Solution of Differential Equations and Filters
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|.Fourier Series Solution of Differential Equation

Fourier Series DE Example

Consider the simple circuit of Figure 8.8 consisting of a resistor R and
capacitor C. The input voltage is designated f(t) and the output voltage across
the capacitor is y(t).
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FIGURE 8.8 RC circuit

Sherlock Holmes once said — Having seen a dripping faucet, one could envision
Niagara Falls.

I.1 Suppose the input can be written as a Fourier Series:

Differentiation of the Fourier series, in effect, multiplies the original
series by n and thus increases the magnitude of the coefficients. Using
the complex series, the derivative is

oo

df(t) o d ) tnwot
D DR

n=—0o0
o0

— Z (-i'.rzwo)a,,,ei""“"'“t. (8.44)

n=—0oo



Consider the nth-order differential equation with constant coefficients
subject to a harmonic series of sinusoids input as the forcing function.
The differential equation is thus

+ota + aoy(t

N
d"y(t) d"y(t) di( ) einwot
dtn + an_l dtnr_l d{- g . (8-45)

Following the discussion in Chapter 5, if the frequencies nwg are not those
of the characteristic equation, the assumed solution is

Z an ”W’Of (8-46)

n=1

using the method of undetermined coefficients. Substituting the kth term
in the differential equation leads to the relationship

ak[(fwr)™ + @n_1(iwe)” t + - + a1 (iwr) + ao] = Ax.

Letting H ™' (ikwo) designate the term in brackets, the solution for the
kth coefficient of the solution is

A = H(’ik’wO)Ak,

and the complete particular solution is

Z H (inwg) Ape™ o, (8.47)

.2 Thus, the result from a LTI differential equation is another Fourier Series multiplied by the transfer

function H.

To derive the differential equation for the circuit, apply Kirchhoff’s voltage
law, with the result

f(t) = Vr(t) + Ve (b).

Using Ohm’s law, Vr = Ri(t), where i(t) is the current through the circuit.
Since the current is proportional to the change in voltage across the capacitor,

s dVe (t)
it)= O TR
and Kirchhoff’s law can be written
dVe (t
f(t) = RC d)+wu

dt
Letting y(t) = V() leads to the resulting equation

dy¢) 1 .. 1
o ke ﬁy(t) = =0 (1)



If the input voltage can be written as

N
f) =) Aue™",
n=1

the solution according to Equation 8.47 is

1\."
y(t) = Z H(inw[)) X Anﬁi“wtﬂ:
n=1
and the function H (inwo) is
: 1
H(inwo) =

o 1 + inwo RC ’

1.3 The Solution has the same frequencies as the original series but the Magnitude and Phase will
change.

|H (inwo)| = 1 ’
arg[H (inwo)] = —tan” ' (nwoRC). (8.48)

We could plot the Frequency Response in Amplitude and Phase.

Il Fourier Transform Solution of a Differential Equation

Applying the differentiation theorem to the differential equation,

d"y(t) d"ly(t) dy(t) :

pTT o On—1"m 1 ot B + aoy(t) = f(t) (8.52)
by forming the Fourier transform of both sides of the equation, we find
that

[ (W)™ + @n—1(iw)* ! + -+ a1(iw) + a0 ]Y (iw) = F(iw).

The solution for y(t) could be found by solving the transformed equation
as

F(iw)
[(iw)™ + ap-1(iw)" "1 + - 4+ a1 (iw) + ao ]

and taking the inverse Fourier transform. An example will demonstrate
this application to the solution of differential equations.

Y (iw) =



lll. Passive Low Pass Filter Impedance Method

https://www.electronics-tutorials.ws/filter/filter 2.html

Q Resistor, R 1
e
O

Vin Capacitor. C :: Viii

We also know that the capacitive reactance of a capacitor in an AC circuit is given as:

1
2nfC

in Ohm's

Xe =

Opposition to current flow in an AC circuit is called impedance, symbol Z and for a series circuit consisting of a single resistor
in series with a single capacitor, the circuit impedance is calculated as:

2 S2
Z=R%+X;

RC Potential Divider Equation

out ~ Vin TS5



https://www.electronics-tutorials.ws/filter/filter_2.html

I1l.1 Frequency Response of a Low Pass Filter - Like RC filter.

