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Overview: In chapter 6 the frequency response function for FIR filters is introduced.

When a pure sinusoid passes through a linear time-invariant filter, the output is a
sinusoid at the same frequency, but its magnitude and phase might be changed.

In this chapter, we derive the frequency response formulas for several common FIR
filters. Plots of the magnitude and phase versus frequency summarize how the filter
treats sinusoidal inputs over the entire range of possible input frequencies.

Finally, the concept of filtering is introduced. Since all signals can be decomposed into
sinusoidal components, the frequency response function characterizes frequency regions
called stop bands and pass bands, where the FIR filter will reject signal components or pass
them nearly undistorted.

SINUSOIDAL FIDELITY -
ONE TEST TO SEE IF SYSTEM IS LTI.



* SINUSOIDAL INPUT SIGNAL
* DETERMINE the FIR FILTER OUTPUT

* FREQUENCY RESPONSE of FIR
* PLOTTING vs. Frequency MAG
* MAGNITUDE vs. Freq
* PHASE vs. Freqg
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H(e/®) = |H(e®)|es«H (™




DIGITAL “FILTERING”

x(t) x[n] yl[n] y(t)
——p| A-to-D D-10-A b

* CONCENTRATE on the SPECTRUM

* SINUSOIDAL INPUT

* INPUT x[n] = SUM of SINUSOIDS
* Then, OUTPUT y[n] = SUM of SAME SINUSOIDS IF LTI.
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SINUSOIDAL RESPONSE TO LTI SYSTEMS

* INPUT: x[n]=SINUSOID

* OUTPUT: y[n] will also be a SINUSOID
* Different Amplitude and Phase

*SAME Frequency

« AMPLITUDE & PHASE CHANGE
* Called the FREQUENCY RESPONSE
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COMPLEX EXPONENTIAL

x[n]= Ael?el®"  _p<n<oo




COMPLEX EXP OUTPUT

e Use the FIR “Difference Equation” Input sinusoid

M M
y[n]= > bex[n—k] = b Aeiveio()
k=0 k=0
(M
2 bel?t k)WP\e””eJ“’”

\ k=0

_ H I
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EXAMPLE 6.1 REMEMBER -Pl< &%

P
bd=11,2.1}

H(el?) =1+ 2e71® 4 g~12% >-
=e 19(el? 1 2 4 gi®)

=e 1?2 +2cos®)
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PLOT of FREQ RESPONSE

L H(e/®)
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EXAMPLE 6.2

Find y[n]when H (e'?) is known
and x[n] = 20174 1(7/3)n

xln] yln]

I | | I [
>

| I I | [
>
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EXAMPLE 6.2 (answer)

Find y[n]when x[n] = 2e17/4e{z/3M

H(el®) = (2 +2cos@)e 19
H(e!?)=3e"1"" @&=rl/3




Moving Average Filtering

The moving average filter occurs frequency enough that we
should consider finding a general expression for the fre-
quency response

The difference equation for an L-point averager is

1L—1

vinl =53 xin—A] ]

PR 6.32

The frequency response 1s

® | k=
H(?) = EZ i)
= 6.25/L



e [t can be shown thglt

L-1 1 — ot
Zak = l_a,ail
k=0 L, o = 1 (why?)
o /oppinmeediEEedby sctting o = e
g 1[1-e78)
H(") = Z( — |
[ )

—jioL/2, joL/2 —joL/2
e 7 (T =Y )

L™ o2, jor2 i
ej®/2(e/0)/2_ej(n/2)

_ (sin(c'()L/z)) STO(L=1)/2
Lsin(®w/2)
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* Notice that the phase response 1s composed of a linear term

e7OL=1/2 and +1 due to the sign changes of sin(wL/2)/

[L Sin(a)/2)] Peter Gustav Lejeune Dirichlet
e In MATLAB
DL(eja)) = diric(m,L) = Sln(co%/z)
Lsin(®w/2)

can be used for analyzing moving average filters
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Amphitde

Embedded DSP: Moving Average Filters

The frequency response is mathematically described by the Fourier Transform of the
rectangular pulse.

H[f]=sin(Pi f M) / M sin(Pi f)

The roll-off is very slow, the stopband attenuation is very weak !
The moving average filter is a good smoothing filter but a bad low-pass-filter !

