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Chapter 5   Software Reliability and Recovery Techniques 
 
Software is a major component of any system today. Most major advances in the 
technology world are being accomplished through software. 
A system is a collection of interrelated components that work together to achieve some 
objective. 
Software Engineering – a body of engineering and management technologies used to 
develop quality, cost-effective and on-time software (theories, methods and tools). 
Rsys = RH x RS x RO   assuming independence for Hardware, Software and Operator (human) 

-ilities  maintainability, dependability which includes reliability, security and safety, 
efficiency and usability. 
Software Reliability – measurement and prediction of the probability that software will 
perform its intended function according to the specifications without error for a given 
period of time. 
Software Recovery – a set of fail-safe design techniques to ensure automatic recovery, 
reinitialization and restart when an error causes a software malfunction. 
Are software errors/failures a deterministic or random event?  Due to the large set of 
input data values, the author treats software reliability as a random event where the 
random variable is the changing set of inputs. 
Software Life Cycle – specification, development, validation and evolution. 
Main reason for high cost ( ~ time) of software  changes and maintenance 
Primary source of errors/failures in software  –  incomplete specifications 
5.3.2  Requirements – hardware & software, written by customer, bound the problem 
5.3.3  Specifications – response to reqt’s; the why, what & how of a project 
5.3.4  Prototypes – SLOCs, intellectual span of control, reused or legacy code 
5.3.4  Design – top down approach, decomposition into smaller elements 
                         system  subsystem  module 
Modeled by a hierarchy diagram or H-diagram, which resembles an inverted tree 
(node/branch) 
 

 

One feature of top-down decomposition is the delay 
in dealing with the lower-level elements.  This hiding 
process called information hiding is sometimes 
desirable since it allows the designer to proceed 
without all of the necessary design information which 
might not be available (other sources, subcontractos) 
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Knowing the estimate for the project lines of code (SLOCs), the number of interfaces can 
be estimated from an H-diagram which will scope the design and testing tasks. 
Coding – 20%  with or without assistance of a compiler (only available to testers), 
                using a structured programming language (C++, Ada) 
Testing – unit or module 
in-house versus outside contractor 
white box/black box 
acceptance testing 
regression testing – retest after corrections & changes, use a selected test set in the retest 
alpha (in-house) and beta testing 
Development Phases 
 Waterfall (the classic) Some notable stages: PDR (Preliminary Design Review) 
           and SDR (System Design Review – approval to start implementation) 

  
 Rapid Prototyping (incremental development  design/code a little/test a little) 
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5.4  Reliability Theory 
f(t) – the pdf  (probability density function) 
N = # of items placed in test (population) 
n(t) = the # of items surviving the test up to time t 
f(t) =  [ n(t) – n(t + dt) ] / N dt   reflects the rate of failures based on original population 
z(t) =  [ n(t) – n(t + dt) ] / n(t) dt  instantaneous rate of failures based on the number of 
                              survivors at the beginning of the interval.   (see Appendix B, page 423) 
R(t) = probability of no failures from 0 to t given that there was no failures up to t = 0 
       (probability of failure up to time t is not a constructive way to characterize software) 
knowing R(t) = n(t) / N  = 1 – F(t)  = 1 - ∫ f(t) dt     F(t) - cumulative distribution  f(t) – prob density 

f(t) =  –  dR(t)/dt    z(t) = f(t) / R(t)  Hazard Function also known as the failure-rate function  (Eq 5.10) 

z(t) = – [dR(t)/dt] / R(t)   integrating both sides 
ln{R(t)} = – ∫ z(t) dt    (Eq 5.13a)   then exponentiating both sides   
                                                                                                                                                                                                  see Eq B39 for development 

R(t) = e - ∫ z(t) dt    function to be used in the s/w reliability model development  (Eq 5.13b) 
 

MTTF =  ∫  R(t) dt  which for a constant-failure rate [ z(t) = λ] then MTTF = 1 / λ 
           0   
 

5.5  Software Error (bugs) Models  (we’ll develop three models) 

Requirements & Specification Phases – design errors, considered code failures when found 

Software errors – start failure count normally after the software comes under 
configuration control (usually at integration/system testing) - although should be earlier. 

