
1

ROS I SEMINAR 1.4 DISTRIBUTIONS ROS-I ROS-M ROS 2

http://wiki.ros.org/Distributions

List of Distributions

Distro Release date Poster
Tuturtle, turtle in
tutorial

EOL date

ROS Melodic

Morenia

May, 2018 TBD TBD May, 2023

ROS Lunar

Loggerhead

May 23rd, 2017

May, 2019

ROS Kinetic Kame
(Recommended)

May 23rd, 2016

April,
2021
(Xenial
EOL)

ROS Jade Turtle May 23rd, 2015

May, 2017

ROS Indigo Igloo July 22nd, 2014

April,
2019
(Trusty
EOL)

ROS Hydro Medusa

September 4th,
2013

May, 2015

http://wiki.ros.org/Distributions
http://wiki.ros.org/melodic
http://wiki.ros.org/melodic
http://wiki.ros.org/lunar
http://wiki.ros.org/lunar
http://wiki.ros.org/kinetic
http://wiki.ros.org/jade
http://wiki.ros.org/indigo
http://wiki.ros.org/hydro
http://wiki.ros.org/lunar
http://wiki.ros.org/kinetic
http://wiki.ros.org/jade
http://wiki.ros.org/indigo
http://wiki.ros.org/hydro

2

ROS Groovy

Galapagos

December 31,
2012

July, 2014

ROS Fuerte Turtle April 23, 2012

--

ROS Electric Emys August 30, 2011

--

ROS Diamondback March 2, 2011

--

ROS C Turtle August 2, 2010

--

ROS Box Turtle March 2, 2010

--

http://wiki.ros.org/groovy
http://wiki.ros.org/groovy
http://wiki.ros.org/fuerte
http://wiki.ros.org/electric
http://wiki.ros.org/diamondback
http://wiki.ros.org/cturtle
http://wiki.ros.org/boxturtle
http://wiki.ros.org/groovy
http://wiki.ros.org/fuerte
http://wiki.ros.org/electric
http://wiki.ros.org/diamondback
http://wiki.ros.org/cturtle
http://wiki.ros.org/boxturtle

3

ROS-Industrial is an open-source project that extends the advanced capabilities of ROS

software to manufacturing. http://rosindustrial.org/

http://wiki.ros.org/Industrial/Tutorials

Contents

1. ROS-Industrial Tutorials Overview
2. General ROS-Industrial
1. Training
2. General
3. Industrial Calibration Toolbox
4. Industrial MoveIt
5. Industrial Trajectory Filters
3. Vendor Specific Tutorials
1. ABB
2. Fanuc
3. Motoman
4. Robotiq
5. Universal Robot
4. External Package Tutorials
1. MoveIt
5. Implementation Notes
6. Coming Soon Tutorials
1. Adept
2. Industrial Core
7. Deprecated

Southwest Research Institute (SwRI) has used the Robot Operating System (ROS) as an enabling

technology to develop complex intelligent systems. ROS is an open-source project that provides

a common framework for robotics applications. With ROS, SwRI has been able to deliver

technologically complex or previously infeasible systems for much lower costs. To date, SwRI

has leveraged ROS applications in the areas of:

 Industrial Robotics & Automation

 Robotics Research & Development

 ROS-Industrial

 Automated Driving Systems & UGVs

https://www.swri.org/robot-operating-system-ros

http://rosindustrial.org/
http://wiki.ros.org/Industrial/Tutorials
http://wiki.ros.org/Industrial/Tutorials#ROS-Industrial_Tutorials_Overview
http://wiki.ros.org/Industrial/Tutorials#General_ROS-Industrial
http://wiki.ros.org/Industrial/Tutorials#Training
http://wiki.ros.org/Industrial/Tutorials#General
http://wiki.ros.org/Industrial/Tutorials#Industrial_Calibration_Toolbox
http://wiki.ros.org/Industrial/Tutorials#Industrial_MoveIt
http://wiki.ros.org/Industrial/Tutorials#Industrial_Trajectory_Filters
http://wiki.ros.org/Industrial/Tutorials#Vendor_Specific_Tutorials
http://wiki.ros.org/Industrial/Tutorials#ABB
http://wiki.ros.org/Industrial/Tutorials#Fanuc
http://wiki.ros.org/Industrial/Tutorials#Motoman
http://wiki.ros.org/Industrial/Tutorials#Robotiq
http://wiki.ros.org/Industrial/Tutorials#Universal_Robot
http://wiki.ros.org/Industrial/Tutorials#External_Package_Tutorials
http://wiki.ros.org/Industrial/Tutorials#MoveIt
http://wiki.ros.org/Industrial/Tutorials#Implementation_Notes
http://wiki.ros.org/Industrial/Tutorials#Coming_Soon_Tutorials
http://wiki.ros.org/Industrial/Tutorials#Adept
http://wiki.ros.org/Industrial/Tutorials#Industrial_Core
http://wiki.ros.org/Industrial/Tutorials#Deprecated
https://www.swri.org/taxonomy/term/445
https://www.swri.org/node/8552
https://www.swri.org/node/5853
https://www.swri.org/node/8960
https://www.swri.org/robot-operating-system-ros

