DSP First, 2/e

MODIFIED TLH

Lecture 12
Linearity & Time-Invariance
Convolution

READING ASSIGNMENTS

- This Lecture:
 - Chapter 5, Sections 5-4, 5-6, 5-7 & 5-8
 - Section 5-5 is covered, but not "in depth"
 - Convolution in Section 5-7 is important

LECTURE OBJECTIVES

- GENERAL PROPERTIES of FILTERS
 - LINEARITY

- <u>TIME-INVARIANCE</u>
- ==> CONVOLUTION
- BLOCK DIAGRAM REPRESENTATION
 - Components for Hardware
 - Connect Simple Filters Together to Build More Complicated Systems

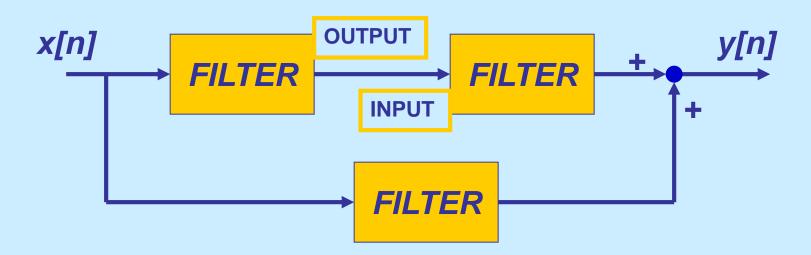
OVERVIEW

- IMPULSE RESPONSE, h[n]
 - FIR case: same as $\{b_k\}$
- CONVOLUTION
 - GENERAL: y[n] = h[n] * x[n]
 - GENERAL CLASS of SYSTEMS
 - LINEAR and TIME-INVARIANT
- ALL LTI systems have h[n] & use convolution

DIGITAL FILTERING

- CONCENTRATE on the FILTER (DSP)
- DISCRETE-TIME SIGNALS
 - FUNCTIONS of n, the "time index"
 - INPUT *x*[*n*]
 - OUTPUT y[n]

BUILDING BLOCKS



- BUILD UP COMPLICATED FILTERS
 - FROM SIMPLE MODULES
 - Ex: FILTER MODULE MIGHT BE 3-pt FIR

GENERAL FIR FILTER

- FILTER COEFFICIENTS {b_k}
 - DEFINE THE FILTER

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

For example, $b_k = \{3, -1, 2, 1\}$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

MATLAB for FIR FILTER

- yy = conv(bb,xx)
 - VECTOR bb contains Filter Coefficients
 - DSP-First: yy = firfilt(bb,xx)
- FILTER COEFFICIENTS {b_k}

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

conv2()
for images

We can check the answers using MATLAB's filter function

```
>> n = 0:8;
>> x = [2 4 6 4 2 0 0 0 0];
>> h = [3 -1 2 1];
>> y = filter(h,1,x);
>> y
y = 6 10 18 16 18 12 8 2
       18
       16
       14
       12
       10
                  2
                      3
                           4
                                5
                                     6
                                          7
        0
                          Index n
```

SPECIAL INPUT SIGNALS

x[n] = SINUSOID

Later, sinusoid leads to the FREQUENCY RESPONSE

x[n] has only one NON-ZERO VALUE

$$\mathcal{S}[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

UNIT IMPULSE RESPONSE

• FIR filter <u>DIFFERENCE EQUATION</u> is specified by the filter coefficients b_k

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

 <u>EQUIVALENCE</u>: can we describe the filter using a <u>SIGNAL</u> instead?

