf of the phase is a uniform distribution and that the pdf for the amplitude
     is a Rayleigh distribution.
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Small-scale fading

Many incoming waves

1 1,r 
2 2,r 

3 3,r 
4 4,r 

,r 

         1 1 2 2 3 3 4 4exp exp exp exp expr j r j r j r j r j       

1r
1

2r 2

3r

3

4r4

r



Many incoming waves with
independent amplitudes

and phases 

Add them up as phasors
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Small-scale fading

Many incoming waves

1r
1

2r 2

3r

3

4r4

r



Re and Im components are
sums of many independent
equally distributed components

Re(r) and Im(r) are independent

The phase of r has a uniform 
distribution

2Re( ) (0, )r N  2Re( ) (0, )r N 

2Re( ) (0, )r N 
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(Figure 5.14)
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A Rayleigh Distribution describes the magnitude of the complex stochastic variable
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Small-scale fading / Rayleigh fading

No dominant component

(no line-of-sight)

2D Gaussian
(zero mean)

Tap distribution

 
2

2 2exp
2

r rpdf r
 

 
  

 

Amplitude distribution

Rayleigh

0 1 2 3
0

0.2

0.4

0.6

0.8

r a

No line-of-sight
component

TX RXX

 Im a  Re a
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(Fig 5.13)
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Small-scale fading / Rayleigh fading

minr

   
min 2

min
min 2

0

Pr 1 exp
r

rms

rr r pdf r dr
r

 
     

 


0 r

Rayleigh distribution

2rmsr 

 
2

2 2exp
2

r rpdf r
 

 
  

 

pdf(r)
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=  cdf (r)
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See Section 5.4.3 for the properties of the
Rayleigh Distribution.  It is a worst-case scenario that is a function of only one parameter, the mean received power.
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The cumulative distribution function (cdf) is defined as the probability that a random variable (r) has a value smaller than r min which is the integral of the pdf.  For our situation this is the Rayleigh pdf (Figure 5.15)
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Small-scale fading

Rayleigh fading – fading margin

2

2
min

rmsrM
r



2

| 10 2
min

10log rms
dB

rM
r

 
  

 

minr0 r2rmsr 
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Signals handled from a Stochastic view.
Rayleigh Distribution is a worst case scenario with no dominant signal component.
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See Section 5.4.4 Page 82 for more details on fading statistics.  The fading margin answers the question, "Given a min rx power for comm, how large does the mean power have to be in order to

Kenneth
Typewritten Text

Kenneth
Typewritten Text

Kenneth
Typewritten Text

Kenneth
Typewritten Text
ensure that communications fails in no more than x% of all situations
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Small-scale fading

Rayleigh fading – fading margin 

How many dB fading margin, against Rayleigh fading, do we need to

obtain an outage probability of 1%?

 
2

min
min 2Pr 1 exp

rms

rr r
r

 
    

 
1% 0.01 

Some manipulation gives
2

min
21 0.01 exp

rms

r
r

 
   

 
 

2
min

2ln 0.99
rms

r
r

  

 
2

min
2 ln 0.99 0.01

rms

r
r

   

2

2
min

1/ 0.01 100rmsrM
r

   

| 20dBM 

lne = -0.0100503 = -0.01

actually 99.499
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The signal reserve we must have in order
to keep the outage probability < 1%
for a Rayleigh fading scenario
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probability of failure
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How large does the signal
need to be with respect to
the mean power level?
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Small-scale fading

Rayleigh fading – signal and interference

• What is the probability that the instantaneous SIR will be below 0 dB

if the mean SIR is 5 dB when both the desired signal and the 
interferer experience Rayleigh fading?

 
2

min 2 2
min

Pr 1 1
( )

r r
r




     


Equation 5.25 on page 82 --> cdf(r)

The cdf is the Pr(r < rmin).  The cdf is the 
integral of the pdf where this pdf is the ratio 
of two random variables (signal σ1 and 
interference σ2 ) each of which is Rayleigh 
distributed (LOS signal components blocked 
on both signals).  The pdf is Equation 5.24 
on page 82.

