Probability Theory Summary — Appendix A

Three viewpoints on the formulation of Probability Theory

a. A Priori approach — our intuitive feel for equally likely events like the roll of
unbiased/not loaded dice. Events that are equally likely may not be obvious.

b. Relative-Frequency approach — repeating an experiment n times in an identical
fashion/environment. Requirement is that the experiment be repeated an
infinite number of times. This execution (simulation) approach has ‘opened’ up
new areas where complexity may have been an initial problem, e.g. network
performance theory (queuing theory, how the World Wide Web operates).

c. Axiomatic Definitions — entire theory is built on axioms and if done properly all
the properties are well defined. Theory must be related to the real-world
problems in order for it to be useful. One can use the other two methodologies
to assist in understanding the problems in an axiomatic fashion.

Axiomatic Approach — foundation is three fundamental axioms of probability

1. 0 < P(A) < 1 The probability that an event A occurs is a number
between 0 and unity (1).

2. P(S)=1 The probability of an certain event (the entire sample space) is unity.

3. P(A;+Ay)=P(A)) +P(A) The probability of the union of two mutually
exclusive events (Aj,A») is the sum of the probabilities.

Set Theory — Venn Diagrams  Georg Cantor (1845-1918) — Father of modern set theory
Union B= A +A;, or B= AjUA; Boolean OR
Intersection B=A1A, or B=ANA; Boolean AND

Null Set ® such that P(®)=0

Complement A+A =U The Universal Set

For events that are not mutually exclusive, use a strategy of splitting events into unions of
other mutually exclusive events. Using Figure Al as a visual aid:
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A + A, are not mutually exclusive (not disjoint) but

A;=C;+ C; and A, = C, + C; which breaks A; and A; into two other disjoint events
P(A1+A)=P(Ci+C,+Cy+C3) =P (C))+P(Cy) + P (C5) since C,+C, = C;
Adding C; and subtracting C, from the equation for the union along with the probability

of the union of two mutually exclusive events (A, A,) results in
P(A1 + Az) =[P (C1) + P(C)] + [P (C) + P(C5)] - P(Cy)

«—
= P(A1) + P(A2) — P(A1A») since C, = the intersection of A; and A,

You can apply this result to three or more events (Eq. A11) to have a way of dealing with
events that are not mutually exclusive (most events in the real world are not mutually
exclusive/disjoint, with any number of usually hidden dependencies).

Conditional Probabilities (or dependent probabilities)

P(A1Az) = P(A)) P(A2| A1) where P(Az | A1) is the probability of A knowing that A; has occurred.
If the events are independent, then P(A;A,) = P(A)) P(Az) or P(A; | Az) =P(A))
Example of a conditional probability P(A; | A»):

P(A;) = prob of a drawing the four of clubs from a deck of 52 cards (S = 52)
P(A))=1/52

P(A; | Az) = prob of drawing the four of clubs knowing (A»),

that a club has been drawn
P(Ai| Az) =1/13 (in this case S = 13 made up from the 2,3.4,5,6,7,8,9,10,J,Q,K,A)

Generalizing Conditional Probability:

Conditional probability for the intersection of three or more events P(A1AzAs ... Ay)
is the joint product of one independent probability P(A;) and n -1 dependent probabilities

P(A1A2A3 cees An) = P(A]) P(Az | A]) P(A3 | A]Az) P(A4 | A1A2 A3) P(Anl A]Az Anl)
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Random Variables (X)

Discrete - finite
Continuous — infinite (no quantization)

X is a random variable if we associate each value of X with an element in event A
defined on sample space S.

Density and Distribution Functions — mathematical tools to predict the future

P(x;) — probability function for the discrete random variable X.
P(x = x;) = P(x;) = f(xi) probability density function (PDF)
P(x <x) = F(x) =3 f(x) cumulative distribution function (CDF)

F(x) 1s a function defined in terms of the probability that x < x

The two figures below show a good graphical representation of f(x), the density function
and F(x), the distribution function for a single die.

