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Chapter 2 – Coding Techniques 
 
The key to detecting and correcting errors in codes is the amount of information 
redundancy in the code. 
 
Coding theory has become a mainstay as digital devices came into existence (rather 
recent in terms of history ~ 1960) and has made significant gains as processing power has 
increased in recent years.  An overall understanding of codes is desirable in the study of 
reliability since the techniques depend on redundancy and are a critical component in FT 
computing systems. 
 
The type of codes used depends on the types of errors that occur coupled with a sensible 
amount of redundancy and the overall reliability requirement (including speed and $). 
 
Information transmission errors have become ‘invisible’ today because of the underlying 
error detection/correction schemes built into almost all digital devices.  One can not 
tolerate bit errors especially if one is obtaining his bank balance electronically. 
 
Error Sources 

1. Component Failure: stuck high/stuck low, chip-wide failure, etc. 
2. Cross-talk: LC coupling in wires; first order dependency on the frequency and 

amplitude of the signal 
3. Atmospheric (lightning, fading) disturbances: normally results in burst errors 
4. Power Disturbances (both internal and external): noisy power sources, power 

supply decoupling, grounding 
5. Radiation Effects: Single Event Upsets (SEUs), soft vs. hard failures,  

latch-up  destructive/nondestructive 
6. Electromagnetic (EM) Fields: Other radiation sources, EM Interference (EMI), 

Electromagnetic Pulse (EMP) from nuclear devices 
7. Channel Noise: SNR (dB) of transmission path, signal detection (is it a 1 or a 0?) 
8. Phenomenon associated with the basic physics of devices and information theory: 

Brownian motion, quantization, Shannon Channel Capacity, 1/r2 signal losses 
 
Radiation effects are a big driver in fault tolerant computing.  Textbook Table 2.1 lists 
soft faults associated with airplane types.  This is dependent on the computational 
equipment (speed, IC fabrication), altitude, IC fabrication techniques (registration 
resolution, line width, semiconductor type/material). 
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Note the South American Anomaly where solar radiation is higher 
than normal. 
 
Critical actions in LEO (low earth orbit) are not executed in this 
geographical region. 
 
Also note that single event upsets (SEU) also occur when the Shuttle 
is on the launch pad at Cape Kennedy, Florida 
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Basic Principles 
 
Coding is all about legal versus illegal code words (bits, nibbles, bytes, blocks). 
 
Differentiation based on legal/illegal code distance, the minimum number of bits by 
which any one valid code word differs from another – the  Hamming Distance 

 
The greater the error detection/error correction capability of a code   the greater the 
Hamming distance, the greater the redundancy (and vice versa). 
 

     
Valid Code Words: 001, 010, 100, 111 Errors: 000, 011, 101, 110 
Hamming Distance: 2 
 
Simplest scheme: even/odd parity adds one redundant bit to differentiate between a valid 
and invalid code word. 
 
Odd-Parity: total # of 1’s in the code word (incld the parity bit) adds to an odd number 
Even-Parity: total number of 1’s in the code word is an even number 

(Not necessarily the mirror images of each other, odd parity can detect stuck-
low/catastrophic type hardware errors whereas all 0’s will pass with even parity.) 

 
Even/Odd Parity detects an odd number of errors (1, 3, 5, etc); can’t detect an even 
number of errors/failures (double errors: 2, 4, 6, etc.). 
 
Probability of undetected parity errors  P’ue  with r failures in n bits 
(r-out-of-n) with a bit failure probability of q is given by the binomial distribution: 
 

n                                                Pue = undetected error without parity 
                 B(r: n, q) =                       qr (1 – q) n – r           P’ue= undetected error with parity 

r 
 
which for single bit parity would be failures of  r = 2, 4, 6, …. etc. For high reliability/ 
small q ( q < 10-4),  P’ue for r ≥ 2 is negligible as compared to r = 2 so drop higher order 
failures of  P’ue (2-out-of-n bits) 
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For an 8-bit code word (a byte) with one bit parity (n = 9 bits) the most likely case of an 
undetected error would be the probability of occurrence for two errors (false positive) 
 