SIR = Signal σ1 to Interference σ2 ratio
_        _           _
σ2 = (σ 1)2 / (σ 2)2

  = the ratio of the mean signal power to the mean interference power    
 = 5 dB = 3.163   since 10 log (3.163) = 5 dB

(rmin)2 = 0 dB = 1   since 10 log (1) = 0 dB This type of calculation is used to calculate 
the reuse distance in a cellular system; that is, 
how far the cells need to be apart that are 
using the same frequency.  Chapter 3 page 44 
and Chapter 17 page 379.

See Example 5.1 on page 82 for another worked problem 
An approximation for Pr(r<rmin) =  r2

min / 2 σ2     Eq 5.21
for this example the approximation = 1/(2x3.163) = 16%

3.163
3.163 + 1

0.24 or 24%
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Small-scale fading

one dominating component

In case of Line-of-Sight (LOS) one component dominates.

• Assume it is aligned with the real axis

• The received amplitude has now a Ricean distribution

instead of a Rayleigh

• The ratio between the power of the LOS component and

the diffuse components is called Ricean K-factor

2Re( ) ( , )r N A  2Im( ) (0, )r N 

2

2

Power in LOS component
Power in random components 2

Ak


 
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(the Rayleigh distribution is a subset of a Ricean distribution)
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Addition of a dominant signal line-of-sight (LOS) component reduces the probability of deep fades as experienced with Rayleigh-fading for the no LOS signal components
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the Rayleigh distribution
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Small-scale fading / Rice fading

A dominant component

(line of sight)

2D Gaussian
(non-zero mean)

Tap distribution

A

Line-of-sight (LOS)
component with

amplitude A.

 
2 2

02 2 2exp
2

r r A rApdf r I
  

   
    

  

Amplitude distribution

Rice

r 

0 1 2 3
0

0.5

1

1.5

2

2.5
k = 30

k = 10

k = 0

TX RX

 Im a  Re a

Eq 5.27

compare to slide 108 for Rayleigh 
distribution which has a zero mean 
and k = 0

Kenneth
Typewritten Text
r -->

krgoodwin
Typewritten Text
Io is a Bessel function of the 1st kind, zero order
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Small-scale fading

Rice fading, phase distribution
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Shown for a mean = 1 with various values
for the dominant component amplitude A
showing that the phase of the total signal
is close to phase of the dominant signal
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pdf of the phase of a non-zero
mean Gaussian Distribution
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where the pdf of the phase was a uniform distribution
(Eq 5.15) thus not a factor in the Rayleigh distribution
of the signal amplitude r
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before (1947) the advent
of wireless communications.
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Small-scale fading

Nakagami distribution

• In many cases the received signal can not be described as a pure

LOS + diffuse components

• The Nakagami distribution is often used in such cases

is the gamma function

with m it is possible to adjust the dominating power

2 1 2

2

2

2 2

2( ) ( ) exp( )
( )

( )

( )

m mm m
pdf r r r

m

m

r

m
r

 
  



 




 
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Small-scale fading / Doppler shifts

rv


0f f  

Frequency of received signal:

 0 cosrvf
c

  

where the Doppler shift is

Receiving antenna moves with

speed vr at an angle θ relative

to the propagation direction

of the incoming wave, which

has frequency f0
The maximal Doppler shift is

max 0
vf
c

 

cos (00) = + 1   cos (1800) = -1

c = speed of light in a vacuum is 3 x 108 meters/sec
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Small-scale fading

Doppler shifts

• f0=5.2x109 Hz, v=5 km/h = 1.4 m/s   24 Hz

• f0=900x106 Hz, v=110 km/h = 30.6 m/s  92 Hz

max 0
vf
c

 

How large is the maximum Doppler frequency at 

pedestrian speeds for 5.2 GHz WLAN and at 

highway speeds for GSM 900?

maximum Doppler Frequency

converting km/h to m/s results in

vmax = (5.2x109 Hz)(1.4 m/s) / (3x108 m/s) = 24.267 Hz
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Doppler Shift + or - from the carrier frequency depending on the direction of travel; moving toward each other +
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Small-scale fading

Doppler spectra

0 2 2
0

2exp( cos( ) )c
vE E jk d f t
c

  

Wave 2

Wave 1

ETX(t)=A cos(2fct)

0 1 1
0

1exp( cos( ) )c
vE E jk d f t
c

  

velocity

E1E2

The two reflected components have different Doppler shifts!  These two
different Doppler shifts will cause a random frequency modulation at Rx

TX

RX
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Small-scale fading

Doppler spectrum

0 maxf  0 maxf 0f

Spectrum of received signal

when a f0 Hz signal is transmitted.

