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Chapter 4   N- Modular Redundancy 
 
Use of multiple levels of redundancy for fault tolerance was established: 
(1.) Using automata theory (logic gates, state machines, combinatorial/sequential logic) to 

model digital circuits and computational operations. 
(2.) As a means of making reliable computers from less reliable components. 
 

The classic n-modular redundant example is triple modular redundant: TMR  R(3,0) 
                                                                                                              (3 modules, 0 spares) 

   
 
Identical modules synchronized to the level of being able to compare and vote on the 

outputs (usually means preplanned, lock-step comparisions). 
Requires identical system INPUTS (voted before agreeing on the one input set that will be 

‘submitted’ to the modules System inputs). 
Requires a very high precision and fault tolerant clock. 
 

Assuming an ideal voter, Rv(t) = 1.0 then 
 RTMR = P(A . B + A . C + B . C) 
Assuming independent and identical modules, then using the binomial theorem 
 

n 
                 B(r; n, p) =                       pr (1 – p) n – r 

r 
 

                                                  3                               3 
RTMR = B(3 : 3) + B(2 : 3) =           p3(1 – p)0  +               p2(1 – p)1   
                                                                          3                               2 
 

         all three systems operating     +    2-out-of-3 systems operating 
                                                 one combination                                              three possible combinations 
 
 
RTMR  =  3 p2  –  2 p3  =  3 Rm

2  –  2 Rm
3   = 3 e- 2λt  –  2e- 3λt  (for constant failure rate) 
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If a more realistic simplex voter is incorporated into the reliability formulation then 
 

RTMR  =   Rv (3 Rm
2  –  2 Rm

3)  where Rv is the reliability of the voter.     (Eq 4.2) 
 
 

Section 4.4.3   System Error Rate 
 

Formulate the probability of a correct output from the TMR system taking into 
consideration that a lot of failures are transient and RTMR is a worst-case analysis result. 

1. If the correct output is 1 then success (P1) is not sending a 0 and conversely if the 
correct output is 0, then success (P0) is not sending a 1 

2. Assume all states and all modules fail independently 
 

where P0 = 1 - P(A1’B1’+A1’C1’+B1’C1’)  and  P1= 1 - P(A0’B0’+A0’C0’+B0’C0’) 
 
P0 is the probability of a 0 output which is unity minus the probability of two or more ‘1 failures’ 
P1 is the probability of a 1 output which is unity minus the probability of two or more ‘0 failures’ 
 

3. Assume that sending a 1 or a 0 is equally likely so Psuccess = (P0 + P1) / 2 
 

Then  Psuccess = ½ + ¾ p – ¼ p3                    which is Eq 4.8 – any one xmission correct 
  p = element (Rm module) reliability                          full development of equation on page 150                        

   
 

Note that if the level of element (module) reliability is low/poor, then RSIMPLEX  >  RTMR  
 

Another TMR oddity can be shown using the single-value metrics MTTFTMR 
                3            2            5                                1 
R(t) = 3e- 2λt  – 2e-3λt  then  MTTFTMR = ∫  R(t) =  -----  –  -----  =  -----   which is less than   ---- 
               2 λ       3 λ         6 λ                            λ 
 

Thus   MTTFTMR  <   MTTFSIMPLEX   which is a pitfall of using single valued metrics. 
                5/6 λ     <     1/ λ 
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With just one failure, TMR continues to operate while continuously voting out the one 
failed module.  We’ll annotate this as a TMR 3 – 2  which reaches a trapped state after two 
failures.  When the second failure occurs, the voter can no longer work without a majority 
of working modules (≥3) to compare.  After two failures it only has one working module. 
  