 
Removal of errors  normally approaches equilibrium (with or without any new errors) 
BUT the process can diverge IF the generation rate of new errors exceeds the error-
removal rate. 
Experience tells us that changes normally introduce other errors  dependent on 
software complexity, percentage of available processing power/memory/input-output; 
experience of programmers, schedule constraints, financial constraints, etc. 

Er() = ET – Ec( ) 
 

where 
is testing time 
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It is normally presumed that you can never eliminate all the errors although some 
applications require that you get as close as possible (loss of life systems). 
Collecting enough statistics; environment changes, customer changes, budget changes  
all impact trying to develop a stable error removal model.  Computer based estimation 
techniques are highly developed today.  Past experience is probably your best indicator.   

1. Constant Error-Removal Rate – in spite of the fact that experience tells us that 
the error removal rate decreases as testing progresses. [Outside factors (staff, 
management & external problems) impact the stability of an error removal rate 
model and these factors are almost impossible to control.]  This model presumes 
that a total number of errors actually exist so proceeding with the model of a 
constant error removal rate over the development and testing periods . . .  

Er()  =  ET - o  where Er() is errors remaining,  ET  are the total errors and  o  is the 
constant error-correction rate in errors removed per unit of testing time () . 
 

2. Linearly Decreasing Error-Removal Rate 
Based on the observation that the error-removal rate decreases with testing time,    
 

Er()  =  ET – K  (1 -    ) where Er() are errors remaining,  ET  are the total errors 
K is determined by the initial error-removal rate at  = 0 and  is the total testing time; 
that is, when testing stops and thus the error removal rate goes to zero. 
 

ET = 130 errors (estimate at = 0) after months of testing we desire to remove 120 
errors. The error-removal rate will be zero at = 8 months with Er()  = 10 errors at 
= 8.  The model is  Er()  = ET – K  (1 -   )    Solving for K, we obtain K = 30 
 

    Er()  = 130 – 30  (1 -   )    (Eq 5.24b) 
                    The linearly decreasing straight line which is marked with  still somewhat a contrived model 
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3. Exponentially Decreasing Error-Removal Rate  (see Figure 5.8 page 236) 
     Er()  =  ET e -α  where  is the testing time interval and 
 α is a proportionality constant  d Ed() / d = α Er()   where Ed() = errors detected 
 

On page 235, similar example to the above cases for exponentially decreasing error-removal rate model. 
 
Note that testing time is any time errors are formally detected/corrected which can be 
during development, integration, etc.  Usually the longer the “testing” period, the better. 
 
5.6 Reliability Models 
 
Modeling attempts to answer: When should we stop testing?  How reliable is the 
software?  The answers are always a trade-off of risk, money and schedule. 
 

Errors fixed in the ‘field’ normally cost ten times as much as those fixed during in-house 
testing   remember the cost of ownership problems which didn’t consider the impacts 
of customer satisfaction (customer loyalty wrt buggy software). 
 

Normally a good assumption:   Hazard rate(failure rate)    remaining # of errors 
 

  Z(k Er(
 

It seems reasonable; is supported by experimental data (empirical); and if the rate of 
errors found is a random process dependent on the input parameters and initial 
conditions, then the discovery rate is proportional to the number of remaining errors. 
 
Combine Z( with the 3 software error-removal models 3 software reliability models 
 

R(t)  = e - ∫ Z( dt   =  e - ∫  k Er( dt   where is the development/debugging/testing time 
             (Equation B39 or 5.13b) 
 

Using the three models for error removal  develop three models for software reliability. 
For errors remaining Er()   then for  

Constant Error-Removal Rate:   Er()  =  ET - o

Linearly Decreasing Error-Removal Rate:  Er()  =  ET  –  K  (1 -    ) 

Exponentially Decreasing Error-Removal Rate:  Er()  =  ET e -α 
 

An example using the Constant Error-Removal Rate model: 
 

Er ()  =  ET - o  where Er() are the remaining errors,  ET are the total errors 
                    o  is the constant error-correction rate in units of errors/test time() . 

