DISTRETE FOURIER
TRANSFORM

DFT PRESENTATION 1
Using Harman Chapter 11
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Definition of DFT and IDFT Assume that a function f(f) is defined
at a set of N points, f(nTy) for n = 0,..., N — 1 values, as shown in
Figure 11.3. The DF'T yields the frequency spectrum at N points by the

formula
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for k =0,...,N —1. Thus, N sample points of the signal in time lead
to N frequency components in the discrete spectrum spaced at intervals
fs = 1/(NT;). The Inverse DFT (IDFT) is defined as
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forn =0,...,N — 1. The IDFT is used to re-create the signal from its
spectrum.



LECTURE OBJECTIVES

* Discrete Fourier Transform
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* DFT from DTFT by frequency sampling

 DFT computation (FFT)

* DFT pairs and properties
* Periodicity in DFT (time & frequency)




DIFFERENCES TLH AND DSPF
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n=0

Ts is the time between samples S =1/Ts samples/sec

Thus, Fk values are frequencies and f values are given at a specific time nTs
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Here n and k are indices —
NO relation to physical time of frequency
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* HARMAN CHAPTER 11
* WEB VIDEQOS FOR DSP
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https://sce.uhcl.edu/harman/CENG3315_Sp2019/0_TLH_Work&Book/DFT_FFT_Chap11_revised.pdf
https://sce.uhcl.edu/harman/CENG3315_Sp2019/3315References/DFT_%20FFT%20Tutorial_References.pdf
https://sce.uhcl.edu/harman/CENG3315_Sp2019/3315References/Signal&ImageProcessing_References.pdf