PDF F(x)=P(x<x) CDF
f) F{x)
: -
i ,_T—
6 2 ’_?_'
6 —
I N TR NN R NN A
0 I 2 3 4 5 6 7 01 2 3 4 5 6 7 8
Random variable x Random variable x

The domain of the random variable is x =1, 2, 3, 4, 5, 6 where using the equally-likely
events hypothesis, the probability of rolling any number from 1 = 6 is

P(x=1)=1/6 fori=1 - 6 thus f(x)=1/6 a constant density function as shown

The distribution function P(x <x) = F(x) =x/6 for 1 <x <6 An example can be seen as

the probability of rolling a 2 or less, P(x <2)=2/6 OR
the probability of rolling a 6 or less, P(x < 6) =1

Which is a fancy way of saying P(S) = Y f(xi) = 1 The sum of all possibly outcomes

Over all 1

in the sample space S is 1 and can never be greater than 1. Counter example P(®)=0
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Binomial Distribution (discrete probability model for the binomial density function)

Also called the Bernoulli Distribution

Associated with events that can occur (success) or not occur (failure) and thus have
outcomes that can be associated with:

p = probability of success on one trial independent events that can occur or not occur
1 — p = probability of failure on one trial in other words success (p) or failure (1 —p)
n = the number of independent trials population (n) must remain constant for each trial
r = the number of successes in n trials to be independent
n Author uses B(r; n, p) instead of f(x) for the density function
B(r;n, p) = p(l-p "
r
 [expressed as n choose r ]
n n!
where = e = the number of combinations of n items taken r at time
r r! (n—r)!

Distribution Example: The probability of rolling exactly two 4’s in six throws of
a die. (n = 6 trials, r =2 successes where p=1/6) Remember 0! =1 by
definition. We’ll see Binomial Distributions in the reliability of M-of-N Systems.

For a communications example, we can use the bit error rate (BER = q = probability of

1 bit in error), substitute q (failure) for p (success) and change the definition of r from the
number of successes to the number of failures to obtain the probability of failure rather
than the probability of success shown above. In words the Binomial Distribution for
errors is the number of combinations of bit failures for n bits times the probability of
failure for 1 bit (BER) raised to the number of bits in error (in this case r = failures) times
the probability of no errors (1 — BER) raised to the number of bits not in error (n — r).

Figure A3  Binomial Density Function for fixedn=9 Shown is the probability of
success B(r) for n = 9 bits with decreasing bit error rates 1 —p=q=0.8, 0.5 and 0.2

B,(r: 9. n
2P 1-B,=BER = q(1-g)"
04F '
oL I | I L s ¢ r T | I I I Ly Y L (Y | ._I |
0 2 4 6 8 0 2 4 6 8 0O 2 4 6 8
n=9,p=02 n=9,p=0.5 n=9p=08
Expected # of successes np = 1.8 np =4.5 np=7.2

for transmitting 9 bits
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Hypergeometric Distribution - a distribution that can be used for non-independent trials
or events without replacement (each trial changes when population changes w/o replacement)

[n ] [N - n} k = number of desired objects in the sample

k j -k j = number of objects in the sample
Pr(X=k) = -o-Ze-fommee n = number of desired objects in the population
N N = number of objects in the population
L ] see Equation A21a, page 394 for author's term definitions

Poisson Distribution (discrete probability model for the Poisson density function)

At this stage we’ll take the derivation of the Poisson density function as a special
limit of the binomial density function where p is very small and n is very large.
Section A8.2 takes another far more formal derivation of the Poisson distribution as the
governing probability law for a Poisson Process, a process that represents the number of
events that have occurred up to time t, which is nothing more than a counting process.
The Poisson Distribution is a special kind of Markov process, a discrete-state continuous-
time pI’OCGSS/ model. Mother Nature (the real world) does a lot of things that follow a Poission Distribution.

