Programming Robots with ROS, Morgan Quigley, Brian Gerkey & William D. Smart

O’Reilly December 2015

CHAPTER 23

Using C++in ROS

We chose to use Python for this book for a number of reasons. First, it’s an accessible language for people
without a lot of computer science background. Second, it has a lot of useful stuff in the core packages, which
lets us concentrate on higher-level concepts. Third, ROS has strong support for Python. Fourth, we wanted
to pick a single language for all of the examples in the book, and Python seemed like a reasonable choice.

However, sometimes you’re going to want to use another language for your ROS development. Maybe
some library that you need to use doesn’t have Python support. Maybe you’re more comfortable developing
in another language. Maybe you want the (often slight) speed advantage that a compiled language brings. In
this chapter, we’re going to look at how the API in C++, one of the other supported languages, differs from
the Python API, and how you can translate the examples in this book to C++. All of the idioms and design
patterns for C++, and any other language that has a ROS API, will be the same: we’re still going to use
callbacks, we’re still going to pass messages over topics, and so on. However, the syntax and specific data
structures will be a little different. Once you learn how to map the Python examples onto your language of
choice, then you’ll be able to easily translate examples from one language to another.

The two best-supported language APIs in ROS are for Python and C++. In this chapter, we’ll concentrate on
the C++ API, but many of the things that we talk about will apply to APIs in other languages. Once you
figure out the syntax and data structure differences, things will start to look the same, and you’ll be able to
change languages atwill.

When Should You Use C(or Some Other Language)?

When should you use C++, or one of the other supported languages? The short answer is: when it
makes your life easier. Since ROS is inherently a distributed system, it’s easy to mix nodes written in different
languages within the same system, with the messaging system (topics, services, and actions) acting as the
glue that holds everything together.

Sometimes you will have a sensor or actuator with an APl in C or C++, and it will be much easier to wrap
this up into a ROS node if you use C++. Or, if you’re new to Python but have years of C++ coding
experience, you might just be more efficient writing code in C++. Similarly, if you’re making extensive use
of code that’s written in C++, then it’s easier to wrap this up in a C++ node. You might even be forced to use
C++ because you’re maintaining or extending a package that someone else wrote in C++.

Sometimes, especially if you’re doing complex mathematical calculations, you’ll want to write a node in C++
to make it faster. Be careful about this, though, since Python libraries like scipy are already very well
optimized and will most likely be running the same code as your C++ implementation under the hood.
Python does introduce some slowness, but you should be objective when you make the decision to imple-

ment something in C++. A C++ node might be faster than a similar Python node, but does the speed increase
justify the extra development time of writing and debugging the C++ node?

Whatever your reasons for using C++ in ROS, whether they’re driven by program- ming language zealotry
or by cold, hard facts, let’s look at how to write and build a ROS node with C++.

Building C++ with catkin

The main difference between C++ and Python (for our purposes, at least) is that C++

is a compiled language, while Python is an interpreted one. This means that you’ re
going to be interacting more with catkin and the ROS build system when you’ re
using C++. Every time you make a change to your code, you’ re going to have to
recompile it using catkin_make, and depending on the changes that you’ ve made, you
might also have to edit some other files.

This need to recompile is, in our opinion, one of the reasons to prefer Python for
development. You can iterate on changes faster with Python because you don’t have

to recompile your code. ROS is a big software system, and if your node is complex

and has many dependencies, your compile might take a few minutes. This will inevitably
slow down your development process a bit.

Again, you need to add lines like this for each of the executables you build. Once
You’ve got this information in place, then you’re ready to build your node.

Putting our biases to one side for the moment, let’s look at the files you need to edit
when using C++.

package.xml
The package.xml file is the place where you declare all of your dependencies. When

using C++, you have to declare both a build and a runtime dependency on roscpp:
<build_depend>roscpp</build_depend>
<run_depend=roscpp</run_depend=

You can either do this manually, by editing the file, or have catkin_create_pkg do it
for you when you create the package:

user@hostnames catkin_create_pkg <package name> roscpp

You’'ll also need to add in dependencies, both build and runtime, for any additional
packages that you use in your node, just as you did when using Python.

(MakeLists.txt

You'll also need to add to the CMakeLists.txt file, so that the build system knows what
you're trying to do and where to find things. In particular, you need to modify the file
in the directory where your src directory lives (where your package.xml file also lives),
not the one at the top of your catkin workspace. Suppose you're going to build a
node called minimal from a single source file, minimal.cpp. You first have to let the
build system know about the executable, and all of the files needed to build it:

add_executable(minimal
src/minimal.cpp

)

This tells the build system that you're going to build an executable called minimal
from the file minimal.cpp. If you have more than one executable in your package, you
need to add lines like this for each one. If an executable is built from more than a

single source file, you need to list these files in the body of add_executable().