 

          Z(k Er(  k (ET - o)  from the previous s/w error model discussions in Section 5.5 
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Eq 5.30a     R(t)  = e - ∫  k ( ET - o) dt = e - k ( ET - o) t          ∫ a dt  = a ∫dt  = a t 
 
Eq 5.30b    MTTF =  ∫  R(t) dt  = 1 / [ k (ET - o) ]                     ∫ e -a x dx  =  e - a x / -a 
                                          0  from R(t) = e-λt for constant λ                       along with these limits of integration 

                                                                                                                                                                                      e0 = 1 and e = 1  then  MTTF =  1 / a 

Summary: 
Use the Er( models with the definition of R(t) to obtain the S/W Reliability Models 
 

Constant Error-Removal Rate:   R(t) = e - k [ ET - o] t                              Section 5.6.2
Linearly Decreasing Error-Removal Rate:  R(t) = e - k [ ET – K  (1 -    ) ] t       Section 5.6.3 
Exponentially Decreasing Error-Removal Rate:  R(t) = e - k [ ET e -α] t             Section 5.6.4 
 
MTTF is the integral of R(t) which for the three error models is simply the reciprocal of 
the exponent given in the three above equations (see development Eq. 5.30b above). 
 

               for linearly decreasing                                for exponential 
        MTTF = 1/ k [ ET – K  (1 -    ) ]   or   MTTF = 1/ k [ ET e -α] 
 

So how do you estimate the parameters used in the error-removal models?  They will 
essentially be estimated from the early testing, previous experience with similar software 
and/or simulation data obtained from the pre-release software in a modeled operational 
environment. 
 
Examining the constant error-removal model results (from the MTTF function above): 
 

   
                                           Testing Time () 
 

You are striving to understand the 
magnitude of the error problem, 
obtain a decent MTTF and spend 
enough time testing to get past the 
knee in the MTTF curve where the 
increase in reliability will be 
significantly improved with very little 
additional testing effort (having a 
small Er  and not wasting time/money 
eliminating the remaining few errors.) 
Constant-error model falls apart as 
remaining errors  0 but the general 
result is the key (and who says you’ll 
be lucky enough to get near 0 errors 
remaining anyway). 
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Reliability Model for the Linearly Decreasing Error-Removal Rate – model shows an 
intermediate testing time improvement in reliability because of the initially higher error-
removal rate but there is a point () where more testing fails to remove more errors, 
which is counterintuitive. 
 

Reliability Model for Exponentially Decreasing Error-Removal Rate – model represents 
the hypothesis that in addition to the rate of error detection being proportional to the 
number of errors present (low hanging fruit), the model also fits the belief that the finding 
errors after reasonable testing is very difficult (later errors are subtle and deeply embedded).  
 
 
 
The graph for all three MTTF models (Figure 5.17 on page 249) 

 
 
                                                                                              Outcome of stopping testing at 
                                                                                               = 8 months for the linear 
                                                                                              decreasing error-removal rate 
                                                                                              model (Er stays the same and 
                                                                                              error-removal rate is 0) 
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Data for any of the three models in the first two months pretty much yields the same 
results.  The key difference is between 8 <   < 10 months testing (the key period for 
these examples) but a more detailed model would also provide better results. 
 

 
 
Keeping track of the data over a long period of time for the same organization will 
improve the predictions from the initial data and may actually show that the constant-
error model works better for ‘your’ organization because of the bias within the 
organization for collecting data (What is an error? Do I need to count that one? The model just 
seems to work for our company and the software that is developed.) 
 
Estimating the Model Constants (k, ET, o,  etc) 
 

The bottom line is “always have a process in place to collect the s/w project data ” 
 

Parameter Estimation - curve fitting to experimental data or statistical parameter estimation 
 

When there is little detailed data at the beginning of a project, the predictions will have a 
wide range of uncertainty but as we’ve seen, this is useful in any removal-rate model. 
 

If we get into trouble toward the end of the project, the reliability models can predict 
quantitatively how much effort will be required to remedy the problem (management will 
always ask how bad is it? How much time do you need to fix the problem?) 
 