= | -
!/ Processing
time ++

i)

Amplitude «d

Frequency

Froquency
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Example: Lowpass Averager

>>
>
e

Consider a 5-point moving average filter wrapped up
between a C-to-D and D-to-C system

We assume a sampling rate of 1000 Hz and an input com-
posed of two sinusoids

x(¢) = cos[2m(100)¢] + 3cos[27(300)¢]

Find the system frequency response in terms of the analog
frequency variable f, and find the steady-state output y(¢)

We will use freqgz () to obtain the frequency response
W = —plspl/l00zpi}

H = fregz(ones(1,5)/5,1,w);

gnsn et (20,1 )
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help freqz

freqz Frequency response of digital filter
[HW] = freqz(B,A,N) returns the N-point complex frequency response
vector H and the N-point frequency vector W in radians/sample of

the filter:
JwW -Jjw - Jjmw
jw B(e) b(l) + b(2)e + .... + b(m+l)e
R & s B e e ettt s
JwW -Jw -jnw
A(e) a(l) + a(2)e + .... + a(ntl)e
given numerator and denominator coefficients in vectors B and A.

FOR FIR FILTER THE DENOMINATORIS 1
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SOLVE THE PROBLEM BEFORE MATLAB — IF POSSIBLE!
AT LEAST KNOW THE RANGES INVOLVED

\ ~ 2 TR -
F; = 66D 2 Soe fFmax= =00 U3

XI|¥)< tos féz‘rf (10 t—)j + Z2eps (2T 3

—

8 i | Y = 2T L2 < p.2
& = als= '-—““?; w{ou 3 l o0t
A Soo
e P 4 ol
KOMJ& pf LI *“%ff—oﬁ 2T & W Y
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Emmmu; SPT Weving AVERASE Flp

Ginl= Z be XLn-k) = E b Xl + XSu-3+ ¥Sn-3]

K=o
+ X {n-3T7 + ><Sn~‘lﬂ-

E+RCLT MAGN ITURE 6F EFREQ ARLSPIASE

el = ool |1
S1n (/) rq215

MHERER E=I6 S0

WMN:VMé@\

Sin L*b/53

3evos of He whene /R %
EYXPECT 5§ €TV EMA fromn =T toTT



>> plot (w, abs (H) )

> azxisilCi—pdi Ppdi © 11 2 grid

>> yvlabel ("Magnitude Response ')

== SiibBlot (2123 Range —pi to pi

>> plot (w, angle (H) )

> axis ([—pdi pi —pdi il) ;: gzxrid 500 HZ
>> ylabaed (' Phase Response (ErEad) ')

>> xlabel ("hat (Nomega) ")

Magnitude and Phase Plots of H(eico)

Magnitude Response

>=>
>3 PIlot (WHrLOQO0/ (2FB 1) abs (E) )

> grid

>> yvlabel ("Magnitude Response ')
=2 subplot (212)

> plot (WwH*1LO0O00/ (2% pi) ,angle CH) )
> grid

>> yvlabel ("Phase Response (=a2add) Y )

>> xlabel ('X (Hiz=) Y )
20
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e The output y(7) will be of the same form as the input x(7),
except the sinusoids at 100 and 300 Hz need to have the filter
frequency response applied

— Note 100 Hz and 300 Hz < 1000/2 = 500 Hz (no aliasing)

* To properly apply the filter frequency response we need to
convert the analog frequencies to the corresponding discrete-
time frequencies

100

IOOHZ—)ZTC'TE)'(-)B = 2+ 0.1 = 02K
(6.40)
300Hz—>2n~—3—QO— = 2x-0.3 = 0.6%
1000 T

ECE 2610 Signals and Systems 6-30
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Filtering Sampled Continuous-Time Signals

ol
Magnitude and Phase Plots of H. (e] " js)
)]
S
&
@ EACH POINT IS A
%’ TRANSFER VALUE
§ SHOWING THE CHANGE
IN MAGNATUDE AND
PHASE AT EACH
- | FREQUENCY.
© 5 5
Py 5 5
. o
3 : :
i : )
() : .
z - .
i -4 i i i ] i i i ] j
-500 -400 -300 -200 -100 0 100 200 300 400 500

