
REVIEW 6  FIR FILTERS 

& LTI SYSTEMS

Lecture Chapter 5 

FIR Filtering Intro

Modified TLH



LECTURE OBJECTIVES

▪ INTRODUCE FILTERING IDEA

▪ Weighted Average

▪ Running Average

▪ FINITE IMPULSE RESPONSE FILTERS

▪FIR Filters

▪ Show how to compute the output y[n] from 

the input signal, x[n]

2



From ECE 2601 Chapter 5 

Causal is From The Past

3
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DISCRETE-TIME SIGNAL

▪ x[n] is a LIST of NUMBERS

▪ INDEXED by “n”

STEM PLOT



3-pt AVERAGER

▪ Uses “PAST” VALUES of x[n]

▪ IMPORTANT IF “n” represents REAL TIME

▪ WHEN x[n] & y[n] ARE STREAMS

3
y[n] = 1 (x[n]+ x[n −1]+ x[n − 2])
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CAUSAL 3-pt AVERAGER

3
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y[n] = 1 (x[n]+ x[n −1]+ x[n − 2])



Finite Impulse Response

•Each output value y[n] is the some of a FINITE number 

of weighted values of the input sequence x[n]

• The FIR filter can be represented in various ways:

• By a difference Equation Page 150

• By the Impulse Response Page 158

• By the Convolution Sum Page 162



GENERAL CAUSAL FIR FILTER

▪ FILTER COEFFICIENTS {bk}

▪ For example,

M

y[n] =bk x[n − k ]
k=0

3

= 3x[n]− x[n −1]+ 2x[n − 2]+ x[n − 3]
k=0

y[n] =bk x[n − k]

bk = {3,−1,2,1}

▪ DEFINE THE FILTER

NOTE: Index k = 0, 1,2,…

DIFFERENCE EQUATION



GENERAL CAUSAL FIR FILTER

▪ FILTER COEFFICIENTS {bk}

▪ FILTER ORDER is M

▪ FILTER “LENGTH” is L = M+1

▪ NUMBER of FILTER COEFFS is L

M

y[n] =bk x[n − k]
k=0



Aug 2016 © 2003-2016, JH McClellan & RW Schafer 22

0

1 n = 0

n  0
 [n] = 

SPECIAL INPUT SIGNALS

▪ x[n] = SINUSOID

▪ x[n] has only one NON-ZERO VALUE

1

n

UNIT-IMPULSE

FREQUENCY RESPONSE (LATER)

Test Signal
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UNIT IMPULSE SIGNAL [n]

[n] is NON-ZERO

When its argument

is equal to ZERO

 [n − 3]
n = 3



Sequence Representation

x[n=0]= x[0]=2

x[n = 2] = x[2] = 6

x[n=1]= x[1]=4

x[n = 3] = x[3] = 4

Example:

x[n] =+ 0 [n +1]+ 2 [n]+ 4 [n −1]

+ 6 [n − 2]+ 4 [n − 3]+
GIVES US A MATH FORM



UNIT IMPULSE RESPONSE

▪ FIR filter description usually given in terms 

of coefficients bk

▪ Can we describe the filter using a SIGNAL

instead?

▪ What happens if input is a unit impulse?

M

y[n] =bk x[n − k]
k=0



Example: 4-pt AVERAGER

▪ CAUSAL SYSTEM: USE PAST VALUES

4
y[n] = 1 (x[n]+ x[n −1]+ x[n − 2]+ x[n − 3])

▪ INPUT = UNIT IMPULSE SIGNAL = [n]

x[n] =  [n]
y[n] = 1  [n]+ 1  [n −1]+ 1  [n − 2]+ 1  [n − 3]

4 4 4 4

▪ OUTPUT is called “IMPULSE RESPONSE”

▪ Denoted h[n]=y[n] when x[n]=[n]



3 Ways to Represent the 

FIR filter

▪ Use SHIFTED IMPULSES to write h[n]