FIR IMPULSE RESPONSE

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

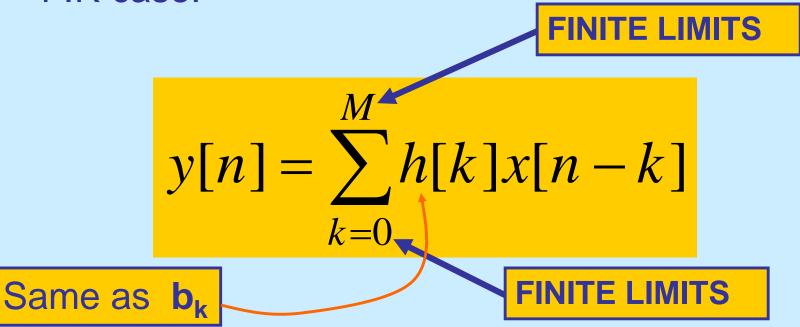
$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

n	n < 0	0	1	2	3		M	M + 1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

- Impulse response $h[k]=b_k$ is, in fact, a SIGNAL description of filter coefficients
- Allows us to write CONVOLUTION sum

LTI: Convolution Sum

- Output = Convolution of x[n] & h[n]
 - NOTATION: y[n] = h[n] * x[n]
 - FIR case:



$$y[n] = h[n] * x[n]$$

LTI: Convolution Sum

 Delay the signal x[n] & then multiply by filter coefficients that come from h[n]

$$y[n] = \sum_{k=0}^{M} h[k]x[n-k]$$

$$= h[0]x[n] + h[1]x[n-1] + h[2]x[n-2] + \dots$$

CONVOLUTION Exa $y[n] = \sum_{k=0}^{n} h[k]x[n-k]$

$$y[n] = \sum_{k=0}^{M} h[k]x[n-k]$$

$$h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]$$
$$x[n] = u[n]$$

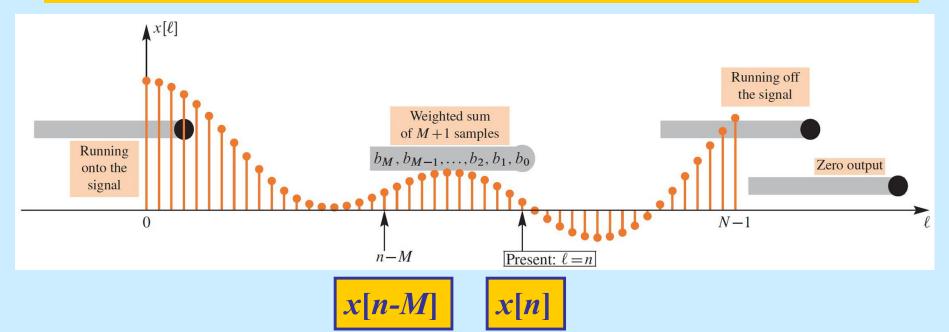
n	-1	0	1	2	3	4	5	6	7
x[n]	0	1	1	1	1	1	1	1	•••
h[n]	0	1	-1	2	-1	1	0	0	0
h[0]x[n]	0	1	1	1	1	1	1	1	1
h[1]x[n-1]	0	0	-1	-1	-1	-1	-1	-1	-1
h[2]x[n-2]	0	0	0	2	2	2	2	2	2
h[3]x[n-3]	0	0	0	0	-1	-1	-1	-1	-1
h[4]x[n-4]	0	0	0	0	0	1	1	1	1
v[n]	0	1	0	2	1	2	2	2	•••

17

GENERAL CAUSAL FIR FILTER

SLIDE a Length-L WINDOW across x[n]

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$



POP QUIZ

- FIR Filter is "FIRST DIFFERENCE"
 - y[n] = x[n] x[n-1]
- Write output as a convolution
 - Need impulse response

$$h[n] = \delta[n] - \delta[n-1]$$

Then, an equivalent way to compute the output:

$$y[n] = h[n] * x[n] = (\delta[n] - \delta[n-1]) * x[n]$$

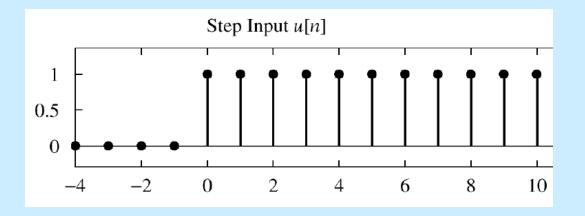
$$= (\delta[n] * x[n]) - (\delta[n-1] * x[n])$$

$$= x[n] - x[n-1]$$

POP QUIZ

- FIR Filter is "FIRST DIFFERENCE"
 - y[n] = x[n] x[n-1]
- INPUT is "UNIT STEP"

