
Programming Robots with ROS, Morgan Quigley, Brian Gerkey & William D. Smart 

O’Reilly December 2015 

 

CHAPTER 23 
 

Using C++ in ROS 
 

We chose to use Python for this book for a number of reasons. First, it’s an accessible language for people 

without a lot of computer science background. Second, it has a lot of useful stuff in the core packages, which 

lets us concentrate on higher-level concepts. Third, ROS has strong support for Python. Fourth, we wanted 

to pick a single language for all of the examples in the book, and Python seemed like a reasonable choice. 

However, sometimes you’re going to want to use another language for your ROS development. Maybe 

some library that you need to use doesn’t have Python support. Maybe you’re more comfortable developing 

in another language. Maybe you want the (often slight) speed advantage that a compiled language brings. In 

this chapter, we’re going to look at how the API in C++, one of the other supported languages, differs from 

the Python API, and how you can translate the examples in this book to C++. All of the idioms and design 

patterns for C++, and any other language that has a ROS API, will be the same: we’re still going to use 

callbacks, we’re still going to pass messages over topics, and so on. However, the syntax and specific data 

structures will be a little different. Once you learn how to map the Python examples onto your language of 

choice, then you’ll be able to easily translate examples from one language to another. 

The two best-supported language APIs in ROS are for Python and C++. In this chapter, we’ll concentrate on 

the C++ API, but many of the things that we talk about will apply to APIs in other languages. Once you 

figure out the syntax and data structure differences, things will start to look the same, and you’ll be able to 

change languages at will. 

 

When Should You Use C (or Some Other Language)? 
When should you use C++, or one of the other supported languages? The short answer is: when it 

makes your life easier. Since ROS is inherently a distributed system, it’s easy to mix nodes written in different 

languages within the same system, with the messaging system (topics, services, and actions) acting as the 

glue that holds everything together. 

Sometimes you will have a sensor or actuator with an API in C or C++, and it will be much easier to wrap 

this up into a ROS node if you use C++. Or, if you’re new to Python but have years of C++ coding 

experience, you might just be more efficient writing code in C++. Similarly, if you’re making extensive use 

of code that’s written in C++, then it’s easier to wrap this up in a C++ node. You might even be forced to use 

C++ because you’re maintaining or extending a package that someone else wrote in C++. 

Sometimes, especially if you’re doing complex mathematical calculations, you’ll want to write a node in C++ 

to make it faster. Be careful about this, though, since Python libraries like scipy are already very well 

optimized and will most likely be running the same code as your C++ implementation under the hood. 

Python does introduce some slowness, but you should be objective when you make the decision to imple‐ 



ment something in C++. A C++ node might be faster than a similar Python node, but does the speed increase 

justify the extra development time of writing and debugging the C++ node? 

Whatever your reasons for using C++ in ROS, whether they’re driven by program‐ ming language zealotry 

or by cold, hard facts, let’s look at how to write and build a ROS node with C++. 

 

Building C++ with catkin 
The main difference between C++ and Python (for our purposes, at least) is that C++ 

is a compiled language, while Python is an interpreted one. This means that you’re 

going to be interacting more with catkin and the ROS build system when you’re 

using C++. Every time you make a change to your code, you’re going to have to 

recompile it using catkin_make, and depending on the changes that you’ve made, you 

might also have to edit some other files. 

 

This need to recompile is, in our opinion, one of the reasons to prefer Python for 

development. You can iterate on changes faster with Python because you don’t have 

to recompile your code. ROS is a big software system, and if your node is complex 

and has many dependencies, your compile might take a few minutes. This will inevitably 

slow down your development process a bit. 

 

Again, you need to add lines like this for each of the executables you build. Once 

You’ve got this information in place, then you’re ready to build your node. 

 
 



 
 
 
 
 



 
 
catkin_make 
To build your node, invoke catkin_make from the root of your catkin workspace. 

This will build your code, and make sure that everything that you depend upon is up 

to date. To make things easier on you, you should structure your directories according 

to ROS Enhancement Proposal (REP) 128. Basically, this means that there should 

be a directory called src in your catkin workspace directory. Individual package 

directories should live in this src directory. Within a package directory, there should 

be a package.xml, a CMakeLists.txt, and another src directory (where your source code 

actually lives): 
catkin_workspace/ 

src/ 

CMakeLists.txt 

package_1/ 

CMakeLists.txt 

package.xml 

... 

package_n/ 

CMakeLists.txt 

package.xml 

build/ 

devel/ 

 

You invoke catkin_make from catkin_workspace. This will build your minimal executable 

and place it in catkin_workspace/devel/lib/<package name>/minimal. 

Now that we’ve seen how to build a C++ node, let’s look at what goes into the node 

itself, and how to translate from the Python examples in this book to C++. 

 
Translating from Python to C++ (and Back Again) 
To understand how to translate from the Python examples in this book to C++, you 

only really need to know three things: how a node is put together, how the three communication 

mechanisms are defined, and how to translate the data structures from 

one language to another. We’ll start by looking at how to write a minimal node in 

C++. 
 
 

A Simple Node 
Example 23-1 shows the code for a minimal C++ node in ROS. 

Example 23-1. minimal.cpp 
#include <ros/ros.h> 

int main(int argc, char **argv) { 

ros::init(argc, argv, "minimal"); 

ros::NodeHandle n; 

ros::spin(); 

return 0; 

} 

Include the basic ROS header information. 



Initialize the node, and give it a name. 

Create a node handle. 

Give control over to ROS. 

 

All ROS C++ nodes need to include the ros.h header file. Nodes are initialized by a 

call to init(), giving the command-line arguments and a name for the node. Then, 

we create a node handle that allows us to create topics, services, and actions. We 

didn’t have to explicitly create a node handle when using Python, since the language 

was able to do it for us behind the scenes. This is one of the recurring themes when 

using C++: things often need to be more explicitly specified. 

We need to add both build and runtime dependencies on roscpp to the package.xml 

file, and modify our CMakeLists.txt to contain the information shown in 

 

 

 

 

Example 23-2. 

Example 23-2. CMakeLists.txt 
cmake_minimum_required(VERSION 2.8.3) 

project(cpp) 

find_package(catkin REQUIRED roscpp) 

add_executable(minimal src/minimal.cpp) 

 



 

 

 



 

 

 



 

 



 



 



 


