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Born

21 March 1768
Auxerre, Burgundy, Kingdom of France (now in Yonne, France)

Died

16 May 1830 (aged 62)
Paris, Kingdom of France

Nationality

French

Alma mater

Ecole Normale Supérieure

Known for

(see list)

Fourier number

Fourier series

Fourier transform

Fourier's law of conduction
Fourier—Motzkin elimination
Greenhouse effect

Scientific career

Fields

Mathematician, physicist, historian

Institutions

Ecole Normale Supérieure
Ecole Polytechnique

Academic advisors

Joseph-Louis Lagrange

Notable students

Peter Gustav Lejeune Dirichlet
Claude-Louis Navier
Giovanni Plana
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TABLE 11.2 Table of Fourier techniques

Name

Characteristics

Typical use

Fourier series
Fourier transform

Discrete Fourier
transform (DF'T)

Fast Fourier

transform (FFT)

f(t) continuous
F(w;) discrete

f(t) continuous
F(iw) continuous

f(t;) discrete
F(w;) discrete

f(t;) discrete
F(w;) discrete

Analysis of periodic functions
and signals

Frequency analysis of signals
and systems

Computation of other transforms
Analysis of sampled signals

Algorithm to compute the DEFT
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https://www.eeworldonline.com/the-importance-of-fourier-transforms/



Approximation of Periodic Signals by
Sinusoids

 Any periodic signal can be approximated by a sum of many
sinusoids at harmonic frequencies of the signal (kf, ) with
appropriate amplitude and phase.

 The more harmonic components are added, the more accurate
the approximation becomes.

* Instead of using sinusoidal signals, mathematically, we can
use the complex exponential functions with both positive
and negative harmonic frequencies

If X(t) is periodic with period T, it is also periodic with
period nT, that is:
X(t) = x(t + nT).

EE3414: Signal Characterization



FIGURE 8.4 Square wave of Example 8.4

The first observation is that f(¢) is odd, which yields the result that agp =0
and a; = 0 for every coefficient of the cosine terms. Letting wy = 2xn/T, the

coefficients b,, are
9 T/2
b, =2 (—) / Asin(nwot) dt.
T, 0

The result is

4A — n[(2n — 1)wot
=53 " 2 3
7 ‘ (2n —1)
where (2n — 1) is introduced to assure that only odd terms are included in the

summation. The sine waves that make up the Fourier series for the odd square

wave are
4A sin(3wot
f() = 24 [Sm(wot) - Snent)

T



Complex Series Square Wave Example
Consider the odd square wave of Example 8.4 and the complex Fourier
coefficients

1 0 | | T/2 |
0, = — / (— A)e™ ™m0t gt 4 = [ (A)e= ™0t gt (8.29)
1" —T/2 1" 0
which leads to the series

24 oC 6?2(2-?1,—1)th
fty=—= ) TEDR (8.30)

n—=—0c

as defined in Equation 8.23.



Each coefficient has the form
2A Ly /2
= — = —¢€ ;

NIt nit

Qn

and the coefficients for even values, n = 0,%2,..., are zero. Notice that the
coeflicients decrease as the index n increases. The use of these coefficients to
compute the frequency spectrum of f(t) is considered later.

The trigonometric series is derived from the complex series by expanding
the complex series of Equation 8.30 as

2_14.6_?:3&,015 B %e—iwot + %e’int + %6’

13wt
4.
3T ) ™ 37



COMBINE THE EXPONENTIAL TERMS FOR EACH FREQUENCY

and recognizing the sum of negative and positive terms for each n as 2 sin(nwot).
The trigonometric series becomes

4A ([ . sin(3wot) 4A sin[(2n — 1)wot]
t) = — [ t -~:—§ .
f(t) T (qm(wo )+ 3 + ) 7 (2n —1) |

n=1

which is the result of Example 8.4.



The Fourier Transform .com

T} =G(f) = [ gt)e ™" ds
TG} =g) = [ G(re™df

As defined in Chapter 8, the continuous Fourier transform is

Flw) = (5 = [ swe = ar (10.8)

The frequency f in hertz is used as the parameter in this integral. The
function F'(iw), where w = 27 f is the frequency in radians per second,
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[1EXAMPLE 8.11  Fourier Pulse Example
The even rectangular pulse of height A and width 7 is defined as

P(t) = 2

Nl I NN

The Fourier transform is

o0 _ T/2 _
FIPt)] = / Pt e ™'dt=A / e "t dt
J—oo . —’r/2
—iwt |T/2 —iwT /2 _dwT /2
1w 77_/2 ww

This result expressed in terms of the sine function is (24 /w)sin(w7/2). Mul-
tiplying the numerator and denominator by 7/2 yields the Fourier transform
as _

sin(wT/2)

P(iw) = At o2

= A7 sinc(wt/2). (8.51)



MATLAB Pulse Example

Figure 8.10 shows the Fourier transform for two pulses as described in Ex-
ample 8.11. The positive frequencies of the transform are shown for different
pulse widths. The accompanying MATLAB script was used to plot the trans-
forms for the two pulses. Each pulse has amplitude A = 1. One pulse has a
pulse width of 16 seconds and the other 4 seconds.

One-sided spectrum of a pulse
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FIGURE 8.10 Fourier transform of two pulses with different pulse widths



RELATIONSHIP  Comparing the coeflicients of the Fourier series of Example 8.7 for a pe-

TO FOURIER riodic pulse train of rectangular pulses and the Fourier transform of Ex-
SERIES ample 8.11 for a single pulse shows that the series coeflicients are
1 [ - AT sin(nwot /2
= [ payemiet g = ATHOT/2)
T )_7/9 T  nwet/2

and the transform is

7/2 - sin -
FIf(1)] = Fiw) = /_ i f(t)e ™t dt = Ar> OE‘:/TZ/ ).