You use error detection to lock-out the failed module(s) – deselect; however, the voter 
always needs a majority in order to vote the correct output.  After a second failure, one can 
make a manual decision to deselect the module that has behaved erratically and downmode 
to a simplex system assuming the other module is operating properly.  One can use such 
decision parameters as error logs of repairs, # of operational hours, # of detected transient 
errors, etc., to select the (hopefully) working module.  For this type of TMR which ends up 
as a simplex system (1 module) after the second failed module is removed/deselected, just 
add a 1-out-of-3 binomial probability term to the RTMR 3-2  equation.  This downmoded 
system will be annotated as RTMR 3-2-1 
 

                                              3 
      RTMR 3-2-1 = RTMR 3-2  +           p1 (1 – p)2  =  3 p2 – 2 p3  +  3p(1 – p)2  =  p3 – 3 p2 + 3p 
                                              1                                               RTMR 3-2           probability of 1:3 

 

and for constant failure rates  R(t) 3-2-1 = e -3λt  – 3e -2 λt  + 3e – λt   failure independence also assumed 

                                                         11 
MTTF = ∫ R(t) dt  thus MTTF3-2-1  =  -----  an improvement over the classic TMR whose MTTF3-2 = 5/(6 λ) 

                                                         6 λ                                                                       Eq. 4.11 
 

Using truncated series expansion of the reliability equations (page 152): 
 
Simplex R(t) = e- λt  ≅  1 − λt      RTMR 3-2  ≅  1 −3(λt)2  RTMR 3-2-1  ≅  1− λ3t3 
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Normally in high reliability systems, you don’t want to ever give up any working resource 
so a TMR (RTMR 3-2-1 ) is a viable design decision even if it requires a manual decision 
(more likely an automatic decision with a manual over-ride option). 
 

Another means of keeping resources in a RTMR 3-2  system  Repair.    (Simplified Model) 
 

 
Repair for a TMR is very difficult to execute especially for real-time systems.  However, 
most ‘failures’ are intermittent/transient and you really don’t have to repair - just validate 
that the voted-out system is still good.  Keep it available and bring it back into the TMR 
system using the history of the voting on this ‘failed’ module.  One should keep it locked 
out from sending commands when voted out but note that if later it is successfully passing 
on the majority votes with the other two modules, then bring it back into the TMR system. 
 

Problems of bringing a module back into the system? 
• Most operating systems are not deterministic. 
• Realigning large amounts of system memory takes time. 
• Knowing a minimal state for re-initialization of the system is a good approach. 
• Computers are so fast with multiple co-processors and n number of cores that it 

makes bringing a repaired system back on-line very difficult and time consuming.  
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Section 4.4    N-Modular Redundancy  (N > 3) 
 
Since voting is normally used in n-modular redundancy schemes, n should be odd. 
 (An even number of modules can result in a split vote, e.g., 2 on 2) 
 

Assuming a single perfect voter with odd number of modules (2n + 1 votes): 

  
For modules with constant failure rates, R(t) = e- λt , then with  n modules as a function of 
mission time (normalized to λt where λ = 1) produces: 
 

  
Note that as n  ∞ , MTTFn  ∞ = 0.69 / λ     The normalized y-axis (λ t) shows where 
simplex reliability becomes a better solution than n-module reliability  a cross-over. 
 

n-module redundancy is only better than a single system for λ t < 0.69, which is the high 
reliability region of the above graph. 
 

Thus n-modular redundancy is only useful for specific mission times and only in the high-
reliability regions for various values of n and λ. 
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  TMR Reliability versus λt  (essentially the same graph as Fig 4.4 but simpler) 

  
Comparing reliabilities for various configurations 
  

 
 
Nomenclature: R(# of redundant modules, # of spares) thus R(3,2) is TMR with two spares, a hybrid 
configuration. 
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Hybrid N-Module Redundancy (using spares to augment/repair) 
 

  
R(3,2) - TMR core with two spares and a Disagreement Detector shown above. 
 

Disagreement Detector lifts up the covers on fault-tolerance showing the module that is 
failing the TMR votes. (NASA managers always wanted insight into what was failing). 
 