RX

RX movement

Incoming waves from several directions

(relative to movement of RX)

All waves of equal strength in this 

example, for simplicity.
Related to Clarke's Model, a popular statistical model 
for flat fading.

1

1

2

2

3

3

4

4

MPC  
multi-path 
component

MPC @
cosine(90o)

MPC
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Small-scale fading

The Doppler spectrum

0 maxf  0 maxf 0f

 0DS f 

    2

2 2
max

1

j
DS e d    

  

   






for max max    

Doppler spectrum

at center frequency f0.
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Describes frequency dispersion which impacts
narrowband systems like OFDM but no direct
impact on most wideband systems like CDMA.
But it is also a measure for the temporal
variability of the channel and is important
for ALL systems both wide and narrow band.
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Large number of interference objects (IOs) from a uniform
azimuthal distribution with no LOS component that results in a highly non-uniform Doppler spectrum.    Vertical Antenna 
See errata sheet for full description of assumptions leading to
the Doppler Spectrum equations
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Small-scale fading

Doppler spectrum

Isotropic uncorrelated

scattering

RX

Uniform incoming
power distribution

(isotropic)

Uncorrelated
amplitudes
and phases

Time correlation

0 0.5 1 1.5 2
-0.5

0

0.5

1

max t 

RX movement



123Slides for “Wireless Communications” © Edfors, Molisch, Tufvesson

Small-scale fading / Doppler spectrum

• Time correlation – how static is the channel?

• The time correlation for the amplitude is

        *
0 max2t E a t a t t J t      

   2
0 max2t J t   

0 0.5 1 1.5 2
-0.5

0

0.5

1

max t 

zeroth-order 

Stationary Mobile Station (MS) can 
still have a dynamic channel due to 
moving interferring objects (IOs)
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See example 5.3 on page 90 for a related problem dealing with
 a stationary MS that moves a little to deal with fading dips.
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r

r

Small-scale fading / Fading dips

Time

Received amplitude [dB]

rmsr
|dBM

What about the length and the frequency

of fading dips ?

Average duration of fades (ADF)
Occurrence rate is described in the Level Crossing Rate 
(LCR) - a rate of falling below some selected signal level 
(r*) like 30 dB below the mean signal level (rrms)

From Section 5.7.3 on Page 91, fading dips mean lower signal level 
which leads to higher susceptibility to noise in addition to being 
related to intersymbol interference (ISI - Chapter 2).  Also, the 
fading dips increase the probability of random frequency 
modulation (FM) which results in errors for any system that 
conveys information by means of the phase of the transmitted 
signal (PSK, MPSK, etc.)

fading
margin
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Small-scale fading / Statistics of fading dips

Frequency of the fading dips

(normalized dips/second)

Length of fading dips

(normalized dip-length)
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x-axis is increasing signal strength r (normalized to median signal strength)
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Derivation in Appendix 5.C for Rayliegh Fading amplitude & Jakes spectrum
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Refresher: Basic Principle of Large-scale Fading

d

Received power

Position

A B C C

A

B

C

D
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Large-scale fading

Log-normal distribution

”POWER” [dB]

dBTXP |

dBRXP |

|dBL

 
 

2
| 0|

| 2
||

1 exp
22
dB dB

dB
F dBF dB

L L
pdf L



 
  
 
 

Note dB 

scale

dBDeterministic mean

value of path loss, L0|dB

 |dBpdf L

Standard deviation | 4 10 dBF dB 
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The fading margin becomes the sum of the margin for Rayleigh fading
and large-scale fading (shadowing) that are not necessarily related even
when being blocked by a large object.  Thus M must take both into account
(addition or Suzuki distribution/approximations Eqs 5.71/5.72 page 97) 
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