If the error-removal rate is getting small, the model might show the product can be 
released early (time incentive contract or respond to competition) 
 

Handbook Estimation – reliability model constant estimation based on past experience.  
Another reason good software organizations have extensive past project data.  
Information and data collection is critical in today’s environment – the information age. 
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Moment Estimates for Constant, Linearly Decreasing and Exponentially Decreasing:  
Using the Error-Removal-Rate Data – take a look at the error-removal rate versus   and 
see how it fits all three models.  Pick a model.  The first moment of the data or the mean 
will provide the first moment of the model, the second moment of the data is equated to 
the second moment of the model, etc.  Then compute the # of moments needed to solve 
for the # of parameters to be estimated. 
 

Operational data provides the best estimates but if you don’t have operational data (very 
likely) then you could obtain the data from a simulated operational mode  run the 
software that is available for reliability testing in a simulated operational environment 
until it fails.  This is not testing since testing/debugging does not accrue time to failure. 
 

Obtain as many parameters (model constants) as possible from the error-removal data and 
then use the test data to estimate the remaining. 
 

As the project progresses and more error-removal data and operational time is 
accumulated, develop and maintain several models to make comparisons and ascertain 
which model is providing the best estimates (reliability and MTTF). 
 

Moment estimates don’t provide a clear direction when several data sets are available (for 
the difference methods used between two data sets for example). 
 

Least-Squares Estimates use all of the data as does Maximum-Likelihood Estimates 
(MLE) giving us three model parameter estimation techniques. 
 

These more complex estimation techniques are readily available in computer based 
mathematical packages but they provide little insight into the methods and the usefulness 
of the data available (garbage in  garbage out).  Initial data analysis should be done 
with calculators, graph paper, i.e., paper and pencil (to gain some insight) 
 
5.7 Software Reliability Models 
 
It is easy to argue against using S/W reliability models (see text).  Not enough time 
(money) to do it right but always enough time (money) to fix it. 
 

Development of s/w reliability models requires an effort but if done correctly, it will 
provide significant insight into software projects.  Data collection is the key ingredient. 
 

Software has become far to complex not to require use of numerous analytical tools.  
Software Cost Estimation Models provide insight into reliability considerations 
(COCOMO model, which uses Raleigh manpower distributions, takes into account 
numerous factors that not only effect s/w cost but s/w reliability – personal attributes like 
quality & continuity, schedule & budget constraints, software language, requirements 
volatility, hardware configuration, testing, interface complexity, size of project, etc.) 
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Using development test data vs simulated operational data – best to use any and all data 
combined with some weighting factor for the realistic operational hours w/o failure. 
 

Start simple – finish complex.  Textbook examples were just the simple end of the S/W 
reliability spectrum. 
 
5.9 Software Redundancy 
 
N-Version Programming – the TMR of the software world.  The s/w modules must be 
different for the N-Versions to be independent and produce outputs for meaningful 
voting. 
 

If independent then the software versions are comparable to the hardware modules used 
in the TMR mathematical formulations and the same equations are applicable. 
 

    
 
The different versions come from the same set of requirements (hopefully correct reqt’s) 
 

Diverse Programming – independently developed versions concurrently executed 
 Problems: cost, lengthly development, how to resolve differences (independently) 
 Atomic Processes – modules don’t interfere with each other 
 

Programmers of the different versions must work independently of the others 
 

Each version of the s/w is run through the same acceptance tests. 
 

Common-Mode failures – errors that affect all versions/modules.  Example: Errors in the 
requirements can create common-mode failures in all the versions.  Or unexpected data 
value inputs (not considered) can cause common-mode failures. 
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Space Transportation System (STS) – Shuttle (Orbiter) 
 

  
 
Five Identical Computers (CPU and I/O) – essentially NMR/Simplex arrangements 

Only one computer’s output is used – lockout switches are used at the inputs to the voter 
after the voting process has competed (actually a time sync comparison process) 
 
BFS – protects against a generic software failure since the same software is run on the 
PASS computers so an independent version (just critical phases) is used on the BFS.  It is 
developed using the same set of requirements (common-mode failure ??).  The BFS is 
manually engaged so if the Commander waits to long to engage the BFS  it could result 
in loss of the vehicle.  Testing was done to determine how long was too long. 
 