For our interests in events which occur in time, the Poisson distribution can take on a
special limiting form where we’ll define the rate of occurrences as the constant
A = occurrences per unit of time  (this will end up being called the failure rate)

where the most probable number of occurrences (the graphs of np shown in Figure A3)
np = At

Taking the limiting form of these terms (a large sample space) plugged into the binomial
distribution (binomial density) results in a useful form of the Poisson Distribution:

At)ye- ht This Poisson Distribution/Poisson Density Function
f(r; A, t) = e is the limiting form of the binomial distribution
r! r=# of successes A is a constant

Continuous Random Variables for events where we have no reason to believe that the random variable
takes on discrete (countable) values

The distribution function (CDF) for the discrete case was previously defined as:

Cumulative Distribution Function (CDF) P(x<x)= F(x) = f(x)

X <X

If the spacings between the discrete values of the random variable x are Ax and we let
Ax > 0 then the discrete variable becomes the continuous variable and the summation
becomes an integration (fundamental theorem of calculus).
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Thus the cumulative distribution function of a continuous random variable x with the
probability that x takes on all values less than or equal to a specified value x is

P(x <x)= I f(x) dx =F(x) the CDF fora<x<b f(x) = probability density function - PDF

which shows that the integral of the PDF (probability density function) is the
CDF (cumulative distribution function) or stated another way
that the derivative of the CDF is the PDF - dF(x)/dx = f(x)

An example of a more useful form of this relates the probability of failure with a
specified period of operation

b
Pla<x<b)= _[ f(x) dx = F(b) — F(a) for example the probability of a failure within the
first month of operation where a = 0 and b = 1 month.
When we deal with continuous probability, it makes sense to talk of the probability that x

1s within an interval rather that at one point. Where’s the PDF? The density function f(x)
only has a value when integrated over some finite interval, normally a time interval.

Sections A6.2 through A6.6 take a look at a number of continuous variable distributions
which are of major interest since they relate how numerous features of the real world

operate or how to describe the operations of Mother Nature (lol). In summary:

Rectangular or Uniform Distribution

This model predicts a uniform probability of occurrence in an interval between a and b

P(x<x<x+Ax)=Ax/(b—a) f(x)=1/(b—a) for a<x<b

Exponential Distribution (continuous density function where now the random variable is
switched to time t and defined as the failure time of the item in question.)

f(ty=Le™ fort>0 PDF where A = constant failure rate (failures/hour)

This distribution appears heavily in reliability work. A justification is that the time
between failures for a system made up of many components, none of which has a high
probability of failure, approaches an exponential distribution.

CDF=F(t)=1-¢"

Geometric interpretation of the CDF: F(t) is the area under the curve of f(t) or
as previously stated F(x) is the integral of f(x) = the CDF is the integral of the PDF.
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To define reliability, we know that the probability of failure as a function of time is

P(t <t)="F(t) which is the definition of the failure distribution function

The definition of reliability is the probability of success (no failures) in terms of F(t) as

R(t) = p(t 2 t) = 1 — F(t) = the probability of not observing any failure before time t

Thus for the exponential distribution: p(t>t)=R(t)=1-F(t)=¢ M

R(t) is the probability of no failure (or the probability of success) in the interval from 0 to t

Distributions (details to follow):
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Hazard Function z(t) — a function that measures the probability that a product will fail
during a particular instant of time under the condition that it did not fail before that

instant of time (t).

z(t)= f(t)/ 1 —-F(t) = probability of failure at time t / probability of no failure prior to t

For an exponential distribution z(t) = Ae™/1—-(1-e™) = L The Hazard rate is a
constant which equals the constant failure rate A.

S

t, Time
(a)

Random failures ———>:<— W.e arout
failures

z(6)

Early tailures

£, Time
(b)

Figure B6 General form of failure curves. (a) Failure density; (b) hazard rate.

Figure B6(b) is the bathtub curve and represents the three regions of a systems
hazard rate over its operational life: infant mortality (decreasing failure rate),
constant failure rate (between t;& t,) and wearout or old age (increasing failure
rate). Thus for this situation during an item’s operational life, the time between
t; & t, we can assume a constant failure rate = exponential distribution.

PROBLEM:

Equipment failure, constant failure rate with A = 0.1 failures per year.
Thus we know f(t)=Ae ™ and F(t)=1-e¢-* CDF=] PDF

What is the probability of equipment failure during the first year?
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See lecture slide Page 14 of 29 where k = r = # of occurences/failures, the Poisson Distribution for one and only one failure

Which is the hard way of answering the question when you could easily formulate:
P(0<t<1)=CDF=F(t)=1-eM=1-¢%=1-0.9048374 = 0.09516258
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Ravyleigh Distribution

Single parameter density function, handles an increasing failure rate
fx)=Kxe ¥ for0<x<omo
F(x)=1-¢ -Kx?/2

The distribution is found in wireless communications multipath models, software
manpower estimation, etc.