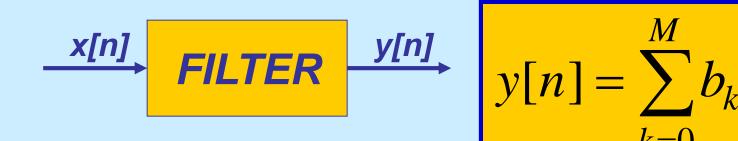
$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$



• Find y[n] ?

$$y[n] = u[n] - u[n-1] = \delta[n]$$

HARDWARE STRUCTURES

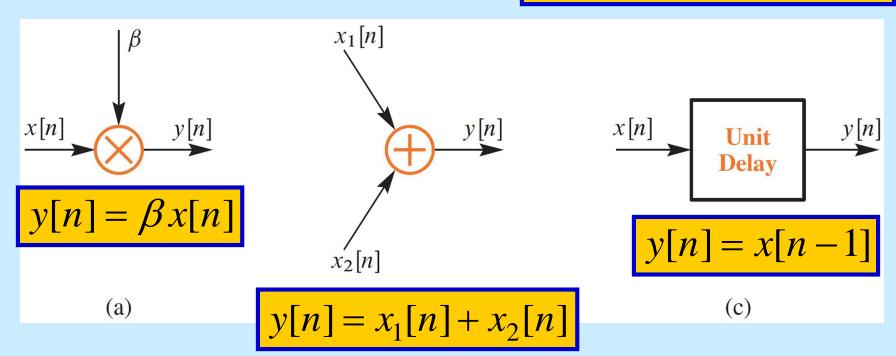


- INTERNAL STRUCTURE of "FILTER"
 - WHAT COMPONENTS ARE NEEDED?
 - HOW DO WE "HOOK" THEM TOGETHER?
- SIGNAL FLOW GRAPH NOTATION

HARDWARE ATOMS

Add, Multiply & Store

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$



FIR STRUCTURE

Direct Form

SIGNAL FLOW GRAPH

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

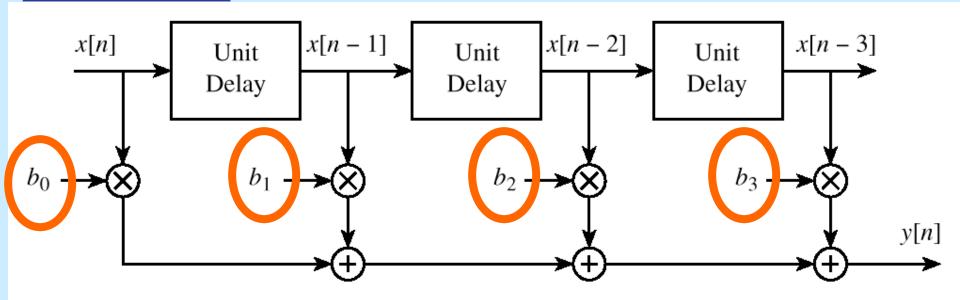


Figure 5.13 Block-diagram structure for the Mth order FIR filter.

