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Probability Theory Summary – Appendix A 

Three viewpoints on the formulation of Probability Theory 
a. A Priori approach – our intuitive feel for equally likely events like the roll of

unbiased/not loaded dice.  Events that are equally likely may not be obvious.
b. Relative-Frequency approach – repeating an experiment n times in an identical

fashion/environment.  Requirement is that the experiment be repeated an
infinite number of times.  This execution (simulation) approach has ‘opened’ up
new areas where complexity may have been an initial problem, e.g. network
performance theory (queuing theory, how the World Wide Web operates).

c. Axiomatic Definitions – entire theory is built on axioms and if done properly all
the properties are well defined.  Theory must be related to the real-world
problems in order for it to be useful.  One can use the other two methodologies
to assist in understanding the problems in an axiomatic fashion.

Axiomatic Approach – foundation is three fundamental axioms of probability 

1. 0 ≤  P(A) ≤  1  The probability that an event A occurs is a number 
between 0 and unity (1). 

2. P(S) = 1 The probability of an certain event (the entire sample space) is unity. 

3. P(A1 + A2) = P(A1) + P(A1)         The probability of the union of two mutually 
 exclusive events (A1,A2) is the sum of the probabilities. 

Set Theory – Venn Diagrams Georg Cantor (1845-1918) – Father of modern set theory 

Union  B =  A1 + A2   or   B =  A1 U A2 Boolean OR

Intersection B = A1 A2    or  B =  A1 ∩ A2 Boolean AND 

Null Set  Φ   such that P(Φ ) = 0 

Complement A + Ā  = U       The Universal Set  

For events that are not mutually exclusive, use a strategy of splitting events into unions of 
other mutually exclusive events.  Using Figure A1 as a visual aid: 
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A1 + A2 are not mutually exclusive (not disjoint) but 

 A1 = C1 + C2  and A2 = C2 + C3 which breaks A1 and A2 into two other disjoint events 
P(A1 + A2) = P (C1 + C2 + C2 + C3) = P (C1) + P(C2) + P (C3)   since C2 + C2  =  C2 

Adding C2 and subtracting C2 from the equation for the union along with the probability 
of the union of two mutually exclusive events (A1, A2) results in 

     P(A1 + A2) = [P (C1) + P(C2)] + [P (C2) + P(C3)] – P(C2) 

  =   P(A1)  +  P(A2)  –  P(A1A2)  since C2 = the intersection of A1 and A2

You can apply this result to three or more events (Eq. A11) to have a way of dealing with 
events that are not mutually exclusive (most events in the real world are not mutually 
exclusive/disjoint, with any number of usually hidden dependencies). 

Conditional Probabilities (or dependent probabilities) 

P(A1A2) = P(A1) P(A2 | A1)  where P(A2 | A1) is the probability of A2 knowing that A1 has occurred. 

If the events are independent, then P(A1A2) = P(A1) P(A2)  or  P(A1 | A2) = P(A1) 

Example of a conditional probability  P(A1 | A2): 

P(A1) = prob of a drawing the four of clubs from a deck of 52 cards (S = 52) 
  P(A1) = 1/52 

P(A1 | A2) = prob of drawing the four of clubs knowing (A2), 
      that a club has been drawn 

P(A1 | A2) = 1/13  (in this case S = 13 made up from the 2,3,4,5,6,7,8,9,10,J,Q,K,A) 

Generalizing Conditional Probability: 

Conditional probability for the intersection of three or more events P(A1A2A3 …. An) 
is the joint product of one independent probability P(A1) and n -1 dependent probabilities 

P(A1A2A3 …. An) = P(A1) P(A2 | A1) P(A3 | A1A2) P(A4 | A1A2 A3) …. P(An | A1A2 …. An-1)
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Random Variables (Χ) 

Discrete - finite 
Continuous – infinite (no quantization) 

Χ is a random variable if we associate each value of Χ with an element in event A 
defined on sample space S. 

Density and Distribution Functions – mathematical tools to predict the future 

P(xi) – probability function for the discrete random variable X. 

P(x = xi) = P(xi) = f(xi)  probability density function (PDF) 

P(x ≤ x) ≡  F(x)  = ∑ f(x)  cumulative distribution function (CDF) 
x ≤ x 

F(x) is a function defined in terms of the probability that x ≤ x 

The two figures below show a good graphical representation of f(x), the density function 
and F(x), the distribution function for a single die. 

