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Appendix B – Reliability Theory 
 
One easy means for reliability analysis is to decompose a system into functional blocks in 
which series and parallel structures are very likely. 
 

  
 

Single path, all units must operate successfully for Ps – system success 
 

The no-assumption formulation for a series configuration contains conditional 
probabilities presuming that units do interact in terms of reliability 
 

Ps = P(x1)P(x2|x1)P(x3| x1 x2) ……. P(xn| x1 x2…..xn-1)   Psuccess =  P(A1A2… An)  intersection 
                        _     _      _                _ 
Pf = 1 - Ps = P(x1 + x2 + x3 ……. +  xn)    Pfailure 
 

Note that system reliability can be viewed from Pf or Ps and in complex structures both 
approaches may be used at different stages of analysis.  In this situation, Pf is much 
simpler than Ps but still expands into conditional probabilities if individual P(xi) are to be 
evaluated. 
 
But if units do not interact and the failures are independent then 
 

Ps = P(x1)P(x2)P(x3) ……. P(xn)   Note: Ps < then smallest P(xi)  the weakest link in the chain 
      then            n 
R(t) = P(x1)P(x2)P(x3) ……. P(xn) = Ri(t) 
           i = 1 

which for constant failure rates (λ) 
              n        n 

R(t) = e- λt = exp ( - ∑ λit ) 
   i = 1                               i = 1 
 

BUT three big assumptions: series configuration, independence, constant-hazard model 
Equation B58  linearly increasing hazard    Equation B59  combination of both 
 
The series reliability structure is the worst-case or lower-bound configuration. 
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For a system failure, all units must fail thus   Pf  = P(x1 + x2 + x3 ……. +  xn)  P(Union) 
                                                                                      _ _  _             _ 
Ps   = 1 – Pf  = 1 – P(x1 + x2 + x3 ……. +  xn)  =  1 – P(x1 x2 x3  ……  xn) 
 
which results in a large number of conditional probabilities when the intersection terms 
are expanded as demonstrated in the series configuration shown above. 
 

But if the unit failures are independent then 
                   _      _      _                 _                                _           _ 
Ps   =  1 – P(x1)P(x2)P(x3)  …… P(xn)       seeing that P(xi)… P(xn)  =  Pf   =  1 – R(t) 

                                                     n              n 
Ps   =  1 - Pf  = 1 - [1 - R(t)] = 1 –  Ri(t)]  which for constant-hazard  =  1 –  e- λt) 
       i = 1        i = 1 

Equation B63  for linearly increasing hazard    Equation B64  for the general case 
 
 
Summary for independent failures: 

         n            n 
Series     R(t) = Ri(t)  Parallel    R(t) = 1 –  Ri(t)] 

      i = 1         i = 1 

     a short cut for just 2 units in Parallel: 
     R = R1 + R2 - R1R2 
 
 
Constant failure rates (hazards)        z(t) = λ    and  R(t) = e- λt 

Linearly Increasing Hazards       z(t) = Kt  and  R(t) = e-kt2/2 

Weibull (all of the above + deceasing)      z(t) = Ktm  for m > -1  and R(t) = e-kt
m+1

/(m+1) 
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r-out-of-n System Configuration 
 
A system configuration where r units out of n total units must operate for system success. 

  
The above reliability graph shows five paths where 4 of the 5 units must be operational 
for the system to be successful (Ps). 
 

Ps = P(x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4 x5)  (Equation B17) 
                                                               Solving B17 requires simplification of redundant terms see B18 
 

If the n units are identical and their failures are independent, then the binomial 
distribution is applicable (Equation B68): 
 
      n        n 
Ps  =      ∑               [R(t)]k [1 – R(t)] n – k  where the R(t) is given on the previous page for 
            k = r       k                                         the failure rates of constant, linearly increasing 
                                                                   and all possible rates (+, -, constant).  R(t) may be  
                                                                   a number such as the probability of success or 
                                                                   as inferred in this equation, a function of time. 
 
When r = 1 (one unit must operate for system success) the configuration becomes a 
parallel system (upper bound).  When all units must operate (r = n), then the 
configuration becomes a series system (lower bound).  Thus both the series and parallel 
systems are subclasses of the r-out-of-n system. 
 

If the r-out-of-n model requires r modules for success, then the system can tolerate 
n – r failures.  Example: a triple modular redundancy (TMR) system requires two out of 
three modules to function in order for the system to operate.  A TMR system can thus 
tolerate a single module failure out of the three modules in the system; it continues to 
work if all three modules or just two of the three modules function. 



