REVIEW 5 SAMPLING

MODIFIED TLH

DSP First, 2/e

Sampling & Aliasing

CHAPTER 4 PRESENTATION 2

System IMPLEMENTATION

• ANALOG/ELECTRONIC:

Circuits: resistors, capacitors, op-amps

• DIGITAL/MICROPROCESSOR

• Convert x(t) to numbers stored in memory

SAMPLING THEOREM THE BIG DEAL!!

• HOW OFTEN DO WE NEED TO SAMPLE?

- DEPENDS on FREQUENCY of SINUSOID
- ANSWERED by SHANNON/NYQUIST Theorem
- ALSO DEPENDS on "<u>RECONSTRUCTION</u>"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

SAMPLING x(t)

• SAMPLING PROCESS

- Convert x(t) to numbers x[n]
- "n" is an integer index; x[n] is a sequence of values
- Think of "n" as the storage address in memory

• UNIFORM SAMPLING at $t = nT_s$

• IDEAL: $x[n] = x(nT_s)$

SAMPLING RATE, f_s

- SAMPLING RATE (f_s)
 - $f_s = 1/T_s$
 - NUMBER of SAMPLES PER SECOND
 SOMETIMES GIVEN IN Hz
 - $T_s = 125$ microsec **7** $f_s = 8000$ samples/sec
 - UNITS of f_s ARE HERTZ: 8000 Hz

- - Thus Fmax = 4000 Hz
- UNIFORM SAMPLING at $t = nT_s = n/f_s$
 - IDEAL: $x[n] = x(nT_s)=x(n/f_s)$

$$\xrightarrow{x(t)} C-to-D \xrightarrow{x[n]=x(nT_s)}$$

STORING DIGITAL SOUND

- x[n] is a SAMPLED SISIGNAL
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples

THUS – Frequency range of 22,050 Hz is beyond (most) humans hearing range.

- Stereo uses 2 channels
- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

DIGITAL FREQUENCY $\hat{\omega}$

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

- $\hat{\omega}$ VARIES from 0 to 2π , as f varies from 0 to the sampling frequency
- UNITS are radians, not rad/sec
 DIGITAL FREQUENCY is <u>NORMALIZED</u>

DISCRETE-TIME SINUSOID

Change x(t) into x[n] <u>DERIVATION</u> $x(t) = A\cos(\omega t + \varphi)$ $x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$ $x[n] = A\cos((\omega T_s)n + \varphi)$ $x[n] = A\cos(\hat{\omega}n + \varphi)$ $\hat{\omega} = \omega T_s = \frac{\omega}{f}$ **DEFINE DIGITAL FREQUENCY**

- SAMPLING can cause ALIASING
 - Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

ALIASING CONCLUSIONS

- Adding an INTEGER multiple of f_s or -f_s to the frequency of a continuous sinusoid x_c(t) gives exactly the same values for the sampled signal x[n] = x_c(n/f_s)
- GIVEN x[n], we CAN'T KNOW whether it came from a sinusoid at f_o or (f_o + f_s) or (f_o + 2f_s) ...
- This is called ALIASING

Video Aliasing Why car wheels rotate backwards in movies 4:25 https://www.youtube.com/watch?v=SFbINinFsxk&feature=yout

<u>u.be</u>