   F(x) = P(x ≤ x)   CDF

The domain of the random variable is x = 1, 2, 3, 4, 5, 6 where using the equally-likely 
events hypothesis, the probability of rolling any number from 1  6 is 

 P(x = i) = 1/6 for i = 1  6  thus  f(x) = 1/6 a constant density function as shown 

The distribution function P(x ≤ x) ≡  F(x)  = x/6 for 1 ≤ x ≤ 6    An example can be seen as 

     the probability of rolling a 2 or less, P( x ≤ 2) = 2/6   OR 
  the probability of rolling a 6 or less, P(x ≤ 6) = 1 

Which is a fancy way of saying P(S) =  ∑  f(xi)  =  1    The sum of all possibly outcomes 
     Over all i 

in the sample space S is 1 and can never be greater than 1.  Counter example  P(Φ ) = 0 

PDF
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Binomial Distribution (discrete probability model for the binomial density function) 

Also called the Bernoulli Distribution 
Associated with events that can occur (success) or not occur (failure) and thus have 
outcomes that can be associated with: 

      p  = probability of success on one trial        independent events that can occur or not occur 
1 – p  = probability of failure on one trial in other words success (p) or failure (1 – p) 
      n = the number of independent trials population (n) must remain constant for each trial 
      r = the number of successes in n trials  to be independent 

n Author uses B(r; n, p) instead of f(x) for the density function
   B(r; n, p) =  pr (1 – p) n – r 

r 
[expressed as  n  choose  r  ] 

 n        n!     
where    =    -----------  =  the number of combinations of n items taken r at time 

 r    r! (n – r)! 

Distribution Example: The probability of rolling exactly two 4’s in six throws of
a die. (n = 6 trials,  r = 2 successes where  p = 1/6)     Remember 0! = 1 by 
definition. We’ll see Binomial Distributions in the reliability of M-of-N Systems. 

For a communications example, we can use the bit error rate (BER = q = probability of 
1 bit in error), substitute q (failure) for p (success) and change the definition of r from the 
number of successes to the number of failures to obtain the probability of failure rather 
than the probability of success shown above.  In words the Binomial Distribution for 
errors is the number of combinations of bit failures for n bits times the probability of 
failure for 1 bit (BER) raised to the number of bits in error (in this case r = failures) times 
the probability of no errors (1 – BER) raised to the number of bits not in error (n – r). 

Figure A3      Binomial Density Function for fixed n = 9    Shown is the probability of 
success B(r) for n = 9 bits with decreasing bit error rates 1 – p = q = 0.8, 0.5 and 0.2

                                 np = 4.5   np = 7.2 

n          
1- Bn = BER  = qr(1-q)n-r 

r

np = 1.8Expected # of successes
for transmitting 9 bits
in one trial
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Hypergeometric Distribution  - a distribution that can be used for non-independent trials 
or events without replacement (each trial changes when population changes w/o replacement) 

     n   N -  n    k =  number of desired objects in the sample 
     k   j  -  k      j  =  number of objects in the sample 

Pr (X = k)  =  ---------------------      n  =  number of desired objects in the population 
      N          N =  number of objects in the population 
       j 

Poisson Distribution (discrete probability model for the Poisson density function) 

At this stage we’ll take the derivation of the Poisson density function as a special 
limit of the binomial density function where  p is very small  and  n is very large. 
Section A8.2 takes another far more formal derivation of the Poisson distribution as the 
governing probability law for a Poisson Process, a process that represents the number of 
events that have occurred up to time t, which is nothing more than a counting process.  
The Poisson Distribution is a special kind of Markov process, a discrete-state continuous-
time process/model.  Mother Nature (the real world) does a lot of things that follow a Poission Distribution. 