Weibull Distribution

A two parameter distribution that handles increasing, constant or decreasing failure rates.
The second parameter is a shape factor m that determines the shape of the distribution
(for a given A). The Rayleigh Distribution where m = 1 and the Exponential Distribution
where m = 0 are special cases of a Weibull Distribution (see Figure AS5).

f)=mirAty™ e 00" fort> 0,m>0,A>0 (later in the notes we substitute o. = m)

The mean E(x) shown in Table Al (e.g., MTTF) uses the Gamma function which is a
table look-up value that can be found at http://www.efunda.com/math/gamma/findgamma.cfm)

Normal Distribution

A highly utilized two-parameter distribution, sometimes called a Gaussian Distribution.

1. Continuous and symmetrical about the y-axis.

2. Total probability under the curve is one.

3. The probability of a single point occurring on the continuous distribution is zero.
Therefore in normal distribution we describe the probability of a single point
falling within some specified range.

4. The binomial distribution approaches the normal distribution for large n. It can
also be shown that when a random variable is the sum of many other random
variables, the variable will have a normal distribution in most cases.

1
oV 2T

u = mean o = standard deviation

Jx) = ¢ w3/ (A32)

The area under the f (x) density curve between a and b is the area of interest since it
represents the probability that x is within the interval a <x <b.
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For tabular convenience, the areas under the normal distribution have been transformed
to the standard normal distribution where p =0 and o = 1. This is done by a change in
scale by expressing a given range in standard deviation units given the random variable x:

t=(x-pu)/o (t is a linear function of x )
Problem: What is the probability that the classes’ weights fall between 140 and 180

pounds given that the standard deviation of the classes’ weights is ¢ = 20 pounds, the
mean p = 140 pounds and we assume that weights are normally distributed?

t is a linear
function of X

First compute the translation to the standardized normal distribution (The textbook Appendix
A uses t as the transformed variable)

t=(x-p)/oc =(180—-140)/20 =2 (two standard deviations or two sigma c)

From the CRC Normal Distribution Tables (which uses x as the transformed variable),
the entry in the standardized normal distribution table shows the area from
t=—o0to2=F(2)=0.9773 The area from t=2to+ow=1-F(t)=1-0.9773 =0.0227
Thus the area under the normal curve fromt=0to2 or x =140to 180 pounds =
(0.9773 —0.0227) / 2 = 0.4773 (since the curve is symmetrical about the y axis) which is
the probability that a student’s weight in this class falls between 140 and 180 pounds.
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Moments

Weighted integrals of the density function f(x) which describe various geometrical
properties of the associated function, a kind of short-story descriptive of the function.

1* Moment - Expected Value or Mean E(x)

2" Moment — Variance of X or var X

o’ =varx=E(x) - n

TABLE A1 Mean and Variance for Scveral Distributions

Distribution E(x) var X
Binomial np np(l — p)
Poissan " i
1 1
E tial o —
xponentia X "z
. ™ 0.4292
Rayleigh —_— -
Vel 2K K
i—€ -8
K K
Weibull I'e S T'(8) - [E(x)]?
! (mﬂ) (€ (m+l) () — [Ex)]
m+2 m+3
£= 6=
m+1 m+ 1
I' = the gamma function
Normal u o?
Markov Models

Markov models are functions of two random variables — the state of the system x
the time of the observation t

Four models can result since x and t may be either discrete (state changes are integers) or
continuous (transitions between states may take place at any instant of time).

Any Markov model is defined by a set of probabilities p;; which define the probability of
moving from any state i to any state j.

Markov Chain — discrete-state discrete-time. A set of random variables {X,} forms a
chain if the probability that the next state {X,+1} depends only on the current state and

not any previous state. No memory or memoryless.