NASA’s Mission Control Center (MCC) has a lot of insight into the internal operations of 
each computer via telemetry which should increase the reliability with more “eyes” on 
the operations. MCC could also act as an independent voting source during critical 
phases.  This made the communications system the most critical system on the vehicle.  
Overall vehicle design protects for total loss of communications, since the vehicles could 
operate independently from the ground with their on-board systems in addition to hand 
held backup solutions (programmable calculators on Apollo/laptops on Shuttle). 
 

Lockout Switches 
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Built-In Test (BIT) and Self-Test Features of the Shuttle’s AP-101 (catch most faults) 
 
Watchdog Timers – processors set a timer at the start of a process and if the timer counts 
down to zero before being reset – the computer is labeled as failed and is locked out. 
 
Comparisons – check sum is computed and two successive miscompares fail the 
computer 
 
Bus Time-Out Tests – if the computer does not perform a periodic operation on the bus 
and the timer has expired, the computer is considered failed (and/or the computer bus has 
failed). 
 
Rollback and Recovery 
 

These type of recovery techniques are a backward error recovery.  Generally assume that 
the software problems are transient errors and thus the software can be ‘re-exectued’. 
 

Forward Error Recovery – continue operation tolerating loss that is dealt with later, 
                                            e.g. reconfiguration. 
 

Recovery Blocks 
 

   
 
The failure of the Acceptance Test cycles the program back to the Checkpoint and an 
alternative module is executed through the same process 
 

Code Example:  ensure <acceptance test> 
    by 
     <primary module> 
    else by 
     <alternative module> 
    else by  
     <alternative module> 
    …………. 
    …………. 
    else by 
     <alternative module> 
    else 
     <error handling module>  
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Recovery Blocks  vs  N-Module Programming 
 

 N-Module – static redundancy 

 Recovery Blocks – dynamic redundancy, error is detected 

Overhead – both methods incur extra development costs 

Diversity – both schemes are diverse but both susceptible to the same specification errors 

Error Detection – N-Module Voting   voting (less overhead) 

   Recovery Blocks   acceptance testing (more flexible) 

 
5.10.2 Rebooting 
 

A weak and sometime futile recovery technique (who says the problem isn’t going to 
happened again?)  But it is a simple (brute force) technique if you have the time 
(rebooting on the Space Station takes 10 minutes). 
 

When the entire software process is lost (watchdog timer ?), execute a last-ditch recovery 
technique like rebooting or go back to the beginning process (start over/restart) 
Example: Autonomous submarine – back to the surface and stop to await recovery 
 
5.10.4  Journalization Techniques 
 

All transactions (inputs) are saved during execution available to be re-executed 
 

The state of the process is saved (stored) at the beginning so the transactions can be 
rerun, possibly just up to the point that something went ‘bad’ 
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5.10.5 Retry 
 

Usually implemented in hardware, when an error is detected, a retry is begun 
immediately or possibly a small execution delay awaiting a transient to decay. 
 
5.10.6 Checkpointing 
 

A software technique - Saving the system state, rollback on error which infers error 
latency, process restarted again from the checkpointed state.  If this fails, can possibly go 
back to an even earlier checkpoint.  Example: the Windows OS restore points. 
 

If the ‘error’ has permanently modified the state of the system, the checkpoint technique 
fails and an error recovery process is most likely initiated (or you give up and go home). 
 
5.10.7 Distributed Systems 
 

Client/Server systems, connected by LANs. 
Reliability thru network connectivity which provides extensive redundancy. 
 