For our interests in events which occur in time, the Poisson distribution can take on a 
special limiting form where we’ll define the rate of occurrences as the constant 

λ = occurrences per unit of time     (this will end up being called the failure rate)

where the most probable number of occurrences (the graphs of np shown in Figure A3) 

        np  =  λt 

Taking the limiting form of these terms (a large sample space) plugged into the binomial 
distribution (binomial density) results in a useful form of the Poisson Distribution: 

      (λ t)r e - λ t   This Poisson Distribution/Poisson Density Function
f (r; λ, t)  =  ------------------      is the limiting form of the binomial distribution

  r !  r = # of successes      λ is a constant

Continuous Random Variables  for events where we have no reason to believe that the random variable 
        takes on discrete (countable) values

The distribution function (CDF) for the discrete case was previously defined as: 

Cumulative Distribution Function (CDF)   P(x ≤ x) ≡  F(x)  = ∑ f(x)  
x ≤ x   

If the spacings between the discrete values of the random variable x  are  Δx  and we let 
Δ x  0 then the discrete variable becomes the continuous variable and the summation 
becomes an integration (fundamental theorem of calculus). 

see Equation A21a, page 394 for author's term definitions 
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Thus the cumulative distribution function of a continuous random variable x with the 
probability that x takes on all values less than or equal to a specified value x is 

 x 

P(x ≤ x) = ∫  f (x) dx = F(x)   the CDF for a < x ≤ b        f(x) = probability density function - PDF 
 a 

which shows that the integral of the PDF (probability density function) is the 
CDF (cumulative distribution function)  or stated another way 
that the derivative of the CDF is the PDF      d F(x) / dx  =  f (x)  

An example of a more useful form of this relates the probability of failure with a 
specified period of operation 

 b 

P(a ≤ x ≤ b) = ∫  f (x) dx = F(b) – F(a)   for example the probability of a failure within the
 a 

first month of operation where a = 0 and b = 1 month.

When we deal with continuous probability, it makes sense to talk of the probability that x 
is within an interval rather that at one point.  Where’s the PDF?  The density function f(x) 
only has a value when integrated over some finite interval, normally a time interval. 

Sections A6.2 through A6.6 take a look at a number of continuous variable distributions 
which are of major interest since they relate how numerous features of the real world 
operate or how to describe the operations of Mother Nature (lol).  In summary: 

Rectangular or Uniform Distribution 

This model predicts a uniform probability of occurrence in an interval between a and b 

P(x < x ≤ x + Δx) = Δx / (b – a)  f (x) = 1 / (b – a)  for  a < x < b 

Exponential Distribution (continuous density function where now the random variable is 
switched to time t and defined as the failure time of the item in question.) 

f(t) = λ e- λt  for t > 0   PDF  where λ = constant failure rate (failures/hour) 

This distribution appears heavily in reliability work.  A justification is that the time 
between failures for a system made up of many components, none of which has a high 
probability of failure, approaches an exponential distribution. 

CDF = F(t) = 1 – e - λt   

Geometric interpretation of the CDF:   F(t) is the area under the curve of f(t) or 
as previously stated F(x) is the integral of f(x)  the CDF is the integral of the PDF. 
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To define reliability, we know that the probability of failure as a function of time is 

P(t ≤ t ) = F(t)  which is the definition of the failure distribution function 

The definition of reliability is the probability of success (no failures) in terms of  F(t) as 

     R(t) = p(t ≥ t) = 1 – F(t) = the probability of not observing any failure before time t 

Thus for the exponential distribution: p(t > t) = R(t) = 1 – F(t) = e - λt  

R(t) is the probability of no failure (or the probability of success) in the interval from 0 to t 

Distributions (details to follow): 
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Hazard Function  z(t)  – a function that measures the probability that a product will fail 
during a particular instant of time under the condition that it did not fail before that 
instant of time (t). 

z (t) =  f (t) / 1 – F(t)   =  probability of failure at time t / probability of no failure prior to t 

For an exponential distribution  z(t)  =  λ e- λt / 1 – (1 - e- λt)  =  λ    The Hazard rate is a 
constant which equals the constant failure rate λ. 

Figure B6(b) is the bathtub curve and represents the three regions of  a systems 
hazard rate over its operational life: infant mortality (decreasing failure rate), 
constant failure rate (between t1& t2) and wearout or old age (increasing failure 
rate).  Thus for this situation during an item’s operational life, the time between 
t1 & t2 , we can assume a constant failure rate   exponential distribution. 

PROBLEM: 

Equipment failure, constant failure rate with λ = 0.1 failures per year. 
Thus we know  f(t) = λ e- λt  and   F(t) = 1 – e - λt     CDF = ∫ PDF

What is the probability of equipment failure during the first year? 
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See lecture slide Page 14 of 29 where k = r = # of occurences/failures, the Poisson Distribution for one and only one failure 

Which is the hard way of answering the question when you could easily formulate: 
P(0≤ t ≤ 1) = CDF = F(t) = 1 - e- λt = 1 - e- 0.1 = 1 – 0.9048374 = 0.09516258 
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Rayleigh Distribution  

Single parameter density function, handles an increasing failure rate 

f (x) = K x e - Kx2/2   for 0 < x ≤ ∞

F(x) = 1 - e - Kx2/2

The distribution is found in wireless communications multipath models, software 
manpower estimation, etc. 