4

ROS meaning | Military Dictionary
www.military-dictionary.org/ROS
ROS according to the free Military Dictionary. reduced operating status.

Army Robotics in the Military

The future of autonomy in the military could include unmanned cargo delivery; micro-autonomous
air/ground systems to enhance platoon, squad, and soldier situational awareness; and manned and
unmanned teaming in both air and ground maneuvers, according to a 2016 presentation by Robert
Sadowski, chief roboticist for the U.S. Army Tank Automotive Research Development and Engineering
Center (TARDEC), which researches and develops advanced technologies for ground systems. One day,
robot medics may even carry wounded soldiers out of battle. The system behind these feats is ROS-M,
the militarized version of the Robot Operating System (ROS), an open-source set of software libraries
and tools for building robot applications. In this post, I will describe the work of SEI researchers to create
an environment within ROS-M for developing unmanned systems that spurs innovation and reduces
development time.

https://insights.sei.cmu.edu/sei_blog/2017/06/army-robotics-in-the-military.html

http://www.military-dictionary.org/ROS
https://www.army.mil/tardec
https://www.army.mil/tardec
http://www.popsci.com/army-wants-robot-medics
http://www.dtic.mil/ndia/2017/groundrobot/OrinRosM.pdf
http://www.ros.org/
https://insights.sei.cmu.edu/sei_blog/2017/06/army-robotics-in-the-military.html

5

Why ROS 2.0?

This article captures the reasons for making breaking changes to the ROS API, hence the 2.0.

Original Author: Brian Gerkey

We started work on ROS in November 2007. A lot has happened since then and we believe that

it is now time to build the next generation ROS platform. In this article we will explain why.

How we got here

ROS began life as the development environment for the Willow Garage PR2 robot. Our primary

goal was to provide the software tools that users would need to undertake novel research and

development projects with the PR2. At the same time, we knew that the PR2 would not be the

only, or even the most important, robot in the world, and we wanted ROS to be useful on other

robots. So we put a lot of effort into defining levels of abstraction (usually through message

interfaces) that would allow much of the software to be reused elsewhere.

Still, we were guided by the PR2 use case, the salient characteristics of which included:

 a single robot;

 workstation-class computational resources on board;

 no real-time requirements (or, any real-time requirements would be met in a special-

purpose manner);

 excellent network connectivity (either wired or close-proximity high-bandwidth

wireless);

 applications in research, mostly academia; and

 maximum flexibility, with nothing prescribed or proscribed (e.g., “we don’t wrap your

main()”).

It is fair to say that ROS satisfied the PR2 use case, but also overshot by becoming useful on a

surprisingly wide variety of robots. Today we see ROS used not only on the PR2 and robots that

are similar to the PR2, but also on wheeled robots of all sizes, legged humanoids, industrial arms,

outdoor ground vehicles (including self-driving cars), aerial vehicles, surface vehicles, and more.

In addition, we are seeing ROS adoption in domains beyond the mostly academic research

community that was our initial focus. ROS-based products are coming to market, including

manufacturing robots, agricultural robots, commercial cleaning robots, and others. Government

agencies are also looking more closely at ROS for use in their fielded systems; e.g., NASA is

expected to be running ROS on the Robonaut 2 that is deployed to the International Space

Station.

With all these new uses of ROS, the platform is being stretched in unexpected ways. While it is

holding up well, we believe that we can better meet the needs of a now-broader ROS community

by tackling their new use cases head-on.

http://wiki.ros.org/Robots

6

New use cases

Of specific interest to us for the ongoing and future growth of the ROS community are the

following use cases, which we did not have in mind at the beginning of the project:

 Teams of multiple robots: while it is possible to build multi-robot systems using ROS

today, there is no standard approach, and they are all somewhat of a hack on top of the

single-master structure of ROS.

