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Overview: In chapter 6 the frequency response function for FIR filters is introduced.

When a pure sinusoid passes through a linear time-invariant filter, the output is a
sinusoid at the same frequency, but its magnitude and phase might be changed.

In this chapter, we derive the frequency response formulas for several common FIR
filters. Plots of the magnitude and phase versus frequency summarize how the filter
treats sinusoidal inputs over the entire range of possible input frequencies.

Finally, the concept of filtering is introduced. Since all signals can be decomposed into 
sinusoidal components, the frequency response function characterizes frequency regions 
called stop bands and pass bands, where the FIR filter will reject signal components or pass 
them nearly undistorted.

SINUSOIDAL FIDELITY –
ONE TEST TO SEE IF SYSTEM IS LTI.





DIGITAL “FILTERING”

• CONCENTRATE on the

• SINUSOIDAL INPUT
• INPUT x[n] = SUM of SINUSOIDS

• Then, OUTPUT y[n] = SUM of SAME SINUSOIDS IF LTI.

FILTER D-to-AA-to-D

x(t) y(t)y[n]x[n]

̂̂
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SINUSOIDAL RESPONSE TO LTI SYSTEMS

• INPUT: x[n] = SINUSOID

• OUTPUT: y[n] will also be a SINUSOID
• Different Amplitude and Phase

•SAME Frequency

• AMPLITUDE & PHASE CHANGE
• Called the
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COMPLEX EXPONENTIAL

M M

y[n] =bk x[n − k] =h[k]x[n − k]
k=0 k=0

FIR DIFFERENCE EQUATION

x[n] = Ae je j̂n −  n  
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x[n] is the input signal—a complex exponential
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COMPLEX EXP OUTPUT

• Use the FIR “Difference Equation” Input sinusoid

M M

y[n] =bk x[n − k] =bk Ae je j̂ (n−k )

k=0 k=0

= H (̂)Ae je j̂ n

j j̂nAe e
 M

= bke
 k=0 

j̂ (−k ) 

H IS THE TRANSFER FUNCTION



EXAMPLE 6.1

EXPLOIT 
SYMMETRY

{bk}= {1, 2, 1}

= e− j̂ (2 + 2cos̂)

+ e− j2̂

+ 2 + e− j̂ )

H (e j̂ ) =1+ 2e− j̂

= e− j̂ (e j̂

Since (2 + 2cos̂)  0

Magnitude is H (e j̂ ) = (2 + 2cos̂)

and Phase is H (e j̂ ) = −̂
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REMEMBER - PI < 𝜔ෝ  <
PI
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PLOT of FREQ RESPONSE

̂ (radians)−

H (e j̂ ) = (2 + 2cos̂)e− j̂

RESPONSE at /3

{bk} = {1,2,1}



EXAMPLE 6.2

y[n]x[n]

H (e j̂ )
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H (e j̂ ) = (2 + 2cos̂)e− j̂

Find y[n] when H (e j̂ ) is known  

and x[n] = 2e j / 4e j( /3)n



Find y[n] when x[n] = 2e j / 4e j( / 3)n

EXAMPLE 6.2 (answer)

Evaluate H(e j̂ ) at ̂ =  /3

H (e j̂ ) = (2 + 2cos̂)e− j̂

@̂ =  / 3H (e j̂ ) = 3e− j / 3

y[n] = (3e− j / 3) 2e j / 4e j( / 3)n = 6e− j /12e j( / 3)n
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6.25/L

6.32
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6.24

6.25



February 1805 – 5 May 1859

Peter Gustav Lejeune Dirichlet
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help freqz
freqz Frequency response of digital filter

[H,W] = freqz(B,A,N) returns the N-point complex frequency response 
vector H and the N-point frequency vector W in radians/sample of 
the filter:

FOR FIR FILTER THE DENOMINATOR IS 1
17



1
0

SOLVE THE PROBLEM BEFORE MATLAB – IF POSSIBLE!
AT LEAST KNOW THE RANGES INVOLVED
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Range –pi to pi

20

500 HZ
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EACH POINT IS A  
TRANSFER VALUE 
SHOWING THE CHANGE 
IN  MAGNATUDE AND 
PHASE AT EACH 
FREQUENCY.

With pi = 500 Hz, expect zeros at 2*pi/5 = 200 Hz and  4*pi/5 = 400 Hz. 



23



DSPF Chapter 6
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Back to Analog
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%%   Plot the Dirichlet function/N over the range 0 

to pi, 

% for N = 5; 5-point moving average. See DSPF Page 

215    

clc, clear all, clf

w=-pi:pi/100:pi;

w_zeros= [2*pi/5,4*pi/5]     %  1.2566    2.5133

figure(1)

plot(w,(1/5)*diric(w,5)); 

title('Diric, N = 5'),grid; axis tight;   
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KILL THE COSINE – (Need a zero in H at 2*pi/8 =0.7854)





Exercise 5_3  8-point moving average

%  Null out the cosine in a signal w_hat= k*2*pi/8

clc, clear all, clf

M=8

%windowSize = 8; 

b=(1/M)*ones(1,M);   % b_i = 0.125 = (1/8)

a = 1;

%

% Create function 

n=[0:1:40];   % 41 Points in n

x= (1.02).^n + 0.5*cos(2*pi*n/8 + pi/4);

%  w_hat = 2*pi/8   So use 8-point average with

%    zeros at k*2*pi/8  k= 1,2,3

y = filter(b,a,x);

figure(1)

subplot(2,2,1),stem(n,x),grid, title('Unfiltered signal')

subplot(2,2,2),stem(n,y),grid, title('Filtered signal, M=8')

%

subplot(2,2,3),plot(n,x),grid,title('Unfiltered signal')

subplot(2,2,4),plot(n,y),grid, title('Filtered signal, M=8')





Convolving two waveforms in the time domain means that you are 

multiplying their spectra (i.e. frequency content) in the frequency 

domain. By "multiplying" the spectra we mean that any frequency that 

is strong in both signals will be very strong in the convolved signal, 

and conversely any frequency that is weak in either input signal will be 

weak in the output signal.

Convolution AND Frequency Domain



THIS IS ONE OF THE MAIN REASONS TO WORK IN THE FREQUENCY DOMAIN

CONVOLVE MULTIPLY




