MODIFIED TLH

# DSP First, 2/e

# **Sampling & Aliasing**

**CHAPTER 4 PRESENTATION 2** 

## System IMPLEMENTATION

#### • ANALOG/ELECTRONIC:





- DIGITAL/MICROPROCESSOR
  - Convert x(t) to numbers stored in memory



# SAMPLING x(t)

#### • SAMPLING PROCESS

- Convert x(t) to numbers x[n]
- "n" is an <u>integer index</u>; x[n] is a sequence of values
- Think of "n" as the storage address in memory

#### • UNIFORM SAMPLING at $t = nT_s$

• IDEAL:  $x[n] = x(nT_s)$ 



# SAMPLING RATE, $f_s$

- SAMPLING RATE (f<sub>s</sub>)
  - $f_s = 1/T_s$

#### NUMBER of SAMPLES PER SECOND SOMETIMES GIVEN IN Hz

- $T_s = 125$  microsec  $\rightarrow f_s = 8000$  samples/sec
  - UNITS of  $f_s$  ARE HERTZ: 8000 Hz

- UNIFORM SAMPLING at  $t = nT_s = n/f_s$ 
  - IDEAL:  $x[n] = x(nT_s)=x(n/f_s)$

$$\xrightarrow{x(t)} C-to-D \xrightarrow{x[n]=x(nT_s)}$$

## STORING DIGITAL SOUND

- *x*[*n*] is a SAMPLED SISIGNAL
  - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
  - 16-bit samples

THUS – Frequency range of 22,050 Hz

Stereo uses 2 channels

is beyond (most) humans hearing range.

- Number of bytes for 1 minute is
  - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

# SAMPLING THEOREM THE BIG DEAL!!

- HOW OFTEN DO WE NEED TO SAMPLE?
  - DEPENDS on FREQUENCY of SINUSOID
  - ANSWERED by SHANNON/NYQUIST Theorem
  - ALSO DEPENDS on "<u>RECONSTRUCTION</u>"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than  $f_{\text{max}}$  can be reconstructed exactly from its samples  $x[n] = x(nT_s)$ , if the samples are taken at a rate  $f_s = 1/T_s$  that is greater than  $2f_{\text{max}}$ .