DSP First, 2/e Frequency Response

of FIR Filters

Ch6 Presentation 2

LECTURE OBJECTIVES

- SINUSOIDAL INPUT SIGNAL
 - DETERMINE the FIR FILTER OUTPUT
- FREQUENCY RESPONSE of FIR
 - PLOTTING vs. Frequency
 - MAGNITUDE vs. Freq
 - PHASE vs. Freq

MAG

DIGITAL "FILTERING"

- CONCENTRATE on the <u>SPECTRUM</u>
- SINUSOIDAL INPUT
 - INPUT x[n] = SUM of SINUSOIDS
 - Then, OUTPUT y[n] = SUM of SINUSOIDS

SINUSOIDAL RESPONSE

- INPUT: x[n] = SINUSOID
- OUTPUT: y[n] will also be a SINUSOID
 - Different Amplitude and Phase
 - **SAME** Frequency
- AMPLITUDE & PHASE CHANGE
 - Called the <u>FREQUENCY RESPONSE</u>

COMPLEX EXPONENTIAL

$$x[n] = Ae^{j\varphi}e^{j\hat{\omega}n} - \infty < n < \infty$$

$$x[n] \text{ is the input signal-a complex exponential}$$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} h[k]x[n-k]$$
FIR DIFFERENCE EQUATION

COMPLEX EXP OUTPUT

• Use the FIR "Difference Equation"

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} b_k A e^{j\varphi} e^{j\hat{\omega}(n-k)}$$

$$= \left(\sum_{k=0}^{M} b_k e^{j\hat{\omega}(-k)}\right) A e^{j\varphi} e^{j\hat{\omega}n}$$

$$= H(\hat{\omega})Ae^{j\varphi}e^{j\hat{\omega}n}$$

H IS THE TRANSFER FUNCTION

EXAMPLE 6.1

REMEMBER - PI < $\widehat{\omega}$ < PI

$$\{b_k\} = \{1, 2, 1\}$$

$$H(e^{j\hat{\omega}}) = 1 + 2e^{-j\hat{\omega}} + e^{-j2\hat{\omega}}$$

$$= e^{-j\hat{\omega}}(e^{j\hat{\omega}} + 2 + e^{-j\hat{\omega}})$$

$$= e^{-j\hat{\omega}}(2 + 2\cos\hat{\omega})$$
EXPLOIT SYMMETRY

Since
$$(2 + 2\cos\hat{\omega}) \ge 0$$

Magnitude is $\left| H(e^{j\hat{\omega}}) \right| = (2 + 2\cos\hat{\omega})$
and Phase is $\angle H(e^{j\hat{\omega}}) = -\hat{\omega}$

PLOT of FREQ RESPONSE

EXAMPLE 6.2

Find y[n] when $H(e^{j\hat{\omega}})$ is known and $x[n] = 2e^{j\pi/4}e^{j(\pi/3)n}$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

EXAMPLE 6.2 (answer)

Find y[n] when
$$x[n] = 2e^{j\pi/4}e^{j(\pi/3)n}$$

Evaluate
$$H(e^{j\hat{\omega}})$$
 at $\hat{\omega} = \pi/3$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

$$H(e^{j\hat{\omega}}) = 3e^{-j\pi/3}$$
 @ $\hat{\omega} = \pi/3$

$$y[n] = (3e^{-j\pi/3}) \times 2e^{j\pi/4}e^{j(\pi/3)n} = 6e^{-j\pi/12}e^{j(\pi/3)n}$$

CASCADE EQUIVALENT

Aug 2016

Convolution

Convolving two waveforms in the **time domain** means that you are multiplying their spectra (i.e. frequency content) in the frequency domain. By "multiplying" the spectra we mean that any frequency that is strong in **both** signals will be very strong in the convolved signal, and conversely any frequency that is weak in either input signal will be weak in the output signal.

Spatial Domain

$$g = f * h$$

$$g = fh$$

Frequency Domain

$$G = FH$$

$$G = F * H$$