 Small embedded platforms: we want small computers, including “bare-metal” micro

controllers, to be first-class participants in the ROS environment, instead of being

segregated from ROS by a device driver.

 Real-time systems: we want to support real-time control directly in ROS, including inter-

process and inter-machine communication (assuming appropriate operating system and/or

hardware support).

 Non-ideal networks: we want ROS to behave as well as is possible when network

connectivity degrades due to loss and/or delay, from poor-quality WiFi to ground-to-

space communication links.

 Production environments: while it is vital that ROS continue to be the platform of choice

in the research lab, we want to ensure that ROS-based lab prototypes can evolve into

ROS-based products suitable for use in real-world applications.

 Prescribed patterns for building and structuring systems: while we will maintain the

underlying flexibility that is the hallmark of ROS, we want to provide clear patterns and

supporting tools for features such as life cycle management and static configurations for

deployment.

New technologies

At the core of ROS is an anonymous publish-subscribe middleware system that is built almost

entirely from scratch. Starting in 2007, we built our own systems for discovery, message

definition, serialization, and transport. The intervening seven years have seen the development,

improvement, and/or widespread adoption of several new technologies that are relevant to ROS

in all of those areas, such as:

 Zeroconf;

 Protocol Buffers;

 ZeroMQ (and the other MQs);

 Redis;

 WebSockets; and

 DDS (Data Distribution Service).

It is now possible to build a ROS-like middleware system using off-the-shelf open source

libraries. We can benefit tremendously from this approach in many ways, including:

 we maintain less code, especially non-robotics-specific code;

7

 we can take advantage of features in those libraries that are beyond the scope of what we

would build ourselves;

 we can benefit from ongoing improvements that are made by others to those libraries; and

 we can point to existing production systems that already rely on those libraries when

people ask us whether ROS is “ready for prime time”.

API changes

A further reason to build ROS 2.0 is to take advantage of the opportunity to improve our user-

facing APIs. A great deal of the ROS code that exists today is compatible with the client libraries

as far back as the 0.4 “Mango Tango” release from February 2009. That’s great from the point of

view of stability, but it also implies that we’re still living with API decisions that were made

several years ago, some of which we know now to be not the best.

So, with ROS 2.0, we will design new APIs, incorporating to the best of our ability the collective

experience of the community with the first-generation APIs. As a result, while the key concepts

(distributed processing, anonymous publish/subscribe messaging, RPC with feedback (i.e.,

actions), language neutrality, system introspectability, etc.) will remain the same, you should not

expect ROS 2.0 to be API-compatible with existing ROS code.

But fear not: there will be mechanisms in place to allow ROS 2.0 code to coexist with existing

ROS code. At the very least, there will be translation relays that will support run-time

interactions between the two systems. And it is possible that there will be library shims that will

allow existing ROS code to compile/run against ROS 2.0 libraries, with behavior that is

qualitatively similar to what is seen today.

Why not just enhance ROS 1

In principle, the changes described above could be integrated into the existing core ROS code.

E.g., new transport technologies could be added to roscpp and rospy. We considered this option

and concluded that, given the intrusive nature of the changes that would be required to achieve

the benefits that we are seeking, there is too much risk associated with changing the current ROS

system that is relied upon by so many people. We want ROS 1 as it exists today to keep working

and be unaffected by the development of ROS 2. So ROS 2 will be built as a parallel set of

packages that can be installed alongside and interoperate with ROS 1 (e.g., through message

bridges).

ROS on DDS http://design.ros2.org/articles/ros_on_dds.html

http://design.ros2.org/articles/ros_on_dds.html

8

What are the Benefits of DDS?

http://www.prismtech.com/vortex/technologies/what-are-benefits-dds

The Data Distribution Service for Real-Time Systems (DDS) has many benefits.

DDS makes it much easier to develop distributed applications: DDS provides a completely

de-centralized architecture that enables loosely coupled systems. Applications communicate in a

true peer-to-peer way, there are no intermediate services or message brokers that can introduce

single points of failure or performance bottlenecks. DDS systems are dynamic and can support

"plug-and-play" for new application components making it easy to extend or evolve a system.

DDS applications are completely decoupled from each other and an application can still publish

information even if there are no subscriber applications active. DDS automatically decides which

subscriber applications should receive information and can ensure that the right data is delivered

reliably and in real-time to the right subscriber applications.

http://www.prismtech.com/vortex/technologies/what-are-benefits-dds