                                      9 
   P’ue =   B(2: 9, q) =                 q2 (1 – q) 7 = 36 q2 (1 – q) 7     n = 9,  r = 2,  q = BER (failure) 
                                                           2 
 

To compute the improvement of a 1-bit parity scheme P’ue compared to an undetected 
transmission error for 8-bits without parity Pue - it is easiest to compute: 
 

                                                                           8 
Pue = 1 – P(no errors) = 1 -  B(0: 8, q) =  1 -                      q0 (1 - q)8 - 0   =  1 - (1 - q)8 
        as compared to calculating 1 to 7 bit failure possibilities                   0 
 

then comparing the ratio between Pue / P’ue    Replacing (1 q)n with 1  nq and replacing 
[1/(1 - q)] with 1 + q  results in the formula (2.7) 
 

   Pue / P’ue =  [ 2(1 + 7q) / 9q ]  =  Improvement Ratio of Undetected error no Parity / Undetected error w/Parity 
 

For normal q (10-4 or less), the improvement ratio is significant (Table 2.3) with little 
overhead for the one extra parity bit in the 8-bit word which is (9 - 8) / 8 = 12.5%   
 

Taking into account the coder/decoder reliabilities which have been neglected so far: 
 

P’ue = P(A + B) = P(A) + P(B)  mutually exclusive events associated with not detecting 
an error with parity where A is the event where the hardware doesn’t fail but the parity 
error is undetected (h/w works but the error gets by with an even number of bit errors) 
and B is a hardware failure (error not detected because of a hardware failure) 
 

P’ue = P(no coder or decoder failure during transmission)  x  P(two bit errors undetected) 
             +  P(coder or decoder failure during transmission) 
 
Based on the MIL-HDBK-217 reliability models, the hardware failure rate of  ICs is 
proportional to the square root of the number of gates (g) in an equivalent logic model 
 

λb = c(g)½  = 1.67 x10-8 failure/hr for an equivalent logic model of the SN74180 
 

Assuming a constant failure rate (Poisson) for λb then the coder + decoder reliability  
 

R(t) = e-2 λb t  and the probability of coder/decoder failure is (1 - e-2 λb t ) = q(t) 
 

P(no coder or decoder failure during transmission) = R(t) = e-2 λb t 

P(hardware failure during transmission) = 1 - e-2 λb t  
P(two errors in the even/odd parity) = P(undetected error) = P’ue = 36 q2 (1 – q)7 
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The time t associated with a hardware failure during the 9-bit transmission 
(8 bits message + 1 bit parity) where B = transmission rate in bps 
 
    t = 9 bits x (1 / B bps) = 9 x 1/B x 3600 sec/hour = 9/3600B 
                                                                                                                                              

    P’ue  = [ e-2 λb t  ] [36 q2 (1 – q)7]  +  [1 - e-2 λb t ]     (2.10)       Probability of an undetected error for 
                      No hardware failure                            h/w failure                    1-bit parity including hardware failures 
 

The probability of an undetected error without parity for 8-bits is still  Pue = 1 - (1 - q)8 
Thus the improvement ratio Pue / P’ue is graphed as follows for various data rates which 
includes the possibility of coder-decoder (hardware) failures during the transmission in B bps 
 

   
 

If the hardware failure rate is small or the data rate B is large (small t), then the hardware 
failures have little effect on the improvement ratio.  A good example would be memory 
read/write operations (large B or small t which minimizes the h/w failure rate) 
 
The hardware failure rate has little impact if the bit error probability (BER) is 10-4  10-6 
(the large BER swamps out the impact of the hardware failures) but it does have an impact if the bit 
error rate is very small. 
 

When t becomes larger (B = 300 bps for example), then the chip failures become 
significant as shown above Figure 2.5 in the textbook).  Compare to Figure 2.3 which is 
the improvement ratio where hardware failures are not considered  straight line.  