CENG 5334  Appendix B – Reliability Theory      Page 4 of 22 

Fault-Tree Analysis – root node is the top undesired event and the diagram ‘branches’ are 
the secondary undesired events leading to the top node.  The process is continued until 
basic events are reached which are called elementary faults. 
 

A fault tree for a brake system is shown in Figure B13 

    
The safety analysis consists of: 

1. Decomposing the system into subsystems or piece-parts. 
2. Drawing a safety block diagram (SBD) or fault tree (FT) (computer programs are 

available for this purpose).  See Appendix D. 
3. Computation of the probability of safety from the Safety Block Diagram (SBD) or 

Fault Tree (FT) (computer programs are also available for this purpose). 
4. Determining the failure rates of each component element. This is a data collection 

and estimation problem. 
5. Substitution of failure rates into the expression obtained in step 3 (also done by com-

puter programs). 
 
Failure Mode and Effect Analysis (FMEA) – a systematic procedure for identifying 
possible failure modes and evaluating their consequences.  The basic questions: 

1. How can each component or subsystem fail?  What is the failure mode? 
2. What cause might produce this failure?  What is the failure mechanism? 
3. What are the effects of each failure if it does occur. 

 
A FMEA for the brake system is shown in Table B3 on page 443. 
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Cut-Set and Tie Set Methods 
 
Tie Set – a group of branches which forms a connection between input and output 
traversed in a given direction ().  Minimal tie sets contain a minimum number of 
elements between input/output (cause/effect) for system success (Ps). 
 
System Reliability R(t) from minimal Tie Set   R = P(T1 + T2 + …… + T3) 
 
Cut Set – a set of branches when removed from the graph interrupts any possible 
connection between the input and output. The probability of system failure is the 
probability that at least one minimal cut set fails. 
                                          _      _       _                    _ 
System Failure   Pf = P(C1 + C2 + C3 + …….. + Cj) 
                                                                                                              _      _      _                    _ 
System Reliability R = 1 - Pf  =  1 – P(C1 + C2 + C3 + …….. + Cj) 
from cut set 

         
Some Tie Sets  T1 = x1x2   T2 = x3x4  (both minimal)      T5 = x1x6x5x2      not minimal since T5  
                                                                                                                                                                             traverses top node twice 
 

Some Cut Sets  C1 = x1x3    C4 = x1x5 x4  (both minimal)  C5 = x3x6x1  not minimal since C5 contains C1 
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An example of a complex system that can’t be reduced to just parallel and series 
representations (since the paths are not independent). 

   
You could use the decomposition method to analyze the system which relies on the 
conditional probability concept to decompose the system.  This is that R(t) is equal to the 
reliability of the system given a chosen unit’s success multiplied by the reliability of the 
unit plus the reliability of the system given the unit’s failure multiplied by the 
unreliability of the unit.  In the above case, it is Unit 3 and Unit 6 that don’t allow 
reduction to simple parallel and/or series paths. 
 
A computationally intensive method but one that allows use of computers (brute force 
methods) is path-tracing (use of tie-set and cut-set methods to examine all paths). 
 
A path or tie-set merely represents a ‘path’ through the graph.  A minimal path-set or 
tie-set is a path/tie set containing the minimum number of units needed to guarantee a 
connection between the input and output points.  For example: Path = (1,4,7) is a minimal 
path but Path = (2,3,4,7) is not since Unit 1 is sufficient to provide a path to Units 4,7 or 
Units 5,6. 
 
The minimal path sets are:   P1 = (2)    P2 = (1,3)    P3 = (1,4,7)    P4 = (1,5,8) 
        P5 = (1,4,6,8)    P6 = (1,5,6,7) 
 
A cut-set is a set of units that interrupt all possible connections between the input and 
output points.  A minimal cut-set is the smallest set of units needed to guarantee an 
interruption of flow.  A Minimal cut-set shows a combination of unit failures that cause a 
system to fail. 
 
