MODIFIED TLH

DSP First, 2/e

Sampling & Aliasing

CHAPTER 4 PRESENTATION1

Chapter 4 on Course Website Sampling and Aliasing

Chapter 4: HW3_ Lecture4_1 Lecture4_3 Ch4References

ProblemSession1_Ch4 ProblemSession2_Ch4

Sampling

Figure 4-1: Block diagram representation of the ideal continuous-to-discrete (C-to-D)

Sometimes ADC, A2D, Analog-to-Digital

Copyright © 2016, 1998 Pearson Education, Inc. All Rights Reserved

LECTURE OBJECTIVES

- SAMPLING can cause ALIASING
 - <u>Sampling Theorem</u>
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

Summary If $\chi(t)$ contains frequencies 0 to fmax For NO Aliasing $1.f_s = S > Z fmax$ Pgill $Z. -TT \angle \hat{W}_0 = W_0 T_s \angle TT$ (4.9) $= ZTTF_0 T_s \angle TT$

SYSTEMS Process Signals

- PROCESSING GOALS:
 - Change x(t) into y(t)
 - For example, more BASS, pitch shifting
 - Improve x(t), e.g., image deblurring
 - Extract Information from x(t)

SAMPLING x(t)

• SAMPLING PROCESS

- Convert x(t) to numbers x[n]
- "n" is an <u>integer index</u>; x[n] is a sequence of values
- Think of "n" as the storage address in memory

• UNIFORM SAMPLING at $t = nT_s$

• IDEAL: $x[n] = x(nT_s)$

