REVIEW 6 FIR FILTERS & LTI SYSTEMS

Modified TLH Lecture Chapter 5 FIR Filtering Intro

LECTURE OBJECTIVES

INTRODUCE FILTERING IDEA

- Weighted Average
- Running Average
- FINITE IMPULSE RESPONSE FILTERS

EIR Filters

Show how to <u>compute</u> the output y[n] from the input signal, x[n]

The Running (Moving) Average Filter

• A three-sample *causal* moving average filter is a special case of (5.1)

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2]), \qquad (5.4)$$

which uses no future input values to compute the present output

From ECE 2601 Chapter 5 Causal is From The Past

DISCRETE-TIME SIGNAL

x[n] is a LIST of NUMBERS
INDEXED by "n"

3-pt AVERAGER

Uses "PAST" VALUES of x[n]
IMPORTANT IF "n" represents REAL TIME
WHEN x[n] & y[n] ARE STREAMS

 $y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$

n	n < -2	-2	-1	0	1	2	3	4	5	6	7	<i>n</i> > 7
<i>x</i> [<i>n</i>]	0	0	0	2	4	6	4	2	0	0	0	0
y[<i>n</i>]	0	0	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	4	2	$\frac{2}{3}$	0	0

CAUSAL 3-pt AVERAGER

A u g2016

Finite Impulse Response

•Each output value y[n] is the some of a FINITE number of weighted values of the input sequence x[n]

- The FIR filter can be represented in various ways:
- By a difference Equation Page 150
- By the Impulse Response Page 158
- By the Convolution Sum Page 162

GENERAL CAUSAL FIR FILTER

• FILTER COEFFICIENTS {b_k} • DEFINE THE FILTER **NOTE: Index** k = 0, 1, 2, ... $y[n] = \sum_{k=0}^{M} b_k x[n-k]$

• For example, $b_k = \{3, -1, 2, 1\}$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

GENERAL CAUSAL FIR FILTER

FILTER COEFFICIENTS {b_k}

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- FILTER <u>ORDER</u> is M
- FILTER <u>"LENGTH</u>" is L = M+1
 - NUMBER of FILTER COEFFS is L

SPECIAL INPUT SIGNALS

UNIT IMPULSE SIGNAL $\delta[n]$

Figure 5.7 Shifted impulse sequence, $\delta[n-3]$.

Sequence Representation

UNIT IMPULSE RESPONSE

 FIR filter description usually given in terms of coefficients b_k

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- Can we describe the filter using a <u>SIGNAL</u> instead?
- What happens if input is a unit impulse?

Example: 4-pt AVERAGER

CAUSAL SYSTEM: USE PAST VALUES

 $y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$

• INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$

$$x[n] = \delta[n]$$

$$y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$$

OUTPUT is called "IMPULSE RESPONSE"
 Denoted h[n]=y[n] when x[n]=δ[n]

3 Ways to Represent the FIR filter

MODIFIED TLH

DSP First, 2/e

Lecture 12

Convolution

Linearity & Time-Invariance

OVERVIEW

LTI: Convolution Sum

Output = Convolution of x[n] & h[n]

• NOTATION: • FIR case: y[n] = h[n] * x[n]

GENERAL FIR FILTER

- FILTER COEFFICIENTS {b_k}
 - DEFINE THE FILTER

Sequence Representation

• We can check the answers using MATLAB's filter function

SYSTEM PROPERTIES

- MATHEMATICAL DESCRIPTION
- TIME-INVARIANCE
- LINEARITY
- CAUSALITY
 - "No output prior to input"

TIME-INVARIANCE

- IDEA:
 - "Time-Shifting the input will cause the same time-shift in the output"
- EQUIVALENTLY,
 - We can prove that
 - The time origin (n=0) is picked arbitrary

LINEAR SYSTEM

- LINEARITY = Two Properties
- SCALING
 - "Doubling x[n] will double y[n]"
- SUPERPOSITION:
 - "Adding two inputs gives an output that is the sum of the individual outputs"

LTI SYSTEMS y[n] = h[n] * x[n]

- LTI: Linear & Time-Invariant
- COMPLETELY CHARACTERIZED by:
 - **IMPULSE RESPONSE** h[n]
 - <u>CONVOLUTION</u>:
 - The "rule" defining the system can ALWAYS be re-written as convolution
- FIR Example: h[n] is same as b_k

```
8 DorranInChurch 2021 TLHdemo.m
                                          PRACTICAL EXAMPLE OF
                                          CONVOLUTION TO CHANGE
clc, clear all, clf
                                          YOUR ENVIRONMENT
church = audioread('church.wav') IMPULSE RESPONSE OF CHURCH
audioinfo('church.wav')
% NumChannels:1 SampleRate:16000;TotalSamples:8206
8 Duration: 0.5129 sec
Fschurch= 16000; % Samples/sec
% Plot
figure(1), plot(church), title('Impulse Response of
Church'
sound(church, 16000)
%
churchlen= length(church); % churchlen = 8206 points
ts=1/Fschurch % ts = 6.2500e-05 sec
t duration = length(church)/Fschurch % t duration
=0.5129
```



```
disp('Start speaking for 10 seconds.')
record voice = audiorecorder(16000, 16, 1);
%disp('Start speaking for 10 seconds.')
                                              SPEAK UP
recordblocking(record voice,10);
disp('End of Recording.');
pause(2)
p = play(record voice); % listen to complete recording
pause(10)
mySpeech = getaudiodata(record voice, 'int16'); % get data
as int16 array
%
disp('Speaking in Church')
pause(2)
output=conv(mySpeech,church);
soundsc(output, 16000);
```