Weibull Distribution 

A two parameter distribution that handles increasing, constant or decreasing failure rates. 
The second parameter is a shape factor m that determines the shape of the distribution 
(for a given λ).  The Rayleigh Distribution where m = 1 and the Exponential Distribution 
where m = 0 are special cases of a Weibull Distribution (see Figure A5). 

f (t) = m λ (λ t)m-1 e- (λt)m  for t > 0, m > 0, λ > 0   (later in the notes we substitute α = m)

The mean E(x) shown in Table A1 (e.g., MTTF) uses the Gamma function which is a 
table look-up value that can be found at http://www.efunda.com/math/gamma/findgamma.cfm) 

Normal Distribution 

A highly utilized two-parameter distribution, sometimes called a Gaussian Distribution. 
1. Continuous and symmetrical about the y-axis.
2. Total probability under the curve is one.
3. The probability of a single point occurring on the continuous distribution is zero.

Therefore in normal distribution we describe the probability of a single point
falling within some specified range.

4. The binomial distribution approaches the normal distribution for large n.  It can
also be shown that when a random variable is the sum of many other random
variables, the variable will have a normal distribution in most cases.

µ  =  mean σ = standard deviation 

The area under the f (x) density curve between a and b is the area of interest since it 
represents the probability that x is within the interval  a < x ≤ b. 

http://www.efunda.com/math/gamma/findgamma.cfm
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For tabular convenience, the areas under the normal distribution have been transformed 
to the standard normal distribution where µ = 0 and σ = 1.  This is done by a change in 
scale by expressing a given range in standard deviation units given the random variable x: 

t = (x - µ) / σ        (t is a linear function of x ) 

Problem:  What is the probability that the classes’ weights fall between 140 and 180 
pounds given that the standard deviation of the classes’ weights is σ = 20 pounds, the 
mean µ = 140 pounds and we assume that weights are normally distributed? 

First compute the translation to the standardized normal distribution (The textbook Appendix 
A uses t as the transformed variable) 

t = (x - µ) / σ  = (180 – 140) / 20  = 2   (two standard deviations or two sigma σ) 

From the CRC Normal Distribution Tables (which uses x as the transformed variable), 
the entry in the standardized normal distribution table shows the area from 
t =  to 2 = F(2) = 0.9773   The area from  t = 2 to + 1 – F(t) = 1 – 0.9773 = 0.0227  
Thus the area under the normal curve from t = 0 to 2  or   x = 140 to 180  pounds  =  
(0.9773 – 0.0227) / 2 = 0.4773 (since the curve is symmetrical about the y axis) which is 
the probability that a student’s weight in this class falls between 140 and 180 pounds. 






t is a linear 
function of X 
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Moments 
 
Weighted integrals of the density function f(x) which describe various geometrical 
properties of the associated function, a kind of short-story descriptive of the function. 
 
1st Moment - Expected Value or Mean E(x) 
 
2nd Moment – Variance of x or var x 
 

σ2 = var x = E(x) - µ 
 

  
 
Markov Models 
 
Markov models are functions of two random variables – the state of the system x 
                                                                                           the time of the observation t 
 
Four models can result since x and t may be either discrete (state changes are integers) or 
continuous (transitions between states may take place at any instant of time). 
Any Markov model is defined by a set of probabilities pij which define the probability of 
moving from any state i to any state j. 
 
Markov Chain – discrete-state discrete-time.  A set of random variables {Xn} forms a 
chain if the probability that the next state {Xn+1} depends only on the current state and 
not any previous state.  No memory or memoryless. 
 
Markov Property – past history summarized in the specification of the current state. 
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Poisson Process    special case of a Binomial distribution where n is very large 
 

For the development of Markov processes, the textbook derives the Poisson Process 
using the Poisson distribution as the governing law.  The process focus is a discrete-state 
continuous-time model based on three constraints: 
 

1. Occurrences from n to n + 1 in time Δt occur with a probability of λ Δt 
λ is a constant.  No negative number of occurrences. 

