DSP First 2/e

CENG 3315 Review3_FrequencySpecturm.pptx

Lecture 5A: Operations on the Spectrum

Section 3-3 Page 61

LECTURE OBJECTIVES

- <u>Operations</u> on a <u>time-domain</u> signal x(t) have a <u>SIMPLE form</u> in the <u>frequency-domain</u>
- SPECTRUM Representation has lines at: (A_k, φ_k, f_k)
- Represents Sinusoid with DIFFERENT Frequencies

$$x(t) = \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$
POSITIVE SPECTRUM

General Spectrum USING Aexp[j(wt+Φ)]

• 2M + 1 spectrum components:

$$x(t) = \sum_{k=-M}^{M} a_k e^{j2\pi f_k t}$$

• At $f = f_k$ the complex amplitude is a_k

• usually, for real x(t) $f_0 = 0$

FREQUENCY DIAGRAM

- Used to visualize relationship between frequencies, amplitudes and phases
- Plot Complex Amplitude vs. Freq

OPERATIONS on SPECTRUM

- Adding DC, or amplitude scaling
- Adding two (or more) signals
- Time-Shifting
 - Multiply in frequency by complex exponential
- Differentiation of x(t)
 - Multiply in frequency-domain by (jω)
- Frequency Shifting
 - Multiply in time-domain by sinusoid

Scaling or Adding a constant

Adding DC

$$x(t) + c = \sum_{k \neq 0} a_k e^{j2\pi f_k t} + \underbrace{a_0 e^{j2\pi(0)t} + c e^{j2\pi(0)t}}_{\text{new DCis} a_0 + c}$$

Scaling

$$\gamma x(t) = \gamma \sum_{k=-M}^{M} a_k e^{j2\pi f_k t} = \sum_{k=-M}^{M} (\gamma a_k) e^{j2\pi f_k t}$$

Time Shifting x(t)

Time Shifting

$$x(t - \tau_{d}) = \sum_{k=-M}^{M} a_{k} e^{j2\pi f_{k}(t - \tau_{d})} = \sum_{k=-M}^{M} \underbrace{(a_{k} e^{-j2\pi f_{k}\tau_{d}})}_{b_{k}} e^{j2\pi f_{k}t}$$
$$y(t) = \sum_{k=-M}^{M} b_{k} e^{j2\pi f_{k}t}$$

 Multiply Spectrum complex amplitudes by a complex exponential

Differentiating x(t)

Take <u>derivative</u> of the Signal x(t)

Frequency Shifting x(t)

Multiply x(t) by Complex Exponential

→ Frequency Shifting

Spectrum components shifted: $f_k \rightarrow f_k + f_c$

Frequency Shifting x(t)

Lecture 6

• BEAT Notes, Sum and Difference frequencies $\cos(2\pi(660)t)\sin(2\pi(12)t)$

SPECTRUM of AM (Amplitude Modulation)

• **SUM** of 4 complex exponentials:

Amplitude Modulation – Early Radio **EE 442 – Spring Semester Lecture 6**

http://www.technologyuk.net/telecommunications/telecom principles/amplitude modulation.shtml

Antenna

Modern Mechanix (December 1952)

Today it is reality!

http://blog.modernmechanix.com/dick-tracy-wrist-radio/

Consider, for example, a 100 kHz carrier that is modulated by a steady audio signal (or *tone*) of 5 kHz. When these signals are added, two sidebands are produced. One sideband has a frequency equal to the *sum* of the carrier and the modulating signal (100 kHz + 5 kHz = 105 kHz), while the other sideband has a frequency equal to the *difference* between the carrier and the modulating signal (100 kHz - 5 kHz = 95 kHz). The two sidebands are 5 kHz equidistant from the carrier (one above it and one below it), giving a total bandwidth for the modulated signal of 10 kHz (105 kHz - 95 kHz). The resulting frequency spectrum is illustrated below.

A 100 kHz carrier modulated by a 5kHz audio tone

AM Radio Signal

Lecture 6 Periodic Signals, Harmonics & Time-Varying Sinusoids

Section 3-4

LECTURE OBJECTIVES

Signals with <u>HARMONIC</u> Frequencies

• Add Sinusoids with $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

<u>Second Topic</u>: FREQUENCY can change vs. TIME Introduce Spectrogram Visualization (spectrogram.m) (plotspec.m)

Chirps:
$$x(t) = \cos(\alpha t^2)$$

SPECTRUM DIAGRAM

Recall Complex Amplitude vs. Freq

Harmonic Signal

Define FUNDAMENTAL FREQ

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

Largest f_0 such that $f_k = k f_0$ $(\omega_0 = 2\pi f_0)$

 f_0 = fundamenta l Frequency f_k / f_0 = integer, for all k T_0 = fundamenta l Period

Main point:

for periodic signals, all spectral lines have frequencies that are *integer* multiples of the fundamental frequency

Harmonic Spectrum (3 Freqs)

10 Hz

What is the fundamental frequency?

POP QUIZ: FUNDAMENTAL

Here's another spectrum:

What is the fundamental frequency?

(0.1)GCD(104,240) = (0.1)(8)=0.8 Hz

Time-Varying FREQUENCIES Diagram

Time is the horizontal axis

SIMPLE TEST SIGNAL

C-major SCALE: stepped frequencies

Frequency is constant for each note

Frequencies of C-Major Scale

20

SPECTROGRAM

SPECTROGRAM Tool

- MATLAB function is spectrogram.m
- SP-First has plotspec.m & spectgr.m
- ANALYSIS program
 - Takes x(t) as input
 - Produces spectrum values X_k
 - Breaks x(t) into SHORT TIME SEGMENTS
 - Then uses the FFT (Fast Fourier Transform)

https://www.mathworks.com/help/signal/ref/spectrogram.html

Generate a quadratic chirp, x, sampled at 1 kHz for 2 seconds. The frequency of the chirp is 100 Hz initially and crosses 200Hz at t = 1 s.t = 0:0.001:2; x = chirp(t,100,1,200, 'quadratic');Compute and display the spectrogram of x.