The minimal cut-sets are:  C1 = (1,2)    C2 = (4,5,3,2)    C3 = (7,8,3,2) 
      C4 = (4,6,8,3,2)    C5 = (5,6,7,3,2) 
 
These formulations can be used to determine the system reliability.   The minimal 
Tie-Sets produce R(t) whereas the minimal Cut-Sets produce 1 – R(t) = Pfailure 
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Failure-Rate Models  (how to handle observed failure data) 
 
Failure data for systems/components can be obtained from items in a population placed in 
a life test or using the field data from repair reports for the operating hours of the 
replaced parts.  Both of these methods and most methods of collecting failure data result 
in discrete data points that would lead to piecewise-continuous failure density fd(t) and 
hazard-rate zd(t) functions in terms of the collected failure data. 
 
From calculus, these discrete functions approach continuous functions in the limit as the 
data points become large and Δ t  0 
 
Data Density Function fd(t) - the ratio of the number of failures occurring in the interval 
[n at ti - n at (ti + Δ ti)] to the size of the original population N. 
 

            [n(ti) - n(ti + Δ ti] / N 
fd(t) = ---------------------------    for  ti < t ≤  Δ ti      (The overall speed at which failures are occurring.) 
  Δ ti 
 

 
Data Hazard Rate zd(t) – the failure rate over the interval as the ratio of the number of 
failures occurring in the interval (ti + Δ ti) to the # of survivors at the beginning of the 
time interval n(ti) 
 

            [n(ti) - n(ti + Δ ti)] / n(ti) 
zd(t) = ------------------------------    for  ti < t ≤  Δ ti   (The instantaneous speed of failures.) 
     Δ ti 
 

Section B3.4 - Reliability in Terms of Hazard Rate and Failure Density takes the above 
discrete equations and develops continuous equations B37 and B39 for z(t) and R(t) using 
the fundamental theorem of calculus, the limit as Δ t  0 
 

z(t) = f(t) / R(t) Equation B37         Proceeding in a different manner from page 431 
 

knowing that   R(t) = 1 - F(t)   =  1 - ∫ f(t) dt    then  dR(t) / dt  =  - f(t)   
 

        dR(t) 
 z(t) = –  --------  /  R(t) integrating both sides ( knowing ln x = ∫ dx/x ) 
         dt 
 

 ln{R(t)} =  –  ∫ z(t) dt then exponentiating both sides of the equation results in 
 

R(t) = e - ∫ z(t) dt       Equation B39 which relates reliability to the hazard rate z(t) 
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The textbook has some failure data for a life test on a group of 10 electronic components. 
The author takes the stance that the observed failure occurred just before the end of the 
interval; I would have taken the failures to have occurred at the midpoint of each interval. 

   
The computations for failure density fd(t) [overall] and Hazard Rate zd (t) [instantaneous] are: 

   
                                                      N = 10             n(ti) goes from 10 to 1 working items             
 
 

Note that the ‘instantaneous’population n(ti) 
is adjusted at the start of each period to 
calculate the Hazard Rate zd(t) - failure rate. 
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For discrete data, histograms are plotted (for a large N you would group failures): 
 

   
 
Integrating fd(t) the failure density function by taking the area of the appropriate 
histogram/rectangle results: 
 

   

Rd(t) = 1 – Fd(t) 
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By examining the definition for fd(t) and noting that Rd (t) = 1 – F(t) = 1 - ∫ fd (t) dt   
 

 Rd (ti) = n(ti) / N    where n(ti) is the # of operating components at ti for entire 
    N = population  [thus R(t) is normalized over the population] 
 
The continuous representations can be drawn by ‘eyeballing’ the given discrete data 
points (or a least-squares-fit). 
 
For discrete failure points, for n items, the Mean Time To Failure is 
                 n 
 MTTF = (1/n) ∑ ti    for 1 failure per interval with the failure at the end of the interval 
                                      i = 1       although one can normalize the data points to the midpoint of the interval 
 

MTTF is not the same as MTBF (mean time between failures) since MTBF implies repair 
or replacement situations, although the terms are used interchangeably incorrectly 

 

For the continuous data  MTTF =  ∫  R(t) dt 
                     0 
Thus for a constant hazard rate (constant failure rate λ) 

exponential density    Poisson distribution    constant hazard    constant failure rate 
which is the simplest case we use a lot BUT don’t forget the assumptions. 

