DSP First

Second Edition

James H. McClellan • Ronald W. Schafer • Mark A. Yoder

Let's Master Sinusoids

TLH Modified CENG 3315 CHAPTER 2 2-1 TO 2-3

Chapter 2

Sinusoids

READING ASSIGNMENTS

- This Lecture:
 - Chapter 2, Sections 2-1 and 2-2 and 2-3
 - See References for Sinusoids on our website

LET'S VIEW A FEW VIDEOS - SINUSOIDAL REVIEW

1. Dr. Van Veen and Sinusoids 11 Minutes

Introduction to Signal Processing
137,979 views
https://www.youtube.com/watch?v=YmSvQe2FDKs&feature=youtu.be

- 2. Why Study Sinusoids?
 https://www.youtube.com/watch?v=yXjXJ5OINyQ&feature
 =youtu.be
- 3. Example Finding Parameters of a Sinusoid from a Graph 6:19
 https://www.youtube.com/watch?v=h72Eax1jQkw&feature=youtu.be

TUNING FORK EXAMPLE

- IPhone demo
- "A" is at 440 Hertz (Hz)
- Waveform is a SINUSOIDAL SIGNAL
- Computer plot looks like a sine wave
- This should be the mathematical formula:

$$A\cos(2\pi(440)t+\varphi)$$

Tuning-Fork Experiment (1 of 2)

Figure 2-2: Picture of a Tuning Fork for 440 Hz

TRY IT ON THE PHONE!

Figure 2-1: Sinusoidal Signal Generated From the $X(t) = 10\cos(2\pi(440)t - 0.4\pi)$

$$x(t) = \begin{bmatrix} 10 \\ 5 \\ -10 \\ 0 \end{bmatrix}$$

$$2 = \begin{bmatrix} 4 \\ 6 \\ 8 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$2 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$2 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$2 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$3 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$4 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$4 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$5 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$4 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$5 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$6 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$7 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

$$10 = \begin{bmatrix} 10 \\ 1$$

Page 10

Tuning-Fork Experiment (2 of 2)

Figure 2-3: (a) Recording of an A–440 tuning-fork signal sampled at a sampling rate of 10,000 Samples/s.b) Zoom in to the first 3ms taken from the top plot (shaded region), showing the individual sample values (connected by a thin gray line).

TUNING FORK A-440 Waveform

Sampled Sinusoid signal might look like this In Compuer.

ARRL

Let's Master Sinusoids

1. Circular Motion and Waves (Video :19) Shubha Raj Kharel

Rotating Vector to Sinusoid :19 Seconds

https://youtu.be/EZFlxXPLgr4

Chapter 2 TLH Sinusoids KNOW THIS!

Angle θ				
Degrees	Radians	$\sin \theta$	$\cos heta$	an heta
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3
90	$\frac{\pi}{2}$	1	0	undefined
180	π	0	- 1	0
270	$\frac{3\pi}{2}$	-1	0	undefined
360	2π	0	1	0

Figure 2-4: Definition of Sine and Cosine of an Angle θ within a Right Triangle

$$\sin \theta = \frac{y}{r}$$

$$\implies y = r \sin \theta$$

$$\cos \theta = \frac{x}{r}$$

$$\implies x = r \cos \theta$$

Figure 2-5: (A) Sine Function and (B) Cosine Function Plotted Versus Angle Θ . Both Functions Have a Period of 2π

Table 2-1: Basic Properties of the Sine and Cosine Functions

Property	Equation		
Equivalence	$\sin \theta = \cos(\theta - \pi/2) \text{ or } \cos(\theta) = \sin(\theta + \pi/2)$		
Periodicity	$cos(\theta + 2\pi k) = cos \theta$, when k is an integer		
Evenness of cosine	$\cos(-\theta) = \cos\theta$		
Oddness of sine	$\sin(-\theta) = -\sin\theta$		
Zeros of sine	$sin(\pi k) = 0$, when k is an integer		
Ones of cosine	$cos(2\pi k) = 1$, when k is an integer		
Minus ones of cosine	$\cos[2\pi(k+\frac{1}{2})] = -1$, when k is an integer		

Page 13

Table 2-2: Some Basic Trigonometric Identities

Page 14

Number	Equation		
1	$\sin^2\theta + \cos^2\theta = 1$		
2	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$		
3	$\sin 2\theta = 2\sin\theta\cos\theta$		
4	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$		
5	$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$		

Relation of Frequency to Period (1 of 2)

Time-Domain versus Frequency-Domain

Figure 2-6: Sinusoidal signal with parameters A = 20, $\Omega_0 = 2\pi(40)$, $F_0 = 40$ Hz, and $\phi = -0.4\pi rad$.

Relation of Frequency to Period (2 of 2)

Figure 2-7: Cosine Signals $X(t) = 5Cos(2\pi f_0 t)$ for Several Values of $F_0: (A)F_0 = 200$ Hz; $(B)F_0 = 100$ Hz; $(C)F_0 = 0$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$

SINUSOIDAL SIGNAL

$$A\cos(\omega t + \varphi)$$

- FREQUENCY W

 - Radians/sec
 - Hertz (cycles/sec)

$$\omega = (2\pi)f$$

PERIOD (in sec)

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

- AMPLITUDE

 - Magnitude

PHASE

Phase and Time Shift

2-3 Page 17

Figure 2-8: Illustration Of Time-shifting: (A) The Triangular Signal S(t); (B) Shifted to The Right By 2 S, $X_1(t) = S(t-2)$; (C) Shifted To The Left By 1 S, $X_2(t) = S(t+1)$