2. Occurrences are independent. 
3. Two or more occurrences in the interval Δt are negligible; a second-order effect. 

 

Textbook pages 405 – 407, difference equations  differential equations solved using 
undetermined coefficients (assume a solution of the form Ae - λ t) 
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 Po(t) = e - λ t  where Po(t) is the probability of no occurrences. 
 

 P1(t) = λt e - λ t      solving  Pn(t) for n = 2, 3, …..  generates the Poisson distribution 
 
                 (λ t)r e - λ t    
 Pr(t)  =  --------------  = f (r; λ, t)  (same as the Poisson Distribution formula A23) 
                                r !    one can view r as the number of failures 

           Pr(t)  

   
 

Graph of various Poisson Distributions (for r = 0, 1, 2, 3,  4) 
 
 
Key outcome of the Poisson Process? 
 
With to being the time of first occurrence, the probability of no occurrences 

 

  Po(t) = P(t < to) = 1 – P(to < t) 
 

But this is the cumulative distribution function F(t) for the random variable t (the time of 
occurrences) from which the density function (PDF) follows as 
 
                                           d 

f(t) = dF(t) / dt  =  ------- (1 -  e - λ t)  =  λ e - λ t 

                                                                  dt 
 

  r 
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The conclusion is that the time of first occurrence is exponentially distributed and since 
each occurrence is independent, it also means that the time between any two occurrences 
is exponentially distributed (exponential interarrival times). 
 
The same mathematical development is used in queueing theory for network 
performance.  One develops (Kleinrock’s Queueing Systems) a Poisson process with a 
constant arrival rate λ and shows that the times between arrivals is exponentially 
distributed. 
 
The future of an exponentially distributed random variable is independent of the past 
history of that variable and thus the distribution remains constant in time.  The time until 
a future arrival occurs is independent of how long it has been since the last arrival. 
 
Only an exponential distribution (in the continuous domain) or a geometric distribution 
(in the discrete domain) has this property. 
 

 
 
 The Memoryless Triangle (showing the interdependency of attributes) 
 

  
 

For a new event at t0, the 
probability of arrival 
requires that you 
normalize the cross-
hatched area under the 
graph since the ∑ p = 1.  
This tail possesses the 
exact same shape as the 
PDF everywhere. 
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The Poisson Paradox 
 

 You are at a bus stop where the bus arrivals are Poisson distributed (exactly how 
nature normally works) and therefore the time between bus arrivals is exponentially 
distributed and λ = bus arrival rate (busses/hour). 
 

When you walk up to the bus stop, how long do you have to wait until the next bus? 
 

Answer A:  Average time between buses is 1/ λ, your arrival is random so you would 
expect to wait ½ λ on the average for the next bus. 
 

Answer B:  For any time that you walk up to the bus stop, the distribution is exactly the 
same as the original distribution thus the average time one has to wait for the bus, 
independent of any time you arrive, is 1/ λ. 
 
Answer: Given that the bus arrivals are Poisson distributed, the answer is B (the paradox). 
    
Matrix Nomenclature (for later use in Appendix B with Markov Processes) 
 

For Markov Models based on a homogeneous process, which is an outcome of the 
mathematical development for a Poisson Process as previously outlined, the process has 
constant coefficients.  We can write a convenient set of differential equations with a set 
of constants represented by a state-transition rate matrix (transition probability matrix) 
 
For two states (0 and 1) the transition matrix  For four states (0, 1, 2, 3) 
would have the following elements: 
         P00   P01   P02   P03 
 P00   P01     P  = P10   P11   P12   P13 
P  =        P20   P21   P22   P23 

 P10   P11      P30   P31   P32   P33 
 
where Pii is the probability the system will remain in the same state during one transition 
and Pij  is the probability that the system will move from state i to state j. 
 

The transition probabilities of leaving & arriving for the state must balance.  For 
example, the first row of P are all of the transitional probabilities for state 0. 
 

The process is ergodic if every state can be reached from any other state with a positive P 
 

An absorbing state (trapping state) is a state from which it is not possible to reach any 
other state (the end of the process).  In the transition matrix, any column having only a 
single entry is an absorbing state. 
 

All of this lends itself to a very convenient graphical means of handling Markov Models 
which will be detailed in Appendix B6 – Markov Reliability and Availability Models. 













Table 2-12  Page 57  Reliable Computer Systems textbook 
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