You also need to tell the build system about any link dependencies that you have. At a

minimum, this will be the set of dependencies that catkin has worked out for you,

based on the build dependencies in your package.xml file:
target_link_libraries(minimal

${catkin_LIBRARIES}
)

Again, you need to add lines like this for each of the executables you build. Once
you've got this information in place, then you're ready to build your node.

catkin_make

To build your node, invoke catkin_make from the root of your catkin workspace.

This will build your code, and make sure that everything that you depend upon is up

to date. To make things easier on you, you should structure your directories according
to ROS Enhancement Proposal (REP) 128. Basically, this means that there should

be a directory called src in your catkin workspace directory. Individual package
directories should live in this src directory. Within a package directory, there should

be a package.xml, a CMakeL.ists.txt, and another src directory (where your source code
actually lives):

catkin_ workspace/
src/
CMakeLists.txt
package 1/
CMakeLists.txt
package.xml

package n/
CMakeLists.txt
package.xml
build/

devel/

You invoke catkin make from catkin_workspace. This will build your minimal executable
and place it in catkin_workspace/devel/| ib/<package name>/minimal.
Now that we've seen how to build a C++ node, let's look at what goes into the node

itself, and how to translate from the Python examples in this book to C++.

Translating from Python to C++ (and Back Again)

To understand how to translate from the Python examples in this book to C++, you

only really need to know three things: how a node is put together, how the three communication
mechanisms are defined, and how to translate the data structures from

one language to another. We’ |l start by looking at how to write a minimal node in

C++.

A Simple Node

Example 23-1 shows the code for a minimal C++ node in ROS.
Example 23-1. minimal. cop

#include <ros/ros.h>

int main(int argc, char **argv) {
ros::init(argc, argv, "minimal'");
ros: :NodeHandle n;

ros::spin();

return 0O;

}
Include the basic ROS header information.

Initialize the node, and give it a name.
Create a node handle.

Give control over to ROS.

All ROS C++ nodes need to include the ros.h header file. Nodes are initialized by a
call to init(), giving the command-line arguments and a name for the node. Then,

we create a node handle that allows us to create topics, services, and actions. We
didn’ t have to explicitly create a node handle when using Python, since the language
was able to do it for us behind the scenes. This is one of the recurring themes when
using C++: things often need to be more explicitly specified.

We need to add both build and runtime dependencies on roscpp to the package.xml
file, and modify our CMakeL.ists.txt to contain the information shown in

Example 23-2.
Example 23-2 CMakel ists. txt

cmake minimum required(VERSION 2.8.3)
project (cpp)

find package (catkin REQUIRED roscpp)
add executable (minimal src/minimal.cpp)

target_link_libraries(minimal
${catkin_LIBRARIES}
)

In this example, our package is called cpp. Once all of this information is in place, we
can cd to our top-level catkin workspace and invoke catkin_make. This will compile
our code and make sure all of the dependencies are up to date. Once this is done, we
can find the resulting executable in devel/lib/cpp/minimal, and we can run it with ros
run as usual:

user@hostname$ rosrun cpp minimal

Topics

Example 23-3 shows how to set up a topic publisher in C++. The basic approach (set
up the node, define the publisher, publish in a loop) is the same as in Python, but the
details are a little different.

Example 23-3. topic_publisher.cpp
#include <ros/ros.h>

#include <std_msgs/Int32.h=> (1]

int main(int argc, char **argv) {
ros::init(argc, argv, "count_publisher");
ros: :NodeHandle node;

ros: :Publisher pub = node.advertise<std_msgs::Int32>("counter”, 10); @

ros::Rate rate(1); ©
int count = @3

while (ros::ok()) { @
std_msgs::Int32 msg; (5]
msg.data = count;

pub.publish(msg); @

++count;
rate.sleep(); (7]
1

return 0; 0

© Include the definition of the message we're going to use.

© Create the publisher.

Create a Rate instance to control the publishing rate.
Loop while the node is alive.
Create a message and populate its data field.

Publish the message.

© © 0 © ©o

Wait for a while.

Return success.

The two notable parts of this code are the creation of the topic publisher, and the loop
condition. To create a publisher, we use the syntax:

ros::Publisher pub = node.advertise<std_msgs::Int32>("counter", 10);

This is a function defined as part of the NodeHandle class, templated on the type of
message that’s being sent. The parameters are the topic name, and the buffer size. The
loop condition:

while (ros::ok()) {

will evaluate to true as long as the node is running and has not received a Ctrl-C to
shut it down.