Switch handles the ‘insertion’ of the spares as a means of repair (very quick if hot spares) 
 
The number of spares can also have a non-intuitive result where analysis shows that more 
is not necessarily better.  The reliability and more importantly the coverage of the voter-
switch-detector (VSD) of the hybrid system can have a major impact with the conclusion 
that there is an optimum number of spares for specific configurations. One might also take 
into account the reliability improvements with the increasing cost as factor. (Experience 
shows that organizations willing to pay for 2X improvement but usually not any more.) 



CENG 5334  Chapter 4  N-Modular Redundancy      Page 8 of 15 

  
 
 
To show the effects of latent failures (where the standby unit has a failure when not being 
used) in conjunction with the specific module reliabilities Rm   Below is a graph showing 
Rs = Overall System Reliability where S = number of spares with a 10% latent failure rate. 
(shows that one must use high reliability modules especially when S = 0, 1 or 2) 

   
System with a Standby Failure Rate of 10% of the on-line (core) failure rate 
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Section 4.5  Imperfect Voters 
 
For an improvement in RTMR  where the voting scheme with the imperfect voter must be 
better than a single element’s reliability (Rm), the minimum allowable reliability value of 
pv occurs when Rm = 0.75 which results in a minimum pv of 8/9 = 0.889.  Thus if the voter 
reliability is below 0.889, a simplex circuit is more reliable for the same element/module 
reliability.  Generally  pv ~ 1 since a voter is normally a simple comparator circuit and thus 
a voter has a negligible effect on the overall value of  RTMR 
 

For n-module reliability 

  
 
A more realistic TMR showing means of aligning the inputs (by voting here also) and 
minimizing the impact of the single voter’s reliability limitation on the output of a  
RTMR = pv (3 Rm

2  –  2Rm
3) by using redundant voters that are cross strapped so they can 

make comparisons and vote. 

  
The nominal way of implementing a redundant voter TMR scheme is 

 
Note that in the last stage of voting, only a single voter can be employed.  (Why?) 
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Errors do not propagate for more than one stage.  If  B1 fails then A1 = C1 which masks the 
B1 failure.  If voter V1’’ fails, then A2 and B2 have the correct signal (but C2 will be incorrect) 
The incorrect C2 will be masked by the voting done by V2 , V2’ and V2’’.  Thus module 
failures don’t propagate at all and voter failures only propagate by one stage. 
 
The reliability of the redundant voter/TMR depends on the circuit implementation schemes 
(one big IC vs independent ICs and all of the various combinations for the module & voter circuits). 
 
Section 4.5.3  Modeling Limitations in Analytical Models 
 

1. Transient Failures – failures can come and go at any point in time which is difficult 
to model. 

2. Not all Failures are bad – sometimes a failed situation (stuck-at-1 or s-a-1) can be 
the correct output in the digital domain of 0’s and 1’s. 

3. Bit by Bit voting – can isolate failures since voting at the word (multiple bit) level 
could result in non-resolvable failures. 

4. All of the other items: common mode effects, optimistic/pessimistic modeling, etc. 
 
Section 4.6  Voter Logic  
 
 Author implements a majority voter in combinatorial logic along with an enhanced 
majority voter that will provide error detection (good review of Boolean algebra). 
 
 

Section 4.7  N-Modular Redundancy with Repair 
 
 Markov models that rely on Laplace transforms require the closed-form solution for 
the roots of an nth order polynomial which doesn’t exist in a closed-form for n ≥ 5. 
An example of this is in Appendix D5.   Generally our ability to solve an nth order 
polynomial only exists for quadratic (n = 2) equations.  Numerical solutions are always 
available for higher order equations but these provide little insight into the solution. 
Using simplifications and approximations discussed in Appendix B, Shooman suggests 
trying the following: 
 

1. Initially represent features of a system for Markov modeling by low-order models 
that can be easily solved (closed-form solution). 