404 Chapter 8 m FOURIER ANALYSIS



By comparing the two results, it is clear that designating the trans-
form F(iw) = F[f(t)].
F(nwo) At sin(nwot/2)
T T nwt/2

Thus, we conclude that the Fourier series coefficients are obtained by
sampling the Fourier transform at the points nwo and dividing by the
period 7. However, the Fourier series itself is a continuous function of
time, but the Fourier transform is a function of w in the frequency domain.



(Effective)Bandwidth

1

o f.in(fr): lowest

0.9} (highest)
0l frequency where
' the FT magnitude

0.7+ Is above a
sl threshold

« Bandwidth:
0.5+

B:fmax'fmin

0.4+

The threshold is often
chosen with respect to
the peak magnitude,
expressed in dB

« dB=10 log10(ratio)

* 10 dB below peak =
1/10 of the peak value

+ 3 dB below=1/2 of the
peak

0.3+

0.2+

0.1+

EE3414: Signal Characterization



More on Bandwidth
WHY WE CARE!

« Bandwidth of a signal is a critical feature when dealing with the transmission
of this signal

« A communication channel usually operates only at certain frequency range

(called channel bandwidth)
— The signal will be severely attenuated if it contains frequencies outside the range of the
channel bandwidth
— To carry a signal in a channel, the signal needed to be modulated from its baseband to
the channel bandwidth
— Multiple narrowband signals may be multiplexed to use a single wideband channel

EE3414: Signal Characterization



How to Observe Frequency Content
from Waveforms?

« A constant -> only zero frequency component (DC compoent)
* A sinusoid -> Contain only a single frequency component

« Periodic signals -> Contain the fundamental frequency and
harmonics -> Line spectrum

» Slowly varying -> contain low frequency only
« Fast varying -> contain very high frequency
« Sharp transition -> contain from low to high frequency

* Music: contain both slowly varying and fast varying components,
wide bandwidth

* Highest frequency estimation?
— Find the shortest interval between peak and valleys



DISTRETE FOURIER
TRANSFORM

DFT PRESENTATION 1
Using Harman Chapter 11

I N-1
F,=F (_) _ Z f(nTS)e—fiQTrnk/N (115)



Definition of DFT and IDFT Assume that a function f(¢) is defined
at a set of N points, f(nTs) for n = 0,..., N — 1 values, as shown in
Figure 11.3. The DFT yields the frequency spectrum at /N points by the

formula
k —227rnk/N
Fp =F (NT ) E f nT (11.5)

for k =0,...,N —1. Thus, N Sample points of the signal in time lead
to N frequency components in the discrete spectrum spaced at intervals
fs =1/(NTy). The Inverse DFT (IDFT) is defined as

1 N—

k=0

}—‘

forn =0,...,N — 1. The IDFT is used to re-create the signal from its
spectrum.

19



LECTURE OBJECTIVES

* Discrete Fourier Transform

N-1
X[k] = ZX[H]G j@rINKkn - yra]= = Zx[k]ej(Zﬁ/N)kn

* DFT from DTFT by frequency samplmg

* DFT computation (FFT)

* DFT pairs and properties
* Periodicity in DFT (time & frequency)




DIFFERENCES TLH AND DSPF

N—1
k —12mnk /N
Fo=F ( m) =3 f(nT)e 2k (11.5)

n=0

Ts is the time between samples S =1/Ts samples/sec

Thus, Fk values are frequencies and f values are given at a specific time nTs

N -1
X [k] _ Z X[n]e—j(Zﬂ/N)kn
n=0

Here n and k are indices —
NO relation to physical time of frequency



The DFT can be used to approximate the continuous Fourier transform.
As defined in Chapter 8, the continuous Fourier transform is

W) = F() = [ swe 2 (11.8)

The frequency f in hertz is used as the parameter in this integral. The
function F'(iw), where w = 27 f is the frequency in radians per second,

-
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Using the sampled f(¢) with ¢ = nT, and replacing f by the dis-
crete frequencies fs = k/(NT,) leads to the approximation of the Fourier

transform as
K —z27rnk/N
F (NT ) T, E f nT (11.9)

n=0

for k =0,..., N — 1. The factor At =T replaced dt in the integral and
is used as a multiplier of the DFT defined by Equation 11.5 in order to
approximate the continuous Fourier transform. Problem 11.2 presents
another derivation of the DF'T approximation to the Fourier transform.

WATCH THE NOTATION: f_s here is the Resolution in frequency in Hertz.
The Sampling Rate is given by 1/T s
Note: f _max is at index N/2 so F[(N/2)/(NT_s)] = F[1/(2T_s)] as Expected!



DFT summary Table 11.4 summarizes the DFT or FF'T parameters
when a real signal is sampled every 7§ seconds for (N —1)7} seconds.

TABLE 11.4 DF'T' parameters

Parameter Notation
Time domain:
Sample interval Ts (s)
Sample size N point%
Length (N —1)T; (s)
Period (from IDFT) T = NT; (s)
Frequency domain:
1 1
Fr 'y Spacing =
requency Spacing fs = T = NT. )
Spectrum size N components
N
Maximum frequency e} fs = Fax (Hz)
: 1
Frequency period F,=Nfs= (Hz)

s




