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Chapter 7

Channel modeling
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Models are needed for wireless system designand operational deployment of such systems.Chapter 7 deals with simulation models derivedthe mathematics discussed to this point.The problem - what accuracy is required for awireless channel model?
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Modeling methods

• Stored channel impulse responses

– realistic

– reproducible

– hard to cover all scenarios

• Deterministic channel models

– based on Maxwell’s equations

– site specific

– computationally demanding

• Stochastic channel models

– describes the distribution of the field strength etc

– mainly used for design and system comparisons

geographical databases
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Narrowband models

Review of properties

Narrowband models contain ”only one” attenuation, which is modeled

as a propagation loss, plus large- and small-scale fading.

Large-scale fading: Log-normal distribution (normal distr. in dB scale)

Small-scale fading: Rayleigh, Rice, Nakagami distributions .. (not in dB-scale)

Path loss: Often proportional to 1/dn, where n is the propagation

exponent. (n may be different at different distances)

a function of attentuation and fading
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The Impulse Response h(t, tau) is a function of time and delay for narrowband or widebandquasi-static channels.  Equation 7.1
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Okumura’s measurements

Extensive measurement campaign in Japan in the 1960’s.

Parameters varied during measurements:

Frequency

Distance

Mobile station height

Base station height

Environment

100 – 3000 MHz

1 – 100 km

1 – 10 m

20 – 1000 m

medium-size city, large city, etc.

Propagation loss is given as median values (50% of the

time and 50% of the area).
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Okumura’s measurements

excess loss
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FIGURE 7.12

From [Okumura et al.]
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The Okumura-Hata model

How to calculate prop. loss
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The COST 231-Walfish-Ikegami model

How to calculate prop. loss

0 msd rtsL L L L  

BS

MS

d

Free space Roof-top

to street

Building 

multiscreen

Details about calculations can be found in Appendix 7.B
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Motley-Keenan indoor model

PL  PL0  10n logd/d0  Fwall  Ffloor

For indoor environments, the attenuation is heavily 

affected by the building structure, walls and floors play an 

important rule

distance dependent

path loss
sum of attenuations 

from walls, 1-20 

dB/wall

sum of attenuation from the 

floors (often larger than wall 

attenuation)

site specific, since it is valid for a particular case
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Wideband models

• Tapped delay line model often used

• Often Rayleigh-distributed taps, but might include LOS

and different distributions of the tap values

• Mean tap power determined by the power delay profile

        
1

, exp
N

i i i

i

h t t j t     


  The similar Equation 7.3 on Page 128 has the LOS component
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Power delay profile

• Often described by a single exponential decay

• though often there is more than one “cluster”
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arrival time

• If the bandwidth is high, the time resolution is large so we

might resolve the different multipath components

• Need to model arrival time

• The Saleh-Valenzuela model:

• The -K-model:

h  
l0

L


k0

K
k,l  Tl  k,l

cluster arrival time (Poisson)

ray arrival time (Poisson)

S1 S2

arrival rate: 
0 ( )t

0 ( )K t

Model presumes multipath components (MPC) exist
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MPC arrives --> transition to S2. If no further MPCs arrivein the interval, a transition back to S1 at the end of the interval
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Wideband models

COST 207 model for GSM

The COST 207 model specifies:

FOUR power-delay profiles for different

environments.

FOUR Doppler spectra used for different

delays.

IT DOES NOT SPECIFY PROAGATION LOSSES FOR THE

DIFFERENT ENVIRONMENTS!
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Developed in Europe for low-bandwidth systems (200 kHz or less).  Details in Appendix 7.CFor 3G and later (bandwidth > 5 MHz), ITU (International Telecommunications Union) developed another set of models, detailed in Appendix 7.D
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Wideband models

COST 207 model for GSM
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Wideband models

COST 207 model for GSM

Four specified Doppler spectra

max max0
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GAUS2GAUS1CLASS

Wideband models

COST 207 model for GSM
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Wideband models

ITU-R model for 3G
ns
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Parameters for three additional models based on a tapped delay-line implementation
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Geometry-based stochastic channel model 

(GSCM)
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Temporal evolution - GSCM

• Temporal evolution of channel easily implemented

MS-POSITION 2

MS-POSITION 3

MS-POSITION 1

MAXR
BS

FAR
SCATTERER

Far Scatterers like high rise buildings and
mountains stay fixed
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Modeling interference with GSCM

• Spatial correlation between interfering mobiles

BS
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MIMO channel

• channel matrix
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Kronecker model

Tx Rx

Any transmit signal results in one
and the same receive correlation!