Markov Property — past history summarized in the specification of the current state.
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Semi-Markov Process

Markov Process / \RVaar:gom
Birth-Death

1. Semi-Markov Process

This stochastic process can have an arbitrary distribution of time between
state changes and any new staie is possible given the current state (i.e,
the probability P[S, | 5] is arbitrary).

2. Random Walk
This stochastic process has an arbitrary distribution of time between
events. However, the next-state probabilities depend on the current po-
sition. The restriction can be described as P[5, | )] = P,_;. In other
words, the transition probabilities depend only cn the distance from the
current position.

3. Markov Processes (Chains)
This stochastic process restricts the time between events to be memory-
less, but the next-state probabilities P[S, | §,] are still arbitrary.

4. Birth-Death Processes

A , . . .
This stochastic process restricts the time between events to be memoryless s s dearn
. s A
and further restricts the next-state probabilities to be nonzero for only the AT M e .
nearest-neighbor states (i.e., [k — j| > | = P[S, | 51 = 0). = ./Kf:
m=1

Poisson Process special case of a Binomial distribution where n is very large

For the development of Markov processes, the textbook derives the Poisson Process
using the Poisson distribution as the governing law. The process focus is a discrete-state
continuous-time model based on three constraints:

1. Occurrences from n to n + 1 in time At occur with a probability of A At
A is a constant. No negative number of occurrences.
2. Occurrences are independent.
3. Two or more occurrences in the interval At are negligible; a second-order effect.

Textbook pages 405 — 407, difference equations = differential equations solved using
undetermined coefficients (assume a solution of the form Ae *?)
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P,(t) = e ~*' where P,(t) is the probability of no occurrences.

Pi(t)=Xte "'  solving Py(t) forn=2, 3, - generates the Poisson distribution

(7\, t)r e M
Pi(t) = - =f(r; A, t) (same as the Poisson Distribution formula A23)
r! one can view r as the number of failures

)
//
/

Graph of various Poisson Distributions (forr=0, 1, 2, 3, 4)

Key outcome of the Poisson Process?

With t, being the time of first occurrence, the probability of no occurrences

Po(t) =P(t<t,) =1 —P(t, <1

But this is the cumulative distribution function F(t) for the random variable t (the time of
occurrences) from which the density function (PDF) follows as

d
f(t)=dF(t)/dt = ----—--- (1-e*) =pe
dt
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The conclusion is that the time of first occurrence is exponentially distributed and since
each occurrence is independent, it also means that the time between any two occurrences
is exponentially distributed (exponential interarrival times).

The same mathematical development is used in queueing theory for network
performance. One develops (Kleinrock’s Queueing Systems) a Poisson process with a
constant arrival rate A and shows that the times between arrivals is exponentially
distributed.

The future of an exponentially distributed random variable is independent of the past
history of that variable and thus the distribution remains constant in time. The time until
a future arrival occurs is independent of how long it has been since the last arrival.

Only an exponential distribution (in the continuous domain) or a geometric distribution
(in the discrete domain) has this property.

For a new event at tg, the
probability of arrival
requires that you
normalize the cross-
hatched area under the
graph since the ) p=1.
This tail possesses the
exact same shape as the
%7”” —~ PDF everywhere.

0 ty

he Mt

aft)

t —5-

The Memoryless Triangle (showing the interdependency of attributes)
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The Poisson Paradox

You are at a bus stop where the bus arrivals are Poisson distributed (exactly how
nature normally works) and therefore the time between bus arrivals is exponentially
distributed and A = bus arrival rate (busses/hour).

When you walk up to the bus stop, how long do you have to wait until the next bus?

Answer A: Average time between buses is 1/ A, your arrival is random so you would
expect to wait /2 A on the average for the next bus.

Answer B: For any time that you walk up to the bus stop, the distribution is exactly the
same as the original distribution thus the average time one has to wait for the bus,
independent of any time you arrive, is 1/ A.

Answer: Given that the bus arrivals are Poisson distributed, the answer is B (the paradox).