   



CENG 5334  Appendix B – Reliability Theory      Page 11 of 22 

z(t) = λ   Failure or Hazard Rate 
  

  f(t) = λ e- λt   Failure Density Function (PDF) 
 

  F(t) = 1 - e- λt    Cumulative Distribution Function (CDF) 
 

   F(t) can also be called the failure distribution function    F(t) = ∫ f(t) dt 
 

  R(t) = e- λt  =  1 – F(t) Reliability  [ 1 - ∫ f(t) ] 
 

        MTTF = 1 / λ  Mean-Time-To-Failure (average time to failure) 
 
The number of failures is the same during the 1st hour of operation as the number of failures between 
1,000 to 1,001 hours given the same population size at the start of the period under consideration. 
Thus if λ = 0.1 failures/hour for N = 100 items, then we’ll have 10 failures during the 1st hour of 
operation and 10 failures between 1,000 to 1,001 hours given that a similar population of  N = 100 
items have already survived 1,000 hours. 
 
For linearly increasing hazard rate which results in the Rayleigh distribution (page 434) 
 

 
 

      R(t) = e- Kt
2

/2 

 

      MTTF =  [  ½ 
 

 
The Weibull Model (two parameter model, wide range of hazard curves), the density 
function (B47), reliability function (B48) and MTTF (B54), pages 435 – 437. 
 

 
 
 
 
 
 
 
Choosing different values for K and m allows approximation of a wide range of hazard 
curves.  K is the scale parameter and m is the shape parameter.  The estimation process 
is more complex because it is a two-parameter model.  There is even a three-parameter 
model produced by replacing t with t – to where to is called the location parameter. 
  

z(t) = Kt 
 
f(t) = Kt e- Kt

2
/2  

z(t) = Ktm  for m > 1 
 
f(t) = Ktm e - K t 

m+1
/ (m+1)  

 

R(t) = e - K t 
m+1

/ (m+1) 
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Textbook Section B6 - Markov Reliability and Availability Models 
 
Markov models work very well for constant failure rates λ [hazard rates z(t)] and constant 
repair rates µ [repair rates w(t) will be fully discussed in Chapter 3].  If these rates are 
time dependent, the math get very complicated.  The Markov models we’ll deal with are 
very simple.  In the real world, Markov computer modeling programs are commonly used 
(to be discussed in Appendix D). 
 
The Markov property - the probability that a component fails in the small interval Δ t is 
proportional to the length of the interval. 
 

The formulation for our Markov model will be for discrete-states leading to continuous-
time differential equations (easily solvable).  The states of the system at t = 0 are the 
called the initial states and those states representing the final or equilibrium state are 
called final states.  The Markov state equations describe the probabilistic transitions (over 
a period of Δ t ) from the initial to the final state.  These transition probabilities must obey: 
 

1. z(t) Δt – the probability of transition from one state to another in Δ t. 
If z(t), the hazard rate is constant, z Δt = λ and the model is then homogeneous  
(as compared to time dependent  non-homogeneous). 

2. No more than one transition in Δ t (neglect higher order terms). 
 
State-transition equations (difference equations) can be formulated, which result in first-
order linear differential equations (simultaneous differential equations) which can be 
solved by classical differential equation theory using known initial conditions. 
 
The text on pages 447 – 449 solves for R(t) for a two state system where Pso(t) = the 
probability of being in state 0 at time t and Ps1(t) = the probability of being in the failed 
state 1 at another time t where the transition probability z(t) Δt is the probability of failure 
(the change from so to s1) with the system working at t = 0 [initial conditions Pso(0) = 1 & 
Ps1(0) = 0 ].  Solving the differential equation (B73) for Pso(t) the working state results in 

    
 

or for a constant hazard rate Pso(t) = e- λt  = R(t)    the reliability equation 
 
Solving differential equation B74 for Ps1(t) results in a solution for the failed state 

    
 
 

Again for a constant hazard rate  Ps1(t) = 1 - e- λt    obvious since Pso(t) + Ps1(t) = 1 
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Markov Graphs – nodes represent system states (signal sources) and branches are state 
transition probabilities (transmissions).  A Markov graph for a single non-repairable 
element is as follows: 
 

  
For this Markov model, the discrete time matrix equation would be   P(t +Δ t ) = P(t) . T   
 

For this two state model, the T (transition) matrix would have the following elements: 
 
            P00   P01                1 – z(t) Δ t         z(t) Δ t       Table B4 page 448 for the discrete 
T  =                        =                                                     time (t +Δ t ) T matrix at the top of 
            P10   P11                     0                       1              page just before Eq (B73) 
 

With  P(t +Δ t ) = P(t) . T  the expansion of this matrix equation produces the following equations: 
 