1

n

–1

h[n] =[n]−[n −1]+ 2[n − 2]−[n − 3]+[n − 4]

2

0 4

h[n]

bk = {1, −1, 2, −1,1}

1

2: Plot the values

3: List the values

True for any signal, x[n]



DSP First, 2/e
Lecture 12

Convolution

Linearity & Time-Invariance

MODIFIED  TLH
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• IMPULSE RESPONSE,  

• FIR case:  same as

• CONVOLUTION

• GENERAL:

• GENERAL CLASS of SYSTEMS

• LINEAR     and     TIME-INVARIANT

• ALL LTI systems have h[n] & use convolution

OVERVIEW

][][][ nxnhny =

][nh

}{ kb

❤



▪ Output = Convolution of x[n] & h[n]
▪ NOTATION:

▪ FIR case:
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
=

−=
M

k

knxkhny
0

][][][

LTI: Convolution Sum

FINITE LIMITS

FINITE LIMITSSame as bk

][][][ nxnhny =
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GENERAL FIR FILTER

• FILTER COEFFICIENTS {bk}
• DEFINE THE FILTER

• For example, 


=

−=
M

k

k knxbny
0

][][

]3[]2[2]1[][3

][][
3

0

−+−+−−=

−=
=

nxnxnxnx

knxbny
k

k

}1,2,1,3{ −=kb



Sequence Representation

x[n=0]= x[0]=2

x[n = 2] = x[2] = 6

x[n=1]= x[1]=4

x[n = 3] = x[3] = 4

Example:

x[n] =+ 0 [n +1]+ 2 [n]+ 4 [n −1]

+ 6 [n − 2]+ 4 [n − 3]+
GIVES US A MATH FORM
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SYSTEM PROPERTIES

▪ MATHEMATICAL DESCRIPTION

▪ TIME-INVARIANCE

▪ LINEARITY

▪ CAUSALITY
▪ “No output prior to input” 

SYSTEM

y[n]x[n]
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TIME-INVARIANCE

• IDEA:
• “Time-Shifting the input will cause the same time-shift in the output”

• EQUIVALENTLY,
• We can prove that

• The time origin (n=0) is picked arbitrary
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LINEAR SYSTEM

• LINEARITY = Two Properties

• SCALING
• “Doubling x[n] will double y[n]”

• SUPERPOSITION:
• “Adding two inputs gives an output that is the sum of the individual outputs”
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LTI SYSTEMS

• LTI:  Linear & Time-Invariant

• COMPLETELY CHARACTERIZED by:

• IMPULSE RESPONSE h[n]

• CONVOLUTION:  
• The “rule” defining the system can ALWAYS be

re-written as convolution

• FIR Example: h[n] is same as bk

][][][ nxnhny =



%  DorranInChurch_2021_TLHdemo.m

clc, clear all, clf

church = audioread('church.wav')

audioinfo('church.wav')

% NumChannels:1 SampleRate:16000;TotalSamples:8206

%    Duration: 0.5129  sec

Fschurch= 16000;   % Samples/sec

%  Plot

figure(1), plot(church), title('Impulse Response of 

Church')

sound(church, 16000)

%

churchlen= length(church); % churchlen = 8206 points

ts=1/Fschurch % ts = 6.2500e-05 sec

t_duration = length(church)/Fschurch % t_duration

=0.5129

PRACTICAL EXAMPLE OF
CONVOLUTION TO CHANGE 
YOUR  ENVIRONMENT

IMPULSE RESPONSE OF CHURCH





disp('Start speaking for 10 seconds.')

record_voice = audiorecorder(16000, 16, 1);

%disp('Start speaking for 10 seconds.')

recordblocking(record_voice,10);

disp('End of Recording.');

pause(2)

p = play(record_voice);   % listen to complete recording

pause(10)

mySpeech = getaudiodata(record_voice, 'int16'); % get data 

as int16 array

%

disp('Speaking in Church')

pause(2)

output=conv(mySpeech,church);

soundsc(output, 16000);

SPEAK UP