Matrix Nomenclature (for later use in Appendix B with Markov Processes)

For Markov Models based on a homogeneous process, which is an outcome of the
mathematical development for a Poisson Process as previously outlined, the process has
constant coefficients. We can write a convenient set of differential equations with a set
of constants represented by a state-transition rate matrix (transition probability matrix)

For two states (0 and 1) the transition matrix For four states (0, 1, 2, 3)
would have the following elements:
Poo Por Po2 Pos

Poo Po1 P= P P P P13
P = Py P21 P22 P
Pio Pu P30 P31 P32 P33

where Pj; is the probability the system will remain in the same state during one transition
and Pj; is the probability that the system will move from state 1 to state j.

The transition probabilities of leaving & arriving for the state must balance. For
example, the first row of P are all of the transitional probabilities for state 0.

The process is ergodic if every state can be reached from any other state with a positive P

An absorbing state (trapping state) is a state from which it is not possible to reach any
other state (the end of the process). In the transition matrix, any column having only a
single entry is an absorbing state.

All of this lends itself to a very convenient graphical means of handling Markov Models
which will be detailed in Appendix B6 — Markov Reliability and Availability Models.
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Example 1. Data are collected from the file system of a time-sharing system about
the transient faults in 8 disk drives in an effort to Miscover whether the time
between transient errors follows an exponential distribution. The estimated value
of \ is 0.1344 (time in minutes) corresponding to a MTBF of about 7 minutes. The
total number of observed errors is 877 in a 5-day interval. Table 2-12a shows the
observed errors by division into time categories and the expected number of
errors in each time category according to an exponential distribution. For instance,
the first row in the table means that 548 errors were observed with times between
errors of 0 to 5 minutes, while an exponential distribution with A = 0.1344 gives
the expected number of errors in that range as 429.20 (given that the total number
of failures is 877). The remaining categories have to be pooled until no E; is smaller
than 5. The result of this operation is shown in Table 2-12b. The number of degrees
of freedom is m = 8 — 1 — 1 = 6 because there are eight different categories, and
one parameter (\) has been estimated from the data. For 6 degrees of freedom,
X305 = 12.592. Since x* > Xb.os, the hypothesis that the time between errors has
an exponential distribution must be rejected.



TABLE 2-12 Data on transient faults for the time-sharing file system (Example 1)

a. Collected Data

b. Pooled Categories

Time Observed  Expected Time Observed  Expected Time
Category Errors, Errors Category Errors Errors, Category

(mins) Oi E; (mins) o} E (mins) O E (O~ E)IE
0-5 548 429.20 55-60 2 0.2639 0-5 548  429.20 32.88
5-10 148 219.15 60-65 1 0.1347 5-10 148  219.15 23.10

10-15 63 111.89 65-70 1 0.06881 10-15 63 111.89 21.36

15-20 35 57.13 70-75 1 0.03514 15-20 35 57.13 8.57

20-25 28 29.17 75-80 1 0.01794 20-25 28 29.17 0.04

25-30 18 14.89 80-85 1 0.009160 25-30 18 14.89 0.64

30-35 12 7.60 85-90 1 0.004690 30-35 12 7.60 2.53

35-40 6 3.88 90-95 1 0.002395 35— 25 7.93 36.74

40-45 3 1.98 95-100 1 0.001215 Total 2 = 125.86

45-50 1 1.01 100-105 1 0.000627

50-55 3 0.5178
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Table 2-12 Page 57 Reliable Computer Systems textbook

=] 4.31ro Bro 0.991445119 1.5606
80 4.3820 871 0.992588369 1.5902
85 4.4427 872 0.99372862 1.6237
20 4.4998 873 0.99486887 1 1.6625
a5 4.5539 874 0.998009122 1.70e1
100 4.8052 875 0.997149373 1.7682
105 4.6540 876 0.998289624 1.8518
110 4.7005 877 0.999429875 2.0108
slope y-intercept

| o.580825987| -0.883807793

0.016649283
r=2 = 0.983830895

1216.926866

4. 788805552

A= 0.218353592

v [ sSheetl  Sheetz 4/ Sheets

e Ci\Documents and Se...

0.0648745092
0.068273087F7

20

0.07870326
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Goodness-of-Fit Tests (textbook page 56)

The Chi-Square distribution ( xz) is the most important of all distribution-free tests.