Pue / P’ue 

Concern: Only consider hardware 
failures during bit transmission 
time but not necessarily during the 
coder/decoder operational times ?? 
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The MIL-HDBK-217X (A,B,C,D,E,F  changes due to technology) is a linear formulation for a 
reliability model based on known empirical factors that impact component reliability that was validated 
with actual failure data gathered by DoD.  It is no longer supported by the Gov’t and has been replaced 
with more complex models such as Prism.  MIL-HDBK-217X  still provides a foundation for the basic 
principles of R(t) in electronic systems, e.g., high temps are bad, new technology without a track record 
is bad, the learning factor.
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Hamming Codes (error detection/error correction) 
 

To make a decision on detecting an error or correcting an error, there must be a clear 
choice between the code word in error and nearest correct code word.  For error 
correction codes, the separation distance (the Hamming distance) must be large enough to 
allow valid decisions between legal and illegal code words. 
 
For 1-bit parity, a single error produces an incorrect code word that is a Hamming 
distance of 1 from the correct word (d = 1).  For a single error to be detected, the 
Hamming distance d between correct code words must be at least 2 so that the resultant 
error with its d = 1 will map into the illegal code word set and thus be detected.  The 
even/odd parity bit scheme has a Hamming distance d = 2, which is the Hamming 
distance between correct code words.  Note that for a detected parity bit error, there are a 
number of equally possible correct code words that are a d =1 distance away from the 
detected error, so correcting the error is not possible with a parity bit coding scheme. 
 

              
If you examine the legal code words in Table 2.2(b) for the even parity scheme, note that 
the Hamming distance d between all of the legal code words is 2 or greater. 
 
                     Thus to detect D errors, the Hamming distance d ≥ D + 1 
 

For single bit parity code where d =2 gives you a code able to detect one error D = 1 
 
Using the following nomenclature: 
 

 d = the Hamming distance of a code (the least number of bits that are different in the legal code words) 

 D = the number of errors that a code can Detect 
 C = the number of errors that a code can Correct 
 n = the total number of bits in a code word 
 m = the number of message bits  (the information bits which are the no overhead bits) 
 c = the number of check bits thus c = n – m  (the check bits are the overhead or redundant bits) 
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For CORRECTING bit errors, consider a code scheme with d = 3 shown below 
 

    
 

An error in the code will have a Hamming distance d = 1 at a minimum.  To correct the 
error by deciding if the corrupted word was originally Word a or Word b (the two nearest 
neighbors to the corrupted word), the decision must be clear and thus the Hamming distance 
of a correctable code d > 2 (the Hamming distance between valid code members) 
 

  d ≥ 2C + 1      To correct C errors, the distance of the code must be 2C + 1 
 

Combining our Hamming distances detection and correction formulas can be done by 
seeing that for the same Hamming distance (for example  d = 4) the two formulas show 
 

d ≥ D + 1  4 ≥ 3 + 1  thus D = 3    (three detectable errors) 
d ≥ 2C + 1  4 ≥ 2(1) + 1 thus C = 1  thus 

         D ≥ C            the # of detectable errors must be ≥ the # of correctable errors 
 

Rewriting  d ≥ 2C + 1 = C + C + 1 and using the smallest value of D or D = C we see 
 

d ≥ D + C + 1 the Hamming distance d must be ≥ the # or detectable errors + 
the # of correctable errors + 1.  We can trade our code Hamming 
distance d between the # of detections and the # of corrections 

 

  
For those examples with values for both D and C, note that the error corrected is also an 
error detected  since  d ≥ 2C + 1  and  d ≥ D + C + 1  (for d = 3: C = 1  D = 1 or D = 2) 
                                                     solely for correcting                for correcting + detecting                                SECSED                   DED 
 



CENG 5334  Chapter 2 – Coding Techniques      Page 11 of 18 

Hamming SECSED Code 
 

Codes with the ability to correct errors have more ‘redundancy’ or as we’ve seen and 
increased Hamming distance d:   d ≥ 2C + 1 or d ≥ D+C+1 
 

How the Hamming codes ‘correct’ is described in the textbook from a hardware 
implementation viewpoint and not from a basic mathematical view.  Below, it will be 
shown that the described (7,4) SECSED code is a very unique code in that the binary 
representation of the detected error specifically identifies the numerical position of the bit 
in error within the code word. 
 