SYSTEM PROPERTIES

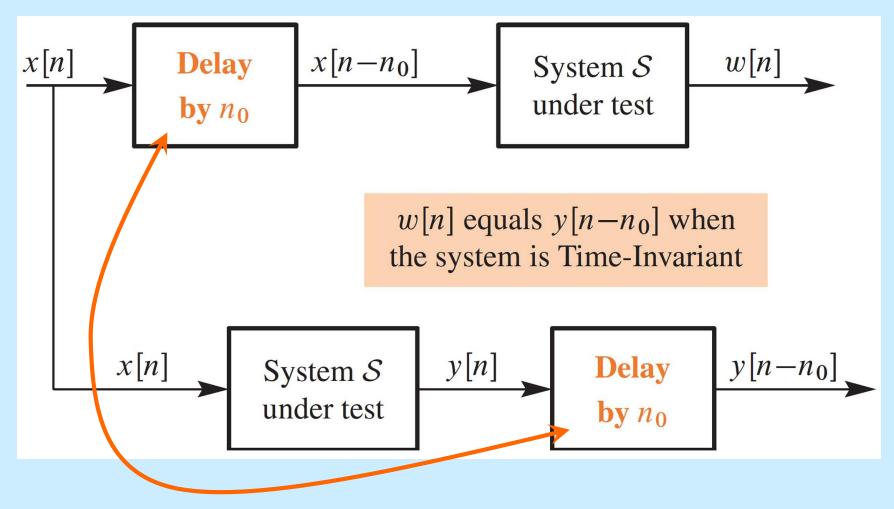
- MATHEMATICAL DESCRIPTION
- TIME-INVARIANCE
- LINEARITY
- CAUSALITY
 - "No output prior to input"

TIME-INVARIANCE

- IDEA:
 - "Time-Shifting the input will cause the same time-shift in the output"

- EQUIVALENTLY,
 - We can prove that
 - The time origin (n=0) is picked arbitrary

TESTING Time-Invariance

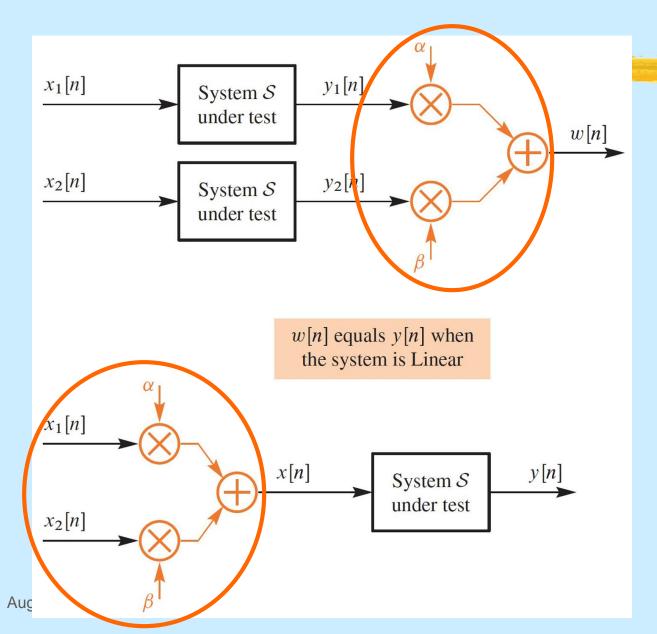


LINEAR SYSTEM

- LINEARITY = Two Properties
- SCALING
 - "Doubling x[n] will double y[n]"

- SUPERPOSITION:
 - "Adding two inputs gives an output that is the sum of the individual outputs"