2. Add the additional complicating effects one at a time to ascertain their effect on the 
model. 

3. Assume that a comprehensive model will be solved numerically (using a computer 
and math software packages) which can then be compared to the simplifications 
made in the low-order model (at least to the point where one is satisfied that using 
the simplifications/approximations don’t have a large effect/impact on the model). 
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Section 4.7.3  TMR Reliability  (same model as the ‘simplified’ model on page 4) 

  
 

State s2 is a merged state for 2 or 3 failures.  It is the absorbing or trapped state. 
 
The author goes thru the TMR with repair solution on pages 166-167.  For simplicity if we 
assume λ = µ = 1 the we obtain 
        For t = 1  RTMR w/repair = 0.3841 
  RTMR = 1.366 e1.268t – 0.3661e-4.7632t           without repair RTMR = 0.3064 
 

which shows an improvement over no repair.  For larger values of µ (repair rate), the 
improvement is even greater.  Using the Taylor series expansion approximation (3 terms) 
 

without repair  RTMR 3-2  ≅  1− 3λ2t2 + 5λ3t3   (4.27d) 
with repair  RTMR (t)   ≅  1− 3λ2t2 + λ2(5λ + µ)t3  (4.15  4.27e) 

thus repair adds an extra term λ2µt3 to the expansion for RTMR but this only affects the 
3rd term (cubic).  Thus for small t (initial/turn-on behavior), repair doesn’t add much. 
For example µ = 10 λ and t = 0.1/λ   TMR w/o repair = 0.975   TMR w/repair = 0.985 
 
Section 4.7.4   N-Modular Reliability 
 

Systems beyond N ≥ 3 are difficult and not used much in practice (fabrication yields, large 
increase in the # of test points but Shuttle N = 4).  However to develop an analysis basis … 
 
       Markov Model for N = 5 (5-level majority voting) with repair (pg 170  173) 

 

R5MR (t)   ≅  1− 10λ3t3 + 2.5λ3(12λ + 2µ)t4 ……..…  Eq 4.39b 
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for µ = 10 λ and t = 0.1/λ  TMR w/o repair = 0.975    TMR w/repair = 0.985 
     5MR w/o repair = 0.993     5MR w/repair = 0.998 
5MR reduces the unreliability by a factor of 7.5 (compare unreliability since R5MR ≅ 1) 

   
 

For realistic comparisons with repair (for R > 0.999 with µ = 10 λ) then 
RTMR (t ≤ 1,920 hours)   and for   R5MR (t ≤ 5,700 hours) 
 

   Parallel & Standby Systems: the high reliability regions are longer than TMR but less than 5MR 
 

For N > 5 with so much complexity, the question of chip fabrication, additional test points, 
etc., raise doubt about improving reliability.  In fact, a 5MR with two failed circuits is 
inferior to TMR. 
 
For coverage (C < 1) which impacted parallel and standby systems, it would be reasonable 
to believe that a voter’s coverage in TMR would be better than a failure detector’s 
coverage in a parallel/standby system.  The author’s analysis on pages 177 – 178, shows 
that a TMR voter’s impact on reliability is 1/3 that of a coupler for the same decrease in 
reliability of the two systems (TMR versus a parallel system).  Repair schemes only have 
an impact for large time intervals (t) and fast repair rates (µ). 
 
For a TMR system with element reliability Rm = 0.9 and pv = 0.99 
Single voter RTMR = 0.962 Redundant voter RTMR = 0.9717    although only a 1% 
increase, at these levels of reliability it is a significant increase.  If the voter is even less 
reliable, the reliability gain with redundant voters is even greater. 
 