From a matrix viewpoint (more understandable, see Siewiorek text for example): 
 

 H • RT = S  where H is a Parity Check Matrix, R is the received code word and 
                S is resultant Syndrome which points to the error that can be corrected. 
 

The parity check matrix relates the m and c bits through the parity equations such as
 c1 = m1  m2  m3 
 

If the resultant column vector Syndrome = 0 then no errors are detected. 
 

If S  0 then an error is detected.  For the assumed single error, the resultant S points to 
the column in the parity check matrix which identifies the specific bit in error (either m or c). 
 

For SECSED, double bit errors result in a invalid non-zero S since the bit identified as in 
error will be incorrect, e.g., SECSED fails for double bit errors just like even/odd parity.  
For triple bit errors, S = 0 and the errors are not detected and therefore can’t be corrected. 
 

The following H is a parity-check matrix (PCM) for a single error correcting (7,4) Hamming code (SECSED) 
 

        c1 c2 d1 c3        d2        d3         d4 

                 ------------------------------------------------------------------------------------------------------ 

c1 1 0 1 0 1 0 1               H  •   RT =   S 
                                                                                                                                                      3 x 7       7 x 1        3 x 1 
c2    0 1 1 0 0 1 1 
 
c3 0 0 0 1 1 1 1 
 
 

Writing the equations for calculating the values of the check bits c constrained so that S = 0 = no errors. 
 
                                                                              S1           S1 = c1   d1    d2    d4  = 0 
H  •   RT =  H  •  [ c1 c2 d1 c3 d2 d3 d4 ] T = S =      S2  S2 = c2   d1    d3    d4  = 0     
                                                                              S3             S3 = c3   d2    d3    d4  = 0 
 
Note that the H matrix column associated with the check bits consists of a single 1 which generates 
these equations which produce a unique binary value for the check bits c. 



CENG 5334  Chapter 2 – Coding Techniques      Page 12 of 18 

If   d1  d2  d3  d4  =  [ 1 1 0 1 ],  calculate the corresponding code word. 
 
The correct code word must satisfy the above equations with a zero syndrome [ S ] = 0. Substituting data 
values into RT such that H  •   RT = [ S ] = 0 results in the following equations: 
 

S1 = c1   1    1    1  = 0 
S2 = c2   1    0    1  = 0 
S3 = c3   1    0    1  = 0 

 
by ex-or operations/inspection  c1 = 1   c2 = 0  and  c3 = 0   thus the corresponding code word is given by 
R = c1  c2  d1  c3  d2  d3  d4  =  [ 1 0 1 0 1 0 1 ]   ( from the format of the code word for H shown above ) 
 

Example: The following code word was received:  0 0 0 0 1 0 1 .  Assuming bit-wide symbols, are there 
any errors?  If so, which bit is in error and what is its correct value?  If not, why not? 

 

For the (7,4) SECSED code  [ H ] •  [ 0 0 0 0 1 0 1 ]T  = [ S ]  = [ 1+1, 1, 1+1 ]  =  [2  1  2 ]10  = [0 1 0]2 
                             Modulo 2 

              0  =  S1 
  [ S ] =  1  =  S2                 [ S should be shown as a 3 X 1 column vector above ] 
              0  =  S3 

 
The syndrome points to (matches with) the 2nd column or c2 being in error.  With the second bit in error, 
the correct code word is: 0 1 0 0 1 0 1 This is uniqueness of the (7,4) SECSED Hamming code.  The 
resultant S = (010)2 is the same as the binary position of the error, the 2nd bit.  If S = 0  no error exists. 
 
The arrangement of the m and c bits does not need to be in any specific order.  Best to consider all bits 
the same as long as the check bits satisfy the  equations which produce a column with one 1. 
For SECSED, if the resultant S  0 then S will match bit for bit a specific column in the parity check 
matrix H which will uniquely identify either the c or d bit that must be corrected (for S to equal 0). 
 
The hardware is the key which is not implemented by using this matrix scheme which is the math behind 
the correction scheme.  COTS (commercial off-the-shelf) hardware is used and is done for very large 
word lengths (number of bits >> 8 bits). 
 