Client – user at a PC, the local environment 
Server – connected to many clients and for redundancy other servers 
 

In Distributed Systems, designs must avoid collisions (for data) and lockups (A waiting 
on B, waiting on C who is waiting on A) 
 

A Fault Tolerant Program Description 
 

implemented by Pat Lorenzo, CENG 5334 Graduate  student Spring 2003 
improved by Dave Ayan, CENG 5334 Teaching Assistant Spring 2004 
 

Implementation Requirements 
 

• A simple fault tolerant system that will sort an array of integers. 
✓ 3 Different Sort Algorithms 
✓ 2 Fault Tolerant Schemes 
✓ Adjudicator (Recovery Block’s Acceptance Test) 
✓ Voter (TMR Scheme, data alignment realized by using integers versus 

floating point) 
 

• Use Error Injection to evaluate the two schemes 
 

• Use Objected Oriented Programming (OOP) techniques in the software design and 
implementation (encapsulation of Methods and Data Members using derived 
classes with inherited functions) 

 

• Design system for possible future use in parallel processing environments 



Fault Tolerant Program Description
implemented by Pat Lorenzo, CENG 5334 Graduate Student Spring 2003

improved by Ayan Dave, CENG 5334 Teaching Assistant Spring 2004

Implement
A simple fault tolerant system that will sort an array of integers.
3 Different Sort Algorithms
2 Fault Tolerant Schemes
Adjudicator (Recovery Block’s Acceptance Test)
Voter (TMR Scheme, input data alignment realized by using 
integers versus floating point numbers)
Use Error Injection to evaluate the two schemes
Use Objected Oriented Programming (OOP) techniques in the  
software design and implementation (encapsulation of Methods and 
Data Members using derived classes with inherited functions)
Design system for future use in parallel processing



Modules/Classes

Array

ShakerInsertionBubble

Recovery
Block

3 Version
Programming

Base Class

Derived Classes

Two FT S/W Schemes



Array Class
class Array {
public:

Array(int user_array[], int = 0);
~Array();
virtual void Sort() = 0;
void Print();

protected:
int *List;
int Size;

};

Array::Array(int user_array[], int 
user_size)

{
Size = user_size;
List = new int[Size];
for(int i = 0; i < Size; i++) 

List[i] = user_array[i];
}
void Array::Print()
{

for(int i = 0; i < Size; i++) 
cout << setw(4) << List[i]; 
cout << endl;

}
Array::~Array()
{

delete [] List;
}



Bubble Class
class Bubble: public Array {
public:

Bubble(int *, int = 0);
virtual void Sort();

};

Bubble::Bubble(int *user_array, int user_size)
:Array(user_array, user_size)
{

Sort();
for(int i = 0; i < Size; i++) 

user_array[i] = List[i];
}
void Bubble::Sort()
{

int temp;
for(int a=1; a < Size; ++a) {

for(int b = Size-1; b >= a; --b) {
if(List[b-1] > List[b]) {

temp = List[b-1];
List[b-1] = List[b];
List[b] = temp;

}
}

}
}



Recovery Block

Bubble

Insertion

Shaker

AdjudicatorSelection
Switch

Acceptance  Test  Checksum
Array Order

Alternates

Acceptance Test 
Alternative Path

Exit Recovery

Block



Recovery Block (RB) Code

void RBarray::Sort()
{

int *temp = new int[Size];
int CheckSum = 0;

for(int i = 0; i < Size; i++) CheckSum += List[i];

for(int version = 0; version < 3; version++) {
if(!Success) {

for(i = 0; i < Size; i++)  temp[i] = List[i];

if (version == 0) Bubble version1(temp, Size);
else if(version == 1) Insertion version2(temp, Size);
else if(version == 2) Shaker version3(temp, Size);  

Success = Adjudicator(temp, CheckSum);
}

}
if(Success) {

for(i = 0; i < Size; i++) List[i] = temp[i];
}
delete [] temp;

}



Adjudicator Code
two fold test – checksum and array order

bool RBarray::Adjudicator(int *temp, int CheckSum) 
{

int reCheckSum = 0;
for(int i = 0; i < Size-1; i++) {

if(temp[i] > temp[i+1]) return false;
reCheckSum += temp[i];

}
reCheckSum += temp[Size-1];
if(reCheckSum != CheckSum) return false;

return true;
}



N-Version Programming
3 Modules (TMR)

Bubble

Insertion

Shaker

Voter



3 Version Code
void TMRarray::Sort()
{

int *ver1 = new int[Size];
int *ver2 = new int[Size];
int *ver3 = new int[Size];
int i, select = 0;

for(i = 0; i < Size; i++) ver1[i] = List[i];
for(i = 0; i < Size; i++) ver2[i] = List[i];
for(i = 0; i < Size; i++) ver3[i] = List[i];