Frequency Response of a 1st-order Low Pass Filter

Corner
_ Vout Frequency
Gain =20 log Tino fe
A M M
PassBand ) ‘ | StopBand )
Y Y
0dB *
3dD | «—-3dB (459
II;requency Slope =
- s -20dB/Decade
o
3 |
s
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Ph fe(LP) Frequency (Hz)
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o e —
Phase
Shift
-90°
Frequency (Hz)
Cutoff Frequency
The formula for cutoff frequency (corner frequency) is
1
Je=3Re

where R and C are the values of Resistance and Capacitance. For a simple RC low pass filter, cut-off (3dB point) is defined
as when the resistance is the same magnitude as the capacitive reactance

[11.2 RC values R= 4.7 k Ohms, C = 47 x 107{-9} farads.

Voltage Output at a Frequency of 100Hz.

Xe= l‘ = : = = =33,863Q
2nfC  2mx100x47x10°

Ve = Vi X Xe
JRI+XE

., 33863

— O OV
/4700 +33863"

Voltage Output at a Frequency of 10,000Hz (10kHz).

= U 1

= 3860
2afC  2m<10,000%47x10°

Vi =10 2aE

/ : = =0.718v
y 4700° +338.6°



IV. Laplace Transform Solution
L) = F) = [ fte 9.)

The variable of integration ¢ in Equation 9.1 is a dummy variable
and may be replaced by any other symbol. In order for the quantity st
to be dimensionless in the factor e™**, if ¢ represents time, then s has
dimensions of frequency . In general, s is complex and is written

s=0+ 1w
in which o and w are real.
IV.1 Laplace Transform Examples

Laplace Transform Examples

a. Consider the piecewise continuous function f(¢) defined as
0, t <0,
t) = —a
@) {Ae T % 1)
The Laplace transform is

F(s) = L[f(t)] = /x Ae et dt

' o0
_ / ‘46—(:;+(1)1‘ df
0

(s+a)t |° A
= (9-2)

e
—(s+a)

£

0
: 1
provided that s+ a > 0." Thus, we make the transform correspondence

A

AT (t20) & ——. (9.3)
TABLE 9.2 Ezample Laplace transforms
f(t) F(s) f(t) F(s)
Ut) % cos(whU() e
tU(t) % sin(wt)U (1) #
U (1) o exp(—at) cos(wt)U(t) sta

(s+a)? +w?

] |
exp(—at) sin(wt)U (t) w

exp(—at)U(t) o (5+a)?+w?




IV.2 MATLAB functions for Laplace

TABLE 9.5 MATLAB commands for Laplace analysis

Command

Result

Numerical operations:

Convolution and polynomial

Derivative of a polynomial

conv

multiplication
polyder
roots Roots of a polynomial
residue

Symbolic Math Toolbox operations:

laplace

ilaplace

Special Symbolic functions:
Dirac
Heaviside

Partial fraction expansion

Laplace transform
Inverse Laplace transform

Dirac delta function
Unit step function

IV.3 Differential Equation Solution for Laplace

XXX

FIGURE 9.1

Differential equations
with initial conditions

Time domain
solution

Algebraic equations
in Laplace domain

Inverse transform
of Laplace solution

Procedure for solving linear differential equations




IV.4 Laplace and Fourier

te The I;aglace transform F(s) = [ f(t)e=*t dt can be viewed as an ex-
3 n51?n of t e FOIIIIE!: transform in which the function f(t) is represented
y exponential functions of the form e®!, where s = ¢ + iw is a complex

frequency. ‘Thus, the Fourier transform is a special case in which s = +iw
when £(t) is zero for ¢t < 0 and the Fourier integral exists.?

TABLE 9.7 Laplace and Fourier transform pairs

f(®) F(s) F(iw)

6(t) 1 1

=xe{mali() s j— a iw:— a
1 1

texp(—at)U(t)

(s+a)? (iw+a)?

We conclude that when f(t) is causal and absolutely integrable so
that the Fourier transform exists, the relationship between the Laplace
and Fourier transforms is

F(iw) = F(s)|;i0 F(s) = F(iw)|;y_s -



V. Difference Equations

A general form for an Nth-order linear difference equation with con-
stant coefficients is
apyn) + aryn—1)+---+an—1y(n—N+1)+any yln —N)
= bozr(n)+brxn—1)+---4+by x(n— M),

(10.4)
where ag, ..., an are constant with ag and ay nonzero. The coefficients
bo, . ..,byr are also constant with by and by; nonzero in the general case.