Hamming (n, m) code where n = total # of bits in the word length and m = # of message bits thus the 
number of check bits c = n - m 
 

For a (n, m) SECSED code, the # of check bits c that cover a maximum of word bits n is: 
 

 2c ≥ n + 1    thus for example with n = 10 bits c must equal 4  ( 24 ≥ 10 + 1 ) 
 

Table 2.7 shows the SECSED Hamming code relationship for different code word lengths (different n’s, 
e.g., for n =16 bit code word contains m = 11 msg bits and c = 5 check bits). 
 
Reduction in Undetected Errors (for a Hamming SECSED Code) 
 

One oddity of the SECSED is that the resultant non-zero Syndrome (matrix S) can be 
viewed as the correction for a single error OR the detection of a double error.  Remember 
that for detection d ≥ D + 1  Thus a Hamming distance of 3 required for a SECSED 
results in the ability to detect two errors:  If  Hamming Distance d = 3 then 
 

     d  ≥  3  ≥  D + 1  ≥  2 + 1 for detected errors D = 2  ( but also d ≥ 3 ≥ 2C + 1 for C = 1 ) 
 

One could call this a dual-error detecting code (DED).  The scheme to do this is TBD. 
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To evaluate the resultant reduction in undetected errors for the Hamming SECSED code, 
the dominant term in the computation of the probability of an undetected error P’ue  is the 
probability of 3 errors for SECSED (an undetected error occurs when the SECSED fails 
for 3 bits in error because it can only detect 2 bits in error or correct 1bit in error).  
 

The improvement in the undetected error ratio for a (12, 8) SECSED where m = 8 
message bits (1 byte)  and  c = 4 check bits for n = 12 message bits is: 
    Pue / P’ue =  [ 2(1 + 9q) / 55q2 ]  where Pue = undetected error in 8 message bits w/o any checking 
 

Comparing this to the single bit parity code undetected error ratio (Eq 2.7) 
    Pue / P’ue =  [ 2(1 + 7q) / 9q ] 
shows a significant improvement (a 103 to 107 improvement for the same BER) with the 
same m = 8 message bits but with n = 9 bits for the parity case and n = 12 bits for the 
SECSED case  more redundancy (more check bits)  (Table 2.11 versus Table 2.3) 
 
Effect of Coder-Decoder Failures (on SECSED) 
 

As was done with parity codes, the effect of the hardware failing in the SECSED is 
evaluated in Section 2.4.6  The SECSED evaluation has much smaller undetected error 
probability (P’ue) since 

P’ue = [ e- λb t  ] [220 q3 (1 – q)9]  +  [1 - e- λb t ]  
 

From Figure 2.7 for a Hamming SECSED implementation with its more complex 
hardware, the hardware failure rate is four times that of the parity hardware 
implementation. 
 

The improvement ratio Pue / P’ue is graphed in Figure 2.8 for the different data rates B 
which includes possible coder-decoder failures during the SECSED transmission. 
 

Figure 2.8 has the same ‘general’ characteristics as the parity case Figure 2.5 but with 
lower values for the probability of an undetected error.  The interesting result is that the 
impact of hardware failures is far more pronounced for SECSED.  In fact for very small 
bit error probabilities (BER) coupled with slow transmission rates B = 300 bps or 1200 
bps, the parity-bit scheme is SUPERIOR (bigger is not always better, remember the 
complexity term in the MIL-HDBK-217 reliability model). 
 

Thus more is not necessarily better and for more complex error detection schemes, one 
should evaluate the impact of h/w failures since these may be considerable for small q. 

1. Consider simpler coding schemes where h/w failures might severely impact the 
undetected error probabilities (P’ue ). 

2. Use larger-scale integration which improves the resultant hardware reliability with 
less equivalent logic gates (g) as in the MIL-HDBK-217 reliability model. 



CENG 5334  Chapter 2 – Coding Techniques      Page 14 of 18 

Reliability of SECSED Code 
 
Section 2.5.2 calculates the SECSED reliability by comparing no error correction for 
1 byte (8 bits) 
   R = (1 –q)8 
versus the (12,8) SECSED where single errors are corrected. 