Bubble Version1(ver1, Size);
Insertion Version2(ver2, Size);
Shaker Version3(ver3, Size);

select = Voter(ver1,ver2,ver3);
switch(select) {

case 1: for(i=0;i<Size;i++) List[i] = ver1[i]; break;
case 2: for(i=0;i<Size;i++) List[i] = ver2[i]; break;
case 3: for(i=0;i<Size;i++) List[i] = ver3[i]; break;
default: Success = false;

}
delete [] ver1;
delete [] ver2;
delete [] ver3;

}



NMR Voter Code
voting performed on checking array order amongst all 3 schemes

int TMRarray::Voter(int *ver1, int *ver2, int *ver3)
{

bool same12,same13,same23;
int i;

same12 = true;
same13 = true;
same23 = true;

for(i = 0; i < Size; i++) { 
if(ver1[i] != ver2[i]) { same12 = false; break;}

}
if(same12) return 1;
for(i = 0; i < Size; i++) { 

if(ver1[i] != ver3[i]) { same13 = false; break;}
}
if(same13) return 1;
for(i = 0; i < Size; i++) { 

if(ver2[i] != ver3[i]) {same23 = false; break;}
}
if(same23) return 2;
return 0;

}



Conclusion

An Object Oriented Approach (OOP) allowed better isolation of modules 
into objects. 

In the Recovery Block Scheme, the Adjudicator (acceptance test) is always 
application dependent while the Voter in an N-Version Programming scheme is 
independent of the application. 

The complexity of the design of the adjudicator is proportional to 
complexity of the application.  The voter design in the N Version Programming 
scheme remains the same although it may require some individualized 
alignment based on the data members and the module outputs.  Having integers in this 
FT Software demonstration avoided this problem.

N-Version Programming is the generally the simpler of the two. 

The Recovery Block scheme infers some ability to go back in time by 
performing another scheme if a previous scheme fails the acceptance test.  
Processing speed may make this concern moot for real-time systems.



No Error Case
Forming the arrays ...       Bubble Sorting the Array ...      Sorting Done ...

Bubble Algorithm
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

Insertion Sorting the Array ...     Sorting Done ...
Insertion Algorithm

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

Shaker Sorting the Array ...    Sorting Done ...
Shaker Algorithm

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

--- RECOVERY BLOCK ---

The real unsorted array ...       3  7  9  1  11  2  16  8  6  12  14  5  13  4  10  15
Checksum of the List is : 136

Trying Version 1 ... Bubble Sort ...
Bubble Sorting the Array ...     Sorting Done ...     Adjudicator : Success

Recovery Block  (Success)
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

--- TMR VOTING ---

Bubble Sorting the Array ...     Sorting Done ...
Insertion Sorting the Array ...  Sorting Done ...
Shaker Sorting the Array ...     Sorting Done ...

N Version Programming  (Success)
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16



Error in Bubble Sort
Forming the arrays ...   Bubble Sorting the Array ...   Sorting Done ...

Bubble Algorithm
2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17

Insertion Sorting the Array ...   Sorting Done ...
Insertion Algorithm

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

Shaker Sorting the Array ...   Sorting Done ...
Shaker Algorithm

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

--- RECOVERY BLOCK ---

The real unsorted array ...
3  7  9  1  11  2  16  8  6  12  14  5  13  4  10  15

Checksum of the List is : 136
Trying Version 1 ... Bubble Sort ...   Bubble Sorting the Array ...   Sorting Done ...

Adjudicator : Fail ... try next version

Trying Version 1 ... Insertion Sort ...   Insertion Sorting the Array ...   Sorting Done ...
Adjudicator : Success

Recovery Block  (Success)
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 

--- TMR VOTING ---

Bubble Sorting the Array ...      Sorting Done ...
Insertion Sorting the Array ...    Sorting Done ...
Shaker Sorting the Array ...      Sorting Done ...

N Version Programming  (Success)
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
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