     PS0(t + Δt) = {1 – z(t) Δt} PS0(t) + 0 PS1(t)    {PS0(t + Δt) - PS0(t)}/ Δt =  – z(t) Δt} PS0(t) 
    PS1(t + Δt)  = {z(t) Δt} PS0(t) + 1 PS1(t)         {PS1(t + Δt) - PS1(t)}/ Δt  =    z(t) Δt} PS0(t) 
 

Passing to the limit as Δt becomes small results in the continuous time differential 
equations, Equations B73 & B74 on page 448  
          d PS0(t) / dt  = - z(t) PS0(t)  (B73) 
          d PS1(t) / dt  =  z(t) PS0(t)  (B74) 
 

Since the sum of all probabilities must be equal to 1, the sum of transition probabilities 
means that all the branches leaving each node must sum to unity (1), that is ∑ rows = 1 
in the T matrix for the discrete time Markov Model. 
[It will be confusing at this point but note below that for the simplified continuous time algorithm, 
 the ∑ rows = 0 in the T matrix but for the textbook self-loop method ∑ rows = 1 in the T matrix.] 
 

For this single non-repairable element, the probability of remaining in state S1 is 1 (the 
failed state).  This final state is called the absorbing state or trapping state. 
 

The same equations (B73 and B74) can be generated using a simplified continuous time 
algorithm for writing the state-transition equations by inspection.  One equates the 
derivative of the probability at any node to the sum of the transmissions coming into the 
node.  The unity gains of the self-loops must be set to zero and the Δt factors are dropped 
by allowing Δ t to approach 0, which results in a continuous time Markov Model. 
 

See the top paragraph on pg 450 for the descriptive of this simplified algorithm method. 

PS0 – Probability of being 
         in state 0 (working) 
PS1 – Probability of being 
         in state 1 (failed) 
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With constant failure rates  z(t)  =  λ , using this simplified algorithm by setting the 
unity (1) gain terms of the self-loops to zero and dropping the Δ t’s by setting Δ t  0 
results in a simplified Figure B14: 
 
     
 
                                                                                                λ 
 
                                                 
 
  
This equates to the sum of the transitional rates becoming zero since the self-loop on 
 PS1 disappears and for PS0 the self-loop becomes - z  =  - λ for this constant failure case. 
 
         - λ    λ                     P00   P01 
State Transition Matrix T =                           =                              where now ∑ rows = 0 
simplified model, continuous time         0    0                     P10   P11 
 
Continuous Time     ___    __     _                                   - λ    λ 
Differential equation in matrix form  P’(t) = P(t) . T  = [ PS0(t)  PS1(t) ]       0    0 
 

From inspection, writing differential equations from the simplified model using the state 
transition continuous time matrix T can come directly from the columns of  T. 
 

d PS0(t) / dt  = - λ PS0(t) + 0 PS1(t)    from the 1st column of  T   (~ Eq B73 for z(t)  =  λ ) 
 

d PS1(t) / dt  =   λ PS0(t) + 0 PS1(t)    from the 2nd column of  T   (~ Eq B74 for z(t)  =  λ ) 
 

Another example - a two element nonrepairable system (e.g., parallel µPs)   Section B6.4 

 

Simplified 
State 

Diagram 
State 0 
  Pso 

State 1 
  PS1 

The node feedback loop 
(self loop) is a graphical 
representation of staying 
in the state or 
(1 – probability of leaving) 
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                  T                      P00   P01 P02   P03       no failures  The T matrix (discrete time) entries 
  State Transition Matrix  = P10   P11 P12   P13     1 failure  shown in Table B5 on page 451 
          [Four States]   P20   P21 P22   P23     1 failure 

     P30   P31 P32   P33     2 failures 

 
This example represents all possible configurations of a two element system.  At the 
poorest reliability end, it could represent a series system [ the only state representing 
success is R(t) for no failures = Pso(t)  Eq B86].  Best case  a parallel system 
[2 elements in parallel where one failure could be tolerated] thus R(t) has three mutually 
exclusive states [PS0 PS1 PS2]    Eq B87 
 
Collapsing the states (S1 and S2 into S1’) requires that the transition rates (the failure 
rates of the devices) z13 and z23 must be equal.  Normally S1 and S2 are identical devices 
but not necessary, it’s the z(t)’s that must be equivalent .  If we provide for repair [w(t)] 
using the same repair rate for the two (identical) devices, then the collapsed model with 
repair rate w(t) is shown in Figure B17: 

  
 
Repairable Systems  (normally with a Repair Rate µ) 
 
Repair is normally a very cost effective enhancement to the MTTF of a system. 
 