It was introduced by Karl Pearson in 1900.

Although the test is distribution free since it makes NO assumptions about the population from
which the sample is drawn, there are four conditions that should be valid for the chi-square
analysis to be applied to any kind of test.

1. The sample of observations should be independent of one another and drawn from the target
population.

2. The data are usually of nominal measurement.

3. The sample should contain at least 50 observations.

4. There should be no fewer than five observations in any expected cell. [E; must be equal to at
least 5 and at times it may be necessary to pool categories.]

x2 = 2 -------------- where O; is the observed frequency and
=1 E; E; is the expected or theoretical frequency

The chi-square distribution is a different distribution with each change in the number of degrees
of freedom. It is badly skewed to the right for a few degrees of freedom and approaches the
shape of the normal distribution when the number of degrees of freedom is approximately 30.
The number of degrees of freedom may be described as the number of observations that are free
to vary after certain restrictions have been placed on the data. These restrictions are inherent in
the organization of the data. For example, if a sample of 50 items is classified as effective or
defective, the determination that 40 are effective automatically means that the remaining group
of 10 are defective, thus the degrees of freedomd.f. =2 —-1=1 Since the number of parts is
known, when the total in one category is ascertained, the total number in the other category is
determined.

Chi-Square Distribution Table and example of the use of the chi-square table.

Distribution of Chi-Square for Five Degrees o

of Freedom
Probability
density
0.2
™ P(X2>4351|d.f. =5) =0.50
o | P{X2>7.289|d.f. =5) =0.20
P(X?>>11.070|d.f. =5) =
, 0.05
0 4.351 7.289 11.070 X2

The table of chi-square values list the values of chi-square that give a specified area in the right-hand tail
of the above distribution for 5 degrees of freedom. For example the area to the right of x2 =712891s
0.20 or 20% 425
0.50 &L 50



616 Chi Square Distribution

PERCENTAGE POINTS, CHI-SQUARE DISTRIBUTION (Continued)
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THE KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST

The Kolmogorov-Smirnov one-sample test may be used as an alternative
to a chi-square test for goodness of fit when one is concerned with the
hypothesis that an observed sample distribution is drawn from a popula-
tion with a given theoretical distribution. It has two advantages over chi-
square:

1. The Kolmogorov-Smirnov test treats individual observations sepa-
rately. Thus, it is not necessary to lose information by combining
categories as is often required in chl-squale This makes it a more

powerful test than chi-square.

2. When samples are very small, it may be possible to use the Kolmo-
gorov-Smirnov test when chi-square would be impractical because of
the requirement that each expected frequency be at least five and that
the sample be at least 50.

The Kolmogorov-Smirnov test involves working with two cumulative
frequency distributions. One is an observed cumulative frequency distri-
bution secured from the sample, and the other is a theoretical cumulative
frequency distribution assumed in the null hypothesis. The point at which
these two distributions show the greatest divergence is determined, and a
decision is made to accept or reject the null hypothesis depending on the
probability that the observed difference would occur if the observations were
really a random sample from the theoretical distribution.

If F, represents the cumulative values of f, (the same observed distribu-
tion used in chi-square) expressed as a proportion of the total, and if F,
represents the cumulative values of f, (the expected distribution) shown as
a proportion of the total, then D can be defined as the maximum absolute
difference between F', and F,.

D =maximum|F, = F.| .cccccocoviiiniinininnnnn. (9.3)

This maximum difference, D, can be compared with a known theoretical
sampling distribution of D that is determined by the assumptions in H,,.
Certain critical values of this known distribution are shown in Table 9.11.
The table gives values of D for five different levels of significance for sam-
ples as large as 35. For samples larger than 35, the value of D can be com-
puted using the fractions shown in the bottom row of the table. For exam-

ple, if the sample size, n, is 49, D = —\—/—.5 = 0.19 for o = 0.05 (two-tail test).

B Example. A baker who plans to add fruitcake to the line of baked
goods wishes to test a statement made by a competitor to the effect
that, “'If you want a popular fruitcake that will sell, put in lots of nuts.”