• The spatial structure of the MIMO channel is neglected.
• The MIMO channel is described by separated link ends:

RH = c · RTx  RRx H = RRx G RTx
1/2 T/2

krgoodwin
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thus independent of thedirection of transmission
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Kronecker model (cont.)

Joint APS (angular power

spectrum) is the product of 
marginal Rx- and Tx-APS.

measurement

Copyright: TU Vienna

DoD/DoA = angle of Departure /Arrival
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Kronecker model (cont.)

Joint APS is the
product of marginal
Rx- and Tx-APS.

Kronecker
approximation

Copyright: TU Vienna
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GSCM for MIMO

• GSCM – original version:

– Locate scatterers according to certain pdf

– only single scattering

• MIMO version:
– model all effects that involve scatterers

– Relative strength of propagation processes by weighting

– Single scattering is not sufficient for MIMO!

– MIMO capacity strongly depends on the angular spread.

– Double- (multi-) Scattering increases angular spread.
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The COST 259 DCM

• COST 259 “Flexible Personalized Wireless
Communication”  Subgroup 2.1 Directional Channel Model

• European research initiative

• Includes operators, manufacturers, universities

• Close cooperation with other European programs

• Model widely used for smart antenna simulations

• Now also used for MIMO

Kenneth
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(Model is rather involved)
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COST 259 DCM - Philosophy

• Parametric approach, WSSUS not required

• No statement about implementation method (stochastic or

GSCM)

• Based on clustering approach

• Multi-layer approach:

– Radio environments

– Large-scale effects

– Small-scale effects

e.g., Delay & Angular Spread, shadowing

e.g., Double Directional Impulse Responses
        created by small scale fading
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Radio environments

COST 259

Macrocell

GTU GRA GBU GHT

Microcell

GSN GSL GSX GOP

Picocell

GOL GON GCL GCN GFH

Generalized Factory HallGFH

Generalized Corridor NLOSGCN

Generalized Corridor LOSGCL

Generalized Office NLOSGON

Generalized Office LOSGOL

Generalized Open PlaceGOP

Generalized Street CrossingGSX

Generalized Street Canyon LOSGSL

Generalized Street NLOSGSN

Generalized Hilly TerrainGHT

Generalized Bad UrbanGBU

Generalized Rural AreaGRA

Generalized Typical UrbanGTU

Copyright: TU Vienna
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COST 259 DCM - Simulation procedure

Simulation steps:

1) select scenario

2) select global parameters

(number of clusters,

mean Rice factor,....)

3) REPEAT

compute one realization of 
global parameters. This 
realization prescribes small-
scale averaged power profiles 
(ADPS)

create many instantaneous 
complex impulse responses 
from this average ADPS

BS

MS

Generalized Hilly Terrain (GHT)

PDP

PDP

realization of
global parameters:
3 clusters, Rice factor of first: 3.2,
Rice factor of later clusters: 0
delay spread of clusters: 1,0.3,2s 
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COST 259 DCM - Important features

• Very realistic !

• Distinguishes 13 different radio environments

• Treats large-scale and small-scale variations

• Far scatterer clusters included, with birth/death process

• Delay spread and angular spread treated as (correlated)

random variables

• Angular spectra are functions of delay

• Azimuth and elevation

over 3 broad catagories

signal 
becomes 
weak & dies
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Deterministic modeling methods 

• Solve Maxwell’s equations with boundary conditions

• Problems:

– Data base for environment

– Computation time

• “Exact” solutions

– Method of moments

– Finite element method

– Finite-difference time domain (FDTD)

• High frequency approximation

– All waves modeled as rays that behave as in geometrical optics

– Refinements include approximation to diffraction, diffuse scattering,

etc.

especially exact solutions
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(location, shape & dielectric/conductive properties of all objects in the environment)
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Ray launching

Copyright: European Union
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Transmit antenna 'launches' rays into differentdirections normally divided into N uniformsections over entire spatial angle.
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Ray tracing

• Determines rays that can go

from one TX position to one

RX position

– Uses imagining principle

– Similar to techniques known

from computer science

• Then determine attenuation

of all those possible paths

krgoodwin
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Effects taken into account: free space attenuation, reflectionswhich cause additional attenuation and diffraction/diffusescattering where a ray on an IO gives rise to several new rays
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How does the signal reach the receiver

Outdoor-to-indoor

transmitter

receiver
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How does the signal reach the receiver

In the office

2
3

3
7
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How does the signal leave the transmitter

At the roof
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In all offices

Copyright: IEEE
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How does the signal reach the receiver

outdoor urban
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Through 

yard

Cathedral

Street 2

Over 

BOF

Street 1

Signal arrives from some specific areas

Copyright: IEEE
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Diffraction, reflection, scattering, transmission

Copyright: IEEE