With pi = 500 Hz, expect zeros at 2*pi/5 = 200 Hz and 4*pi/5 = 400 Hz.



e The frequency response for L = 5 in the general moving
average filter is

sin(2.5m) —/2&)
551n(0)/2)

jo

H(®) = (6.41)

» The frequency response at these two frequencies is
= sin(2.5(0.2m)) —/2(0 27)

5sin((O. 27t)/2)
sin(2.5(0.6m)) —/2(0 61)
5sin((0. 67c)/2)

jO2m —j0.4n

H(e = 0.6472¢

(6.42)

j0.67 —j1.2xn

H(e

) = = —0.2472e

0.247267 02"

> dirliedl.2%pi, 5)

ans = 0.64772

> dirie(l.s%piz 5)

ans = -0.2472 % also = 0.2472 at angle +/- pi
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e The filter output y[n] 1s
y[n] = 0.6472cos[0.2ntn —0.47]
+0.7416c0s[0.2ntn — 1.27 + 1]
and the D-to-C output is

¥(t) = 0.6472cos[2m(100) - 0.47]
+0.7416cos[27(300)7 — 0.27]

DSPF Chapter 6

(6.43)

(6.44)

Back to Analog

24
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% for N = 5; 5-point moving average. See DSPF Page

clc, clear all, clf

w=-pi:pi/100:pi;

Ww_zeros= [2*pi/5,4*pi/5] $ 1.2566 2.5133
figure (1)

plot(w, (1/5) *diric(w,5));

title('Diric, N = 5') ,grid; axis tight;



02 | | | | | |
0.15 5 Extrema fs/2 Hz i
01r i
zeros at k*2*pi/5
0.05 -
X 1.257
Y 3.856e-17
0r o ‘ -

hat




SOLUTION to EXERCISE 5.3: DS
z(n| = (1.02)" + %('os(‘.Zmz/S +7w/4) for 0 < n < 40
Ir

»

(a)

il

50

2+

| +

KILL THE COSINE — (Need a zero in H at 2*pi/8 =0.7854)
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Magnitude Response, M
N

=8

Phase Response, M

o
oo

o
o

o

N

8-point Moving

Average Exercise 5.3

h_eros= 0.7854,1.5708,2.3562"

hat(w)

- K*2pi/8 -
B X 1.577 )
/\ Y 0.004429
| | L | 1 - . )
-3 -2 -1 0 1 2 J
-3 -2 -1 0 1 2 3




Exercise 5 3 8-point moving average

[o)

% Null out the cosine in a signal w_hat= k*2*pi/8
clc, clear all, clf

M=8

$windowSize = 8;

b=(1/M) *ones (1,M) ; $ b i=20.125 = (1/8)
a=1;

3
3

Create function
n=[0:1:40]; % 41 Points in n
= (1.02).“n + 0.5*cos(2*pi*n/8 + pi/4);

w_hat = 2*pi/8 So use 8-point average with

zeros at k*2*pi/8 k= 1,2,3

y = filter(b,a,x);
figure (1)
subplot(2,2,1) ,stem(n,x) ,grid, title('Unfiltered signal')
subplot(2,2,2) ,stem(n,y) ,grid, title('Filtered signal, M=8')

o

subplot(2,2,3) ,plot(n,x) ,grid, title('Unfiltered signal')
subplot(2,2,4) ,plot(n,y) ,grid, title('Filtered signal, M=8')

o

o° oP



Unfiltered signal

DSPF Exercise 5.3

q%)

10 20 30

Unfiltered signal

40

FiI'tered si'gnal, M?B

2.5
2t D
1.5
1 L
051
d
0
0 10 20 30 40

Filtered signal, M?8




Convolution AND Frequency Domalin

Convolving two waveforms in the time domain means that you are

multiplying their spectra (i.e. frequency content) in the frequency
domain. By "multiplying" the spectra we mean that any frequency that
IS strong In both signals will be very strong in the convolved signal,
and conversely any frequency that is weak In either input signal will be
weak In the output signal.



THIS IS ONE OF THE MAIN REASONS TO WORK IN THE FREQUENCY DOMAIN

(g — f sl h CONVOLVE

g=fh

Frequency Domain
MULTIPLY (.; . FH
(} — F :{:H

I

I






