Baxter Simulator Exercise

Type in your Seminar Username and password.

When the Unity Desktop comes up, press Ctrl + Alt + T and bring up a terminal window.

Reference: These exercises outline the information and commands for the Baxter Simulator presented in ROS Robotics By Example, Chapter 6 –Wobbling Robot Arms Using Joint Control. Pages 255 – 290 in this book will provide a description of the commands and additional information about Baxter's behavior.

Tip: Remember to use tab completion to see the fields of the message!

In order to perform these exercises, you should have completed the **Instructions for setting up Baxter Simulator in D158** and you should be able to bring up Baxter Simulator in Gazebo.

For these exercises, download any code needed from the following site: https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition/tree/master/Chapter6 code

Starting at page 255 (*Bringing Baxter Simulator to life*), proceed through reading and understanding the text and performing the commands with Baxter Simulator. To start Gazebo and the Baxter simulator, first open a terminal window and type the commands:

\$ cd ~/baxter ws

\$./baxter.sh sim

Be sure that the command prompt begins with **[baxter - http://localhost:11311]** then enter the roslaunch command:

\$ roslaunch baxter_gazebo baxter_world.launch

In a new terminal window, check the status of the robot then enable it with the commands:

\$ cd ~/baxter_ws

\$./baxter.sh sim

\$ rosrun baxter_tools enable_robot.py -s

\$ rosrun baxter_tools enable_robot.py -e

\$ rosrun baxter tools enable robot.py -s

(page 261) Display an image on Baxter's head display with the command:

\$ rosrun baxter_examples xdisplay_image.py --file=`rospack find baxter_examples`/share/images/baxterworking.png

Head wobbler will move Baxter's head up and down then side to side:

\$ rosrun baxter_examples head_wobbler.py Use Ctrl+C to kill the process. Move Baxter's arms to the "untuck" position with the command:

\$ rosrun baxter_tools tuck_arms.py -u

Move Baxter's arms in a joint velocity wobble with the command:

\$ rosrun baxter_examples joint_velocity_wobbler.py

Press Ctrl-C to stop...

(page 266) Use the keyboard to control Baxter's arms and grippers, enter this mode with the command:

\$ rosrun baxter_examples joint_position_keyboard.py Use Ctrl+C to kill the process.

(skip Controlling arms and grippers with a joystick)

(page 270) Using a Python script to "home arms" commanding Baxter's arms into a specific pose: \$ python home_arms.py

(skip Recording and replaying arm movements)

(page 273) Joints and joint state publisher

\$ python home_arms.py

\$ rostopic echo /robot/joint_states -n1

\$ rostopic type /robot/joint states

\$ rostopic echo /robot/limb/left/endpoint_state/pose -n1

(page 279) Using a Python script to "zero angles" commanding Baxter's arm joints to zero angles: \$ python arms_to_zero_angles.py

To command Baxter's joint angles from the command line, first move Baxter's arms to another pose: \$ python home_arms.py

Then publish the joint_command topic to move Baxter's left arm:

\$ rostopic pub /robot/limb/left/joint_command baxter_core_msgs/JointCommand "{mode: 1, command: [0.0, 0.0, 0.0, 0.0], names: ['left_w1', 'left_e1', 'left_s0', 'left_s1']}" -r 10

Use Ctrl+C to kill the process.

(page 283) View Baxter's tf tree using the following commands:

\$ rosrun tf view_frames

\$ evince frames.pdf

MoveIt!

(page 284) Restart Gazebo and the Baxtor simulator with the following commands:

- \$ cd baxter_ws
- \$./baxter.sh sim
- \$ roslaunch baxter_gazebo baxter_world.launch

In a 2nd terminal window, untuck Baxter's arms and start the Python script that starts the joint trajectory action server:

- \$ cd baxter ws
- \$./baxter.sh sim
- \$ rosrun baxter_tools tuck_arms.py -u
- \$ rosrun baxter interface joint trajectory action server.py

In a 3rd terminal, start Movelt! and wait for the response:

- \$ cd baxter ws
- \$./baxter.sh sim
- \$ roslaunch baxter_moveit_config baxter_grippers.launch

Follow instructions from the book starting at page 285 and ending on page 292.

Using a state machine to perform YMCA

(page 303) Using a Python script with a implementation of a ROS state machine, move Baxter's arms to different poses to form the letters – Y M C and A:

\$ python YMCAStateMach_for_Sim.py