The corresponding topic subscriber node is shown in Example 23-4, and is even
simpler.
Example 23-4. topic_subscriber.cpp

#include <ros/ros.h>
#include <std_msgs/Int32.h=

#include <iostream=

vold callback(const std_msgs::Int32::ConstPtr &msg) { 1]
std: :cout << msg->data << std::endl;

1

int main{int argc, char **argv) {
ros::init(argc, argv, "count_subscriber™);
ros: :NedeHandle node;

ros::Subscriber sub = node.subscribe("counter”, 18, callback); (2]

ros::spin();

}

@ Define the callback function.

© Create the subscriber.

As with the publisher, the subscriber is called on the node instance, but this time we
don't need a template argument since it can be calculated from the type of the call-
back parameter. The three arguments are the topic name, the buffer size, and the call-
back function.

The trickiest part is the callback function:
void callback(const std_msgs::Int32::ConstPtr &msqg) {

This function should have a return type of void, and a single argument that is a const
reference to a const pointer to the message type. In this instance, the message type is
std_msgs::Int32, and this has a type of ConstPtr defined within it. In general, the
argument for a callback dealing with messages of type T should have an argument of
type const T::ConstPtr & When building the message definition, catkin will make
sure that the type ConstPtr is defined for your message types. Note that ConstPtrisa
reference-counted smart pointer. You're not expected to call delete() on this when
youre done with the message.

Although we've used one particular signature for the callback here
(using ConstPtr), there are actually several that will work just as
well (they all resolve to the same underlying types). We suggest that
you use signatures like this in your code, but don't be surprised if
you see a different, but equivalent, signature in someone else’s code.

Note that, when accessing the data from the message, you should use the dereferenc-
ing operator ->:

std::cout << msg->data << std::endl;

As you can see, the basic structure and idioms of a C++ node are the same as those of
a Python node, even if the syntax is a little different. This is also true for services and
actions.

Services

Defining and using services is largely the same as defining and using topics.
Example 23-5 shows how to define the word counting service from Chapter 4 in C++.

Example 23-5. service_server.cpp

#include <rosfros.h>
#include <cpp/WordCount.h=

bool count(cpp::WordCount::Request &req, (1]
cpp: :WordCount: :Response &res) {
1 = strlen(req.words);
if (1 == 0)
count = 6;
else {
count = 1;
for(int 1 = 8; 1 < 1; ++1)
if (req.words[i] == " ")
++Count;

}

res.count = count;

return true;

int main(int argc, char **argv) {
ros::init(int argc, char **argv, "count_server");
ros: :NodeHandle node;

ros::ServiceServer service = node.advertiseService("count”, count); (2]

ros::spin(); ©

return 0O;

}

@ Define the callback function.
© Create the server.

© Give control over to ROS.

The main differences here are that the callback function takes two arguments: the
request, of type WordCount: :Request, and a response, of type WordCount: :Response.
Again, these are provided automatically when you build the service definition. The
return value is placed in the response argument, and the callback returns true or false,
indicating success or failure. Once again, we advertise it through the node handle.

Example 23-6 shows how to use the service.

Example 23-6. service_client.cpp

#include <rosfros.h=
#include =cpp/WordCount.h=

#include <iostream=

int main(int argc, char **argv) {
ros::init(argc, char **argv, "count_client");
ros: :NodeHandle node;

ros::ServiceClient client = node.serviceClient<cpp::WordCount>("count"); 1]

cpp: :WordCount srv; (2]
srv.request.words = "one two three four™;

if (client.call(srv)) ©
std::cerr << "success:
else
std::cerr =< "failure" =< std::endl;

<< srv.response.count << std::endl; (4]

return 0;
}
© Create the service client.
© Create a data structure for the request and response.
© Call the service, testing for success.

Access the response through the data structure.

Again, we make a call on the node handle, templated on the service data type, to set
up the client. We then create an instance of the service data type, and fill in the
request information. The actual service call is made using the client.call(srv) call,
which will return true if successful, and false otherwise. Note that it is the responsibil-
ity of the service server to return this value. Finally, we can access the results of the
call through the data structure’s response field.

Summary

In this final chapter, we've seen how to translate some of the Python code from the
rest of the book into C++. All of the idioms and design patterns that we've talked
about previously are the same, regardless of the language that you write your code in;
only the syntax and details change. Once you learn how to make these cosmetic
changes, you should be able to switch from Python to C++ and back again with ease.

Of course, we've only scratched the surface of the C++ API in this chapter. Dealing
with it completely would take a whole other book. However, if you're already familiar
with the language, then you should be able to take this chapter in one hand and the

ROS wiki documentation in the other, and start crafting your own ROS nodes in
C++. Or, you can choose a simpler life, and stick with Python. Your choice.

