You will have a Take Home Quiz 3315 given out on Wed March 31 – Due April 5, 2021 OPEN Book

Quiz 2 REVIEW Example Problems and lectures to review.

CENG3315_Review5_Ch4_Presentation2_Sampling2.pdf Lecture Slides On Web - Also See Videos on BB (3/24/2021)

HW 3 Problem 2: Choose proper sampling rate fs and digital x[n] of sampled sinusoid, and ω and \hat{w}

Problem 2 20 points

- (a) The function $x(t) = \cos(2\pi 100t + \pi/3)$ is sampled at the minimum sampling rate for 10 seconds. How many points are generated?
- (b) If $f_s = 1200$ samples/second, what is the time between samples?

Problem 3 and 5: Compute Aliased Frequency for improper sampling.

Problem 3 10 points

Given the signal $v(t) = \cos(3 \times 10^6 \ \pi \ t) + \sin(5 \times 10^6 \ \pi \ t) + \cos(7 \times 10^6 \ \pi \ t)$, determine the minimum sampling rate to avoid aliasing for v(t).

Problem 5 20 Points

A 100 Hz sinusoid is sampled at rates listed below. In each case, determine if aliasing has occurred, and if so, what is the aliased (Positive frequency) as $\cos(\omega t \pm \phi)$.

- (a) $f_s = 240 \text{ Hz}.$
- (b) $f_s = 140 \text{ Hz}.$

Reviews: CENG3315_Review6_Ch5_FIR_Convolve_LTI.pdf On Web

Running Average filter, Convolution, Impulse Response

CENG3315_Review7_Ch6_f_responseFIR.pdf Slides On Web Also, Lectures on BB 3/24/2021

Use H(exp(j ŵ)) to determine the effect of a filter. Chapter 6 Lecture

Watch the video.

Practical Demonstration of Aliasing of a Signal 5:44 T J Moir Practical Aliasing

https://www.youtube.com/watch?v=UeqtACRwNrw