In summation notation, Equation 10.4 becomes

N M

Z a;y(n —1i) = Z bix(n —1). (10.5)

1=0 i1=0

A general form for an Nth-order linear difference equation with con-
stant coefficients is

apy(n) + aryln—1)+-+an-1y(n —N+1)+ayyn—N)

= box(n)+byaxn—1)+---+by x(n— M),
(10.4)

Note that the solution y(n) depends on both INPUTS x and OUTPUTS y from
previous outputs. This is a general form. If the a’s are zero, this reduces to FIR
form.



V1. Differential Equation to Difference Equation

One method of associating a differential equation with a difference
equation approximates the derivatives with differences. For example, let-
ting ¢(t) be a continuous function, the first derivative can be approxi-
mated as

dj(t)
dt

_ymT +T) —gy(nT)
- T

(10.23)

t=nT

as we have seen previously in Chapter 6 using the Euler approximation.
The second derivative can be approximated as

dy(nT +7T) dynT)

d*j(t) - dt di
dt? t=nT r
_ y(nT +2T) — Zg;E';LT +T) +y(nT) (10.29)

From these approximations, a difference equation can be formed from a
given differential equation.

11



V2. Low-Pass Digital Filter

LOWPASS We begin by introducing a particular type of filter called a lowpass or
FILTERS smoothing filter. This filter is used to remove noise from a signal by

limiting the output variations of the filtered signal, and thus produce an
output that is smoother than the input signal. After giving an example of
a smoothing filter, we present the frequency response of filters described
by difference equations.

O EXAMPLE 10.7  First-Order Smoothing Filter
Consider the discrete-time signal represented by the sequence

2(0),2(1),2(2),---,

which we assume is a signal corrupted by random noise. One method of reduc-
ing the unwanted fluctuations is to compute a smoothed version of the signal
according to the rule

y(n) =ayn—1)+ (1 —a)z(n) (10.29)

where 0 < a < 1 and y(—1) = 0.2 At each value n, the output y(n) is formed
as a weighted average of the new input x(n) and the output y(n — 1) at the
preceding time instant n — 1. If the constant a is almost zero, the output is
almost equal to the input. The closer a is to 1, the more the preceding output
is weighted and the “smoother” is the output.

'Some authors, particularly those describing signals and linear systems, use the notation f[n] with square
brackets to designate discrete values of f(t).

21t is assumed that the output y(n) cannot begin before the input x(0). Systems that do not respond
before being stimulated are called causal.

12



Example 10.7

% SMOOTHER.M A smoothing filter defined as

h o y(m) = axy(n-1) +(1-a)*x(n) , y(-1)=0

% x(n) is input signal, y(n) is smoothed output
A

% Test signal is sin(w*t) with random noise

% INPUT: Weighing factor a

% OUTPUT: Plot of x and y

/A

clear, clf

w=2%pi/5;
t = linspace(0,10,100); % Time steps
s = sin(w*t); % Noiseless signal

% Add random noise

len=size(t);

na = 0.1; % Noise amplitude
noise = na*(rand(len)-.5); % (-.05 to +.05)
X = 8 + noise;

% Weighing factor
a = input(’Weighing factor a= ’)

y(1)=(1-a)*x(1);

for I=2:100

y(I) = axy(I-1) + (1-a)*x(I); ¥ Digital Filter

end

plot(t,x,’--7,t,y,’-")

xlabel(’Time’), ylabel(’Signals’)

title([’Effect of Smoothing Filter, a = ’, num2str(a)])
legend(’Input x’,’QOutput y’)

13



Effect of Smoothing Filter, a = 0.9

Input x
Qutput y

b%’
15 1 1 1 1 1 1
0 1 2 3 4 5 6 9
Time
FIGURE 10.1 Signal and Smoothed Version
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V3. Frequency Response of Digital Filters

As explained in Chapter 8, for continuous-time systems that are linear
and time invariant, the frequency response is determined by assuming a
sinusoidal signal as the input to the system. The steady state output is
also a sinusoid of the same frequency, perhaps with an amplitude scaling
and a phase shift compared to the input signal. In the differential equa-
tion model for the system with zero initial conditions, the ratio of the
output sinusoidal signal to the input sinusoidal signal is called the trans-
fer function of the system. The transfer function computed or plotted
for a range of input frequencies represents the frequency response of the
system.