Since R(t) is the probability that a system has operated over the interval 0 to t, repair is 
not a factor since once a failure has occurred, the interval of operation is terminated even 
if for a short period to effect repair [R(t) possibly not a useful term in the real world]. 
 
 
Availability A(t) – the probability that a system is operational at time t. 
 

In general,  A(t) ≥ R(t)     The failed state is called the absorbing or trapping state. 
 

In systems with repair, the absorbing or trapping state is still a possibility since in the 
long run, a lengthy repair will be in progress when the alternate/backup unit fails, causing 
a total system failure. 
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Normally with a constant repair rate u(t) ≥ λ(t) and/or MTTR ≤ MTTF.  If the repair 
process restores a failed unit to usefulness before the backup unit(s) fail, the system will 
continue to operate (numerous assumptions including 100%  failure detection, etc.) 
 
Discrete-time Markov Model for a single unit with Repair 

 
       constant Failure Rate λ  and  constant Repair Rate µ      state transition rates 
 

     λ Δ t,  µ Δ t    State Transition Probabilities (probability of changing states) 
 

Section B7.3 – deriving a definition for A(t) different from the textbook using the Simplified Method 
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Note: If one uses the textbook method for the discrete time Markov Model, then to write 
the continuous time differential equations, the unity gain factors of the self-loops are set 
to zero (1  0) and the Δ t factors are dropped from the branch gains.  The differential 
equations are the continuous time derivative of the probability of being in a state which is 
equal to the ‘flows’ from the other nodes.  The easier Simplified Markov Model (without 
the self-loops and Δ t’s) produces the differential equations directly from inspection of T.  
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Derivation of A(t) = P0(t) for a two-state S0 and S1 Markov Model using Laplace 
Transforms. 
 

Laplace Transforms – converts differential equations into algebraic equations, which are 
easier to solve (albeit in the S domain).  Once solved algebraically in the S domain, then 
the inverse Laplace transforms produce the solution in the time domain t   [ f*(s)  f(t) ] 
 

The Laplace transform of f(t) is defined by the integral (Eq B97): 

   
A graphical representation of the Laplace transformation techniques (Figure B24) 
 

 

  
 

Table B6 on page 465 and Table B7 on page 468 list some primary Laplace Transforms. 
 
One key for the solution of differential equations is the Laplace transform of df(t)/dt 
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Cold Standby System – solving for R(t) and MTTF using Laplace Transforms 
 
The textbook has a good summary of the transform techniques; however, lets solve 
another simple Markov Model (Cold Standby System) for R(t) and MTTF. 
 
A cold standby system is nothing more than a parallel configuration with one unit turned 
off awaiting the detection of a failure at which time this cold spare (backup) unit is 
switched into operation.  For simplicity, we’ll assume a perfect switch, constant failure 
rates, etc. 
 
Simplified Markov Model for two modules in parallel, initially (at t = 0) one module is 
operating (the on-line or primary module) with the second module OFF, which will be 
the cold spare or backup. 
 
 

  
State 0 1 module working, 1 module used as a backup, both with a failure rate of  λ 
State 1 One module failed, switch to standby module after it is turned ON 
State 2 Both modules failed (trapping state or absorbing state) 
 
Assumptions: 
 

1. Both modules are identical with the same constant failure rate λ  (λ1 = λ1 = λ)  
 

2. While in standby (turned off), the failure rate of the spare is zero.  It always works 
when switched into the system and turned on. 
 

3. Perfect switch, λs = 0. 
 

4. The failure of the first module is always detected, perfect coverage C = 1. 
 

5. No repair. 

Simplified Markov Model 
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Writing the state transition matrix T for this simplified model (continuous time) 
 

  
Differential equations for the cold stand-by system (derived from the columns of T) 
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Summary for Cold Standby System: 
 
 Pf(t)  =  PS2(t)  =  1 – [ PS0(t) + PS1(t) ] 
 
 PS0(t)  =  e- λt 
 

 PS1(t)  =  λ t e- λt 

 

 R(t)  =  PS0(t) + PS1(t)  =  (1 + λt) e- λt 
 

MTTF  =  2 / λ 
 