RSECSED = P(no errors + 1 error) 
where the two events are mutually exclusive.  With the binomial distribution 
   RSECSED = (1 – q)11(1+11q)  where q = bit error probability    (Eq 2.33) 
Table 2.15 lists the gain in reliability for various values of q for the (12,8) SECSED code. 

 

Reliability of a Retransmitted Code (for parity & SECSED used as a DED 2-error detection code) 

Taking into consideration codes that both codes must retransmit after detecting an error 
  R = P(no error) + P(detected error) x P(no error on retransmission) 
Comparing 9-bit parity and (12,8) DED, both of which require retransmission, 
Tables 2.15 and 2.16 show that both retransmit schemes are better than the 
(12,8) SECSED and that the parity code is best with a small margin over (12,8) SECSED.  
However both retransmit schemes have a 100% overhead as compared to typical 
SECSED whose overheads are 11% – 50% (decreases with longer code words m). 
The correcting scheme also takes less overall time if the error correction processing is 
quicker than retransmission (always a good assumption). 
 

All of these comparisons neglect hardware failures (generator/checker and retransmission 
control logic) however the previous analysis results provide examples on how to 
incorporate hardware failures into the reliability equations. 
 
Burst Error-Correction Codes 
Parity and Hamming codes are intended for communication channels with good SNR 
(memory cycles, transmission schemes only subject to single bit errors, etc.)  Many 
applications are subject to burst errors (CDs, DVDs, hard drives, magnetic media, RF 
communications, etc.) 
 

Burst errors are errors in bit patters where adjacent bits are in error (error bits x) and may 
extend over a large field of bits     m1 = bbxxxbbxbbbb shows 4 errors over a 12 bit field. 
 
The error detection scheme is to start with the requirement to detect bursts of length t 
where t in the above example could be t = 6, a burst length of 6 even though 2 bits of the 
burst length field were not in error. (Could design t = 3 then m1 would have two bursts.)  
Check bit equations are developed by writing a set of equations for the message bits (m) 
in which the burst error bits are in a field of t bit positions. 
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If the resultant received syndrome is 0, then no errors are detected.  The scheme begins to 
fail for burst lengths > t but a fair percentage of these conditions are still detected 
depending on the specific burst length pattern when the # of errors > t. 
 
Some key properties of Burst Codes: 
 

1. For a burst length of t, t check bits are required (overhead) to detect errors,  
which is independent of the message length m. 

2. There are t check-bit equations where the tth check-bit equation starts with bit t and 
contains all the bits that are 2t, 3t, ….. kt where kt  n 

3. The resultant code word length need not be an integer multiple of t but it is 
normally padded to produce this (code words are normally multiple bytes long). 

4. Hardware implementation schemes can be linear feedback shift registers (LFSR) or 
EXOR tree circuits where LFSR schemes have a greater ‘processing’ delay times 
(register shift times versus EXOR gate-switching times) 

 
Error Correction 
 

Burst error correction schemes rely on shifting of the error syndrome of a burst code and 
a number theory theorem called the Chinese Remainder Theorem.  The schemes are 
complex and require numerous computational stages, all of which becomes more 
convoluted in a sequential logic implementation (textbook pages 66 – 72).  However, 
burst codes are not the only way to detect and correct burst errors. 
 
 
Reed-Solomon Codes – RS Codes 
 

RS codes are block-type codes which operate on multiple rather than individual bits (the 
previously discussed bit-wide codes).  Data is handled in blocks where each block is 
composed of  n  symbols where symbols are m bits long. For example, with a message 
length n = 255 bits where we want to correct up to 10 errors (t = 10) we’ll have 235 
message symbols and 20 check symbols with a code efficiency of 92.15%. 
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Probability of an uncorrected error in a RS code with the message parameters graphed for 
various t’s where t = the number of errors to be corrected is: 

   
                                                                q (increasing bit reliability or decreasing BER) 
 
 

Hardware failures haven’t been considered but the analysis method is the same as before 
and again hardware failures can have an impact for some common ranges of the system 
parameters.  The graph above shows that the probability of an undetected error is less for 
the more robust RS codes but the redundancy is also obviously higher in these codes 
(t = 10 versus t = 8).  
 