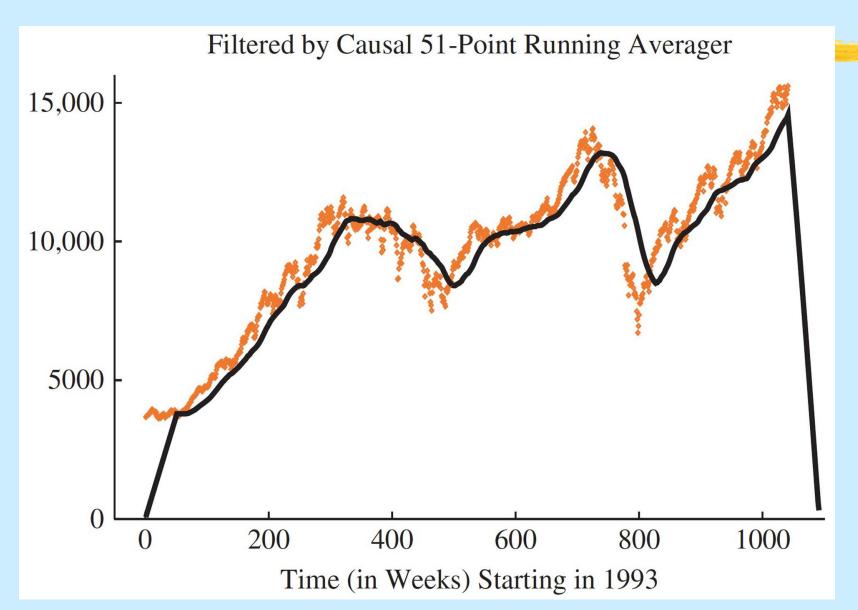
TESTING LINEARITY



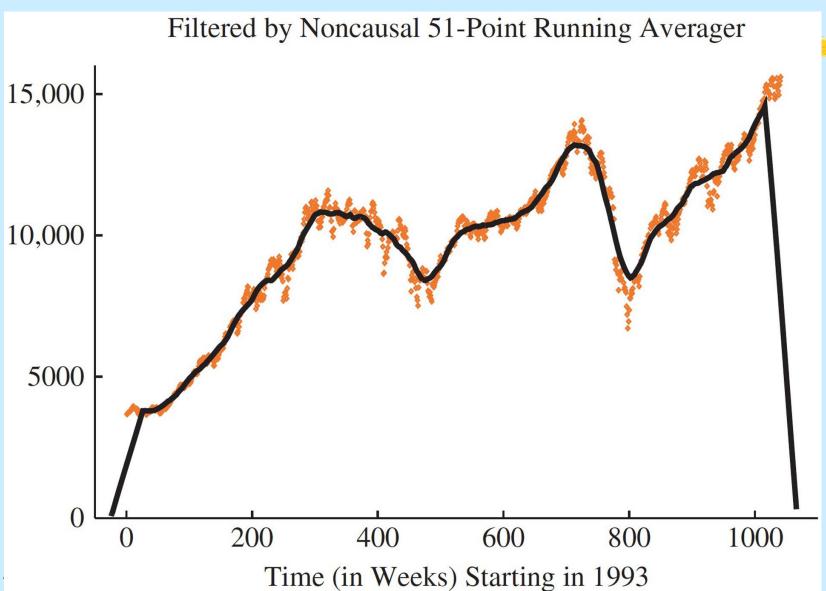
LTI SYSTEMS y[n] = h[n] * x[n]

- LTI: Linear & Time-Invariant
- COMPLETELY CHARACTERIZED by:
 - IMPULSE RESPONSE h[n]
 - CONVOLUTION:
 - The "rule" defining the system can ALWAYS be re-written as convolution
- FIR Example: h[n] is same as b_k

FILTER STOCK PRICES



STOCK PRICES FILTERED (2)



CASCADE SYSTEMS

- Does the order of S₁ & S₂ matter?
 - NO, LTI SYSTEMS can be rearranged !!!
 - WHAT ARE THE FILTER COEFFS? {b_k}

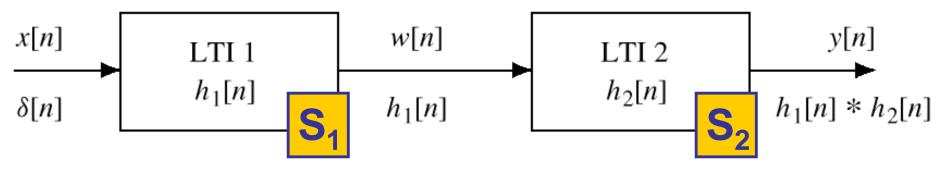


Figure 5.19 A Cascade of Two LTI Systems.