The question of implementation which can be impacted by architecture modularity 
(fault containment regions/how to isolate failures, complexity, chip fabrication) might lead 
to more ‘connections’ which are bad news for reliability (anything mechanical is usually 
bad).  Thus the various system architectures must be evaluated for comparisons of 
n-modular redundancy versus other systems. 
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Section 4.9.2 Markov Availability Models A(t) = probability of a system being up at any time t   A(t) > R(t) 
 

Use Markov Models to avoid complexity of evaluating all the conditional probabilities.  
Note that two repairmen decouple the dependency of having to repair two failures during 
the same interval which is not the case for µ = 1 repairman, as follows: 
 

  
     TMR Markov Availability Model with Repair (µ = 1) and Perfect Coverage 
 

Three states total; the first two states make up the Availability A(t) equation: 
     S0 = all three modules working     S1 = two modules working 
For availability A(t) with one repair process    S2 no longer a trapped state  
 

The only meaningful comparison for A(t) are the steady-state equations: 
 

  
     Steady-State Availability Comparisons 

 
Repair: Two modules in (cold) Standby > two modules in Parallel  > TMR 
 

The µ = 100 λ column is probably the most realistic real-world comparison 
Note that A(tss) depends only on the ratio µ / λ 

 

Don’t forget analysis assumptions: 
1. No module failures while in Standby (no latent failures). 
2. No consideration of the coupler/switch for the R(t) of the standby/parallel systems.  

The coupler/switch is more complex than the voter in a TMR system. 
3. Perfect coverage, where again the detector in a standby/parallel system is more 

complex than a voter in a TMR system (a realistic failure detector means less than 
perfect coverage  lower reliability). 

  

Lower failure rates  
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Section 4.9.3  Decoupled Availability Models 
 
For multi-module systems and repair processes, there is a dependency for the repairmen.  
If 1-of-n modules fail, a single repairman is dispatched to fix a failed module A but if 
module B fails during the repair of module A, then the repair of B is dependent on the 
repair of module A  P(AB) = P(A) P(B|A).  Only having a single repairman, results in 
the second repair taking longer because the repairman is working on the first failure. 
 
If multiple repairmen are introduced, then the repair processes are ‘decoupled’.  With two 
repairmen, the repair of module B is no longer dependent on the repair of module A.  The 
dependent probabilities P(B|A) become independent. 
 
Having multiple repair processes is somewhat unlikely (cost) but since µ >> λ 
the decoupled case is approached.  The repairs are relatively fast (compared to λ) and there 
is only a small probability that module B will fail when module A is under repair 
 
Exact versus Approximate Equations 
 
For constant failure and repair rates, steady-state availability APPROXIMATIONS are 
actually very close to exact values. 
 
For a single element/module: 
   Ass = µ / (λ + µ)  =  uptime / (uptime + downtime) 
For parallel system: 
   Ass = µ(2λ + µ) / (λ + µ)2 

For TMR: 

   Ass = [µ(λ + µ)] 2  * [(3λ + µ) / (λ + µ)] 

 
The difference in the exact versus the approximate is very small. Gains in R(t) and A(t) do 
not come easy yet the small improvements can be meaningful in terms of loss-of-life, etc. 
Stratus A(t) = 0.9999905   Tandem A(t) = 0.9999960  (five 9’s) 
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Section 4.11  Advanced Voting Techniques 
 

N-Modular redundancy requires voting with lockout such that a failed element/module is 
not used in the voting scheme once voted out n-number of times, e.g., lockout the failed 
module (possible repair?  non-permanent failure?) 
 

Adjudicator Algorithms – deals with voting situations when you may not have an 
absolute majority but you do have an indication on what modules are working and those 
that might not be working.  A majority vote may fail but there may be agreement among 
some of the modules/elements.  One mechanism used in the Boeing 747 Carousel Inertial 
Navigation System (n-modular with different elements to avoid common-mode faults) was 
to use a stored problem with a known answer as a test case for the different elements BIT). 
 

Adaptive Voting – a weighted sum where each output is weighted by a coefficient, where 
the coefficient is the probability that the output is correct.  These coefficients can be 
adjusted dynamically by keeping tabs of the system operation (number of agreements over 
time, number of transient failures, results of pre-canned test cases, etc.)  This is a superior 
voting mechanism but it is highly dependent on the design and implementation schemes.  
 

            Sometimes simpler is better (and it costs less too!!) 