 
Interleaving is a technique of shifting individual bits by spreading them out over several 
code blocks and thus spreading the long burst errors so that error correction can occur 
even for code bursts > t.  This is very common in today’s error correcting codes such as 
Reed-Solomon and Turbo Codes. 
 
 
Other Codes 
 

CRC Codes (cyclic redundancy check) – a linear separable code which is where the 
check bits (c) can be separated from the message bits (m) and thus can be processed in 
parallel.  CRC codes are a very common coding scheme that detects single bit and word-
length burst errors with 100% reliability and has very good detection properties for even 
longer burst errors (~ 99.9969 %) 
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Even though the CRC check bits can be generated in software, a hardware 
implementation for example of the CRC-CCITT code with a generator polynomial of 
      G(x) = x16 + x12 + x5 + 1  using linear feedback shift registers: 
 

   
 

The generator and the checker are essentially the same.  For the checker, when the 
message bits along with the CRC check are shifted thru the LFSR, if at the end of the 
block (data + CRC) the LFSR registers are all zero, then no error has been detected.  If an 
error is detected, then retransmission is required.  Very low overhead (small # of c bits) 
 
The software process generates the CRC check bits by XOR’ing the message bits with a 
CRC constant (different for the various CRC codes like CRC16, CRC-CCITT, etc).  For 
the receive end of the process, the received data is XOR’ed with the known CRC 
constant.  At the end of this XOR process, if the data along with the received CRC result 
in the known CRC constant, then no errors have been detected.  For example, the CRC 
constant for the CRC-CCITT is (0F01)16 
 
More codes: 
 

M-of-N Codes 
Duplication Codes 
Parity Codes: bit-per-word parity, bit-per-byte parity, interlaced parity, chip-wide parity 
Checksum Codes: single-precision, extended precision, residue code 
Arithmetic Codes 
BCH Codes 
Concatenated Codes 
Convolutional Codes – nested codes or the combination of different codes (inner & outer) 
Residue Codes 
Viterbi Decoding 
Golay Codes 
FEC (forward error correcting) Codes 
 

See the error-correcting code (ECC) web page at http://www.eccpage.com/ for some 
programs that implement some of these various coding schemes. 

http://www.eccpage.com/
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Turbo Codes – the hot code today (G3/G4 cell phones). 
 

A 'turbo’ encoder is a combination of two simple encoders. The input is a block of 
K information bits. The two encoders generate parity symbols from two simple recursive 
convolution codes, each with a small number of states. The information bits are also sent 
uncoded. The key innovation of turbo codes is an interleaver, which permutes the original 
K information bits before input to the second encoder. The permutation allows that input 
sequences for which one encoder produces low-weight code words will usually cause the 
other encoder to produce high-weight code words. Thus, even though the constituent 
codes are individually weak, the combination is surprisingly powerful.  The resulting 
code has features similar to a 'random' block code with K information bits. 
 
Random block codes are known to achieve Shannon-limit performance as K gets large, 
but at the price of a prohibitively complex decoding algorithm.  This is the holy grail of 
digital communications. 
 
Shannon Capacity Formula:  C = B log2(1 + SNR)  where 
C = channel capacity in bps, B = bandwidth in Hz,  SNR = ratio of transmit power / noise power both in watts 
 

Formula assumes white noise (thermal noise) 
Factors not accounted for: 
 1.  Impulse noise 
 2.  Attenuation distortion or delay distortion – not constant over frequency range of signal 
 

The 1948 creation of Information Theory and the concept of the bit as the fundamental 
unit of information, the Shannon formula represents the theoretical maximum for reliable 
data communications that can be achieved in a noisy channel.  In practice, only much 
lower rates are achieved – until the advent of turbo codes. 
 

Turbo codes are used in 3rd generation (3G) / 4th generation (4G) cell phones. 
 

Background story to the development of Turbo Codes in 1993 from two French engineers 
(Berrou and Glavieus) versus a more typical mathematician’s creation of a new code 
(see February 2007 IEEE Spectrum article Closing in on the Perfect Code by Erico Guizzo) 
   
 
See course web page for the URL (link) to a Turbo Code Graphical representation. 


