
1

timed_out_and_back_TLH.py 02/01/18

Note: Run Gazebo $ roslaunch turtlebot_gazebo turtlebot_world.launch

Run from directory $ python timed_out_and_back_TLH.py

and watch TurtleBot move out 5m in about 25 seconds, rotate and come back (almost)

Reset the World in Gazebo after the trip

#!/usr/bin/env python timed_out_and_back_TLH.py

""" timed_out_and_back.py - Version 0.1 2012-03-24 Modified by TLH 2/1/2018

 A basic demo of the using odometry data to move the robot along

 and out-and-back trajectory.

 Created for the Pi Robot Project: http://www.pirobot.org

 Copyright (c) 2012 Patrick Goebel. All rights reserved.

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.5

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details at:

 http://www.gnu.org/licenses/gpl.html

"""

Note: Run Gazebo $ roslaunch turtlebot_gazebo turtlebot_world.launch

Run from directory $ python timed_out_and_back_TLH.py and watch TurtleBot move out 5m

and back

Reset the World in Gazebo after the trip

import rospy

from geometry_msgs.msg import Twist

from math import pi

class OutAndBack():

 def __init__(self):

 # Give the node a name

 rospy.init_node('out_and_back', anonymous=False)

 # Set rospy to exectute a shutdown function when exiting

 rospy.on_shutdown(self.shutdown)

2

 # Publisher to control the robot's speed

 # self.cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=10) # Not for TurtleBot

 self.cmd_vel = rospy.Publisher('/cmd_vel_mux/input/teleop', Twist, queue_size=10)

 # How fast will we update the robot's movement?

 rate = 50

 # Set the equivalent ROS rate variable

 r = rospy.Rate(rate)

 # Set the forward linear speed to 0.2 meters per second

 linear_speed = 0.2

 # Set the travel distance to 1.0 meters

 goal_distance = 5.0

 # How long should it take us to get there?

 linear_duration = goal_distance / linear_speed

 # Set the rotation speed to 1.0 radians per second

 angular_speed = 1.0

 # Set the rotation angle to Pi radians (180 degrees)

 goal_angle = pi

 # How long should it take to rotate?

 angular_duration = goal_angle / angular_speed

 # Loop through the two legs of the trip

 for i in range(2):

 # Initialize the movement command

 move_cmd = Twist()

 # Set the forward speed

 move_cmd.linear.x = linear_speed

 # Move forward for a time to go the desired distance

 ticks = int(linear_duration * rate)

 for t in range(ticks):

 self.cmd_vel.publish(move_cmd)

 r.sleep()

 # Stop the robot before the rotation

 move_cmd = Twist()

 self.cmd_vel.publish(move_cmd)

 rospy.sleep(1)

3

 # Now rotate left roughly 180 degrees

 # Set the angular speed

 move_cmd.angular.z = angular_speed

 # Rotate for a time to go 180 degrees

 ticks = int(goal_angle * rate)

 for t in range(ticks):

 self.cmd_vel.publish(move_cmd)

 r.sleep()

 # Stop the robot before the next leg

 move_cmd = Twist()

 self.cmd_vel.publish(move_cmd)

 rospy.sleep(1)

 # Stop the robot

 self.cmd_vel.publish(Twist())

 def shutdown(self):

 # Always stop the robot when shutting down the node.

 rospy.loginfo("Stopping the robot...")

 self.cmd_vel.publish(Twist())

 rospy.sleep(1)

if __name__ == '__main__':

 try:

 OutAndBack()

 except:

 rospy.loginfo("Out-and-Back node terminated.")

4

STOP PROGRAM AFTER TURTLEBOT MOVED 5 METERS

harman@D104-45931:~/Desktop$ python timed_out_and_back_TLH.py

^C[INFO] [1517533754.228104, 207.280000]: Stopping the robot...

[INFO] [1517533755.845186, 208.280000]: Out-and-Back node terminated.

Not so Hot!