The baker makes one fruitcake from each of six different recipes,
differing only in the proportion of nuts. Cake A has the smallest pro-
portion of nuts and Cake F has the largest proportion. The baker gives
a slice of each of the cakes to each of 12 homemakers. The women
taste the siices and designate the cake that each likes best and would
be most likely to buy. The following shows the test results.

Fruitcake ranked by the

proportion of nuts Number of homemakers
(A has the fewest nuts) selecting each cake
A 0
B 1
C 1
D 1
E 5
F _4
Total 12



The problem is to test at a = 0.05 the hypothesis ghat the proportion
of nuts is not important to the popularity of the fruitcake.

STEPS: .
1. H,: The observed distribution comes from a populatiop that r)as
a uniform distribution (i.e., the proportion of nuts is not im- g
portant).

2. H,. The observed distribution comes from a population that does
not have a uniform distribution (i.e., the proportion of nuts is im-
portant). ' )

3. An a=0.05 requires a value of D = 0.375 (D, 05 fOr n = 12).

4. Criterion: Reject H, (accept H,) if D > 0.375; do not reject H, if D
= 0.375, when D = maximum | F, — F,|.

5. Using the sample results, the value of D is computed in Table
9.12. The assumption underlying the expected distribution is
that if the proportion of nuts is not important, each recipe for
fruitcake should be chosen by two homemakers.

-TABLE 9.12 . -

Computation of D for a Kolmogorov-Smirnov
One-Sample Test

e

Fruitcake ranked by N;:mber
proportion of nuts chosen
.. (A has fewest nuts) f, f. F, F. |F,—F.|
A 0 2 % & %
B 1 2 1“§ ‘:‘2‘ 135
c 1 2 & 5 1 .
D 12 & f=D < TNAY L
E 5 2 F 14 & .
F 4 2 B B 0
Total 12 12

Since D(+ = 0.417) > D,(0.375), reject H, and accept H,. The pro-
portion of nuts in the fruitcake does make a difference in its ac-
ceptance.

H0 - nuttfhxgggﬁééjsf ?‘nifhypothesis that assumes that there is no significant
difference: between the value of the universe parameter being tested and the
va]ue4of the statistic computed from a sample drawn from that universe.

The null hypothesis assumes that the difference between the parameter
designated in the hypothesis and the statistic is a sampling difference.

Ha - alternate hypothesis, the hypothesis which will be accepted if statistical
testing leads to rejection of Ho.'



TABLE 9.11

Table cf Critical Values of D in the Kolmcgorov-
Smirnov One-Sample Test”

Level of significance for D = maximum

Sample | Fo—F. |
size
() 20 15 10 05 - .01
1. .900 925 .850 975 995
2 .684 .726 776 842 929
3 .565 597 .642 .708 .828
4 .494 525 .564 624 733
5 446 474 510 565 .669
6 410 .436 470 521 .618
7 .381 .405 .438 .486 577
8 358 .381 411 457 543
9 .339 .360 .388 432 514
10 322 342 .368 410 .490
11 307 326 352 .391 .468
12 295 313 .338 375 .450
13 .284 .302 .325 .361 .433
14 274 292 314 349 418
15 .266 .283 .304 .338 404
16 .258 274 .295 .328 .392
17 .250 .266 .286 318 .381
18 244 . .259 278 .309 371
19 .237 .252 272 .301 .363
20 231 246 .264 294 .356
25 21 22 .24 .27 .32
30 19 .20 .22 24 .29
35 .18 .19 .21 .23 27

Over35 107 1.14 1.22 1.36 1.63
vn vn vn vn vn

* Adapted from Massey, F. J., Jr., 1951. The Kolmogorov-Smirnov
test for goodness of fit. Journal of the American Statistical As-
sociation, pp. 46, 70, with the kind permission of the author gnd
publiaher. . ;
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Ho - null»hxpgtheéis;aiTn%vhypothesis that assumes that there is no significant
difference between the value of the universe parameter being tested and the
value of the statistic computéd from a sample drawn from that universe.

The null hypothesis assumes that the difference between the parameter
designated in the hypothesis and the statistic is a sampling difference.

Ha - alternate hypothesis, the hypothesis which will be accepted if statistical
testing leads to rejection of Ho.
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