In an analogous way, the frequency response of a linear, discrete-
time system that is time-independent is determined by using a complex
sampled sinusoid

z(n) = £(nTy) = Ae™" ™"

as the input. The value A is a real constant and T is the time between
samples of the input signal. The ratio of the output y(n) to x(n) is the

transfer function for the discrete system. By varying the input frequency,
the frequency response of the discrete system is determined.

Often the linear frequency variable (hertz) is normalized to yield the
digital frequency

F = L = f1. (10.30)
fs

Also, Q0 = 27F = w1y is the digital radian frequency. The analog fre-
quency f = 1/Ts corresponds to the digital frequency F' =1 or = 2.

~ _ . f_analog _ 1 _
Remember w = 2 = 2 pi * ¥ sample sample = T f_max = Fsampze/2

And | used in the this chapter fs= Fy4pp,, Hz or Samples/second



V4. Solutions for FIR and IIR filters

Difference Equations To determine the frequency response of a sys-
tem described by the difference equation

N M
y(n) + Z U Y(n —m) = Z b x(n —m), (10.31)
m=1 m=0

we apply a unit sinusoid
x(n) = "

as the discrete input and assume the solution to the difference equation
has the form
y(n) = He' ™™,

Thus, H is the transfer function for the system.
Substituting the assumed response into Equation 10.31 yields

N M
Heiﬂn + Z am‘HC‘iﬂ(nfm) — Z brneiﬂ(n.fm)'
m=1 m=0
Dividing out €’*" and solving for H shows that the frequency response is
M
Z b e—i0m
mt
m=0
H = ~ . (10.32)
1+ Z me(?_?'ﬂm
m=1

Although H is a complex constant for each digital frequency, H will
vary as the input frequency changes and it is customary to write the
transfer function as H(e'") to emphasize the dependence on ¢’? in Equa-
tion 10.32. Notice that the discrete-time system frequency response is
periodic with the sampling frequency

2m
Ws = =
T T
since H (e “TFwa)Tey — H(¢“T+) where k is an integer.

Note: For the FIR filters, the a coefficients would be zero.

16



Frequency Response of First-Order System
The frequency response of a first-order discrete system will be investigated.
Consider the smoothing filter of Example 10.7

yn)=ayn—1)+(1—a)xz(n)
where 0 < a < 1. Using Equation 10.32 with a1 = —a and by = (1 — a),

1—a 1—a
H = 1 —ae—© —i2n F

1 —ae

1—a
1 —acos2nF +iasin 27 F (10.33)

since Q@ = 27F. Writing H in polar form H(e™") = A(F)e'*") yields the
amplitude and phase response of the system as

1—a
A(F) =
(F) V14 a2 —2acos 27 F
S(F) = —tan~! 2502 (10.34)

1 —acos2rF’

Notice that the de gain H(0) = 1 and that H is periodic. Figure 10.2 displays
the amplitude and phase in degrees for three values of a.

1 T T T T T T T T T

9 AY
08+ \ — a=0.5 i
_ AN --- a=0.75
Sosr L a=63/64 | |
=1
= ~
£ N
Zo0ar ~. —_ i
02t T Te e~ ___ .
0 i o L L L L L. 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Digital frequency
0 T T T T T T T T T -
\ —=
. =
-20F /, - B
2 \ _ -
o . - -
&40 S - .
° ~_ = : —— a=05
2 -——  a075
60+ _
T a=63/64
_80+ e i
1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

FIGURE 10.2 Amplitude and phase plots

From Figure 10.2, we see that this form of a digital filter acts as a low-pass
filter since it attenuates the higher frequencies in an input signal relative to
the lower frequencies. If a continuous input signal is sampled at time intervals
T to form x(n), Equation 10.30 shows that the sample interval 7. as well as
the parameter a determine the frequency characteristic of the discrete system
considered as a digital filter.

17



VI. Z-transforms

10.5 INTRODUCTION TO z TRANSFORMS

TABLE 10.3 Applicat

In preceding chapters, we have studied differential equations by direct
solution as well as by using Fourier and Laplace transform techniques. We
now turn to a transform that is called the Z-transform due to the use of
the complex variable z = z+iy = pe'® in the transform. The Z-transform
plays the same role for discrete systems as the Laplace transform does for
continuous systems. Table 10.3 summarizes some of the applications of
the Z-transform.

ions of Z-transform

Area

Application

Definition

System analysis
Stability
Frequency response
Digital filters

Control

The Z-transform is defined as a sum that transforms discrete
signals to the complex frequency (Z) domain.

The Z-transform converts convolutions to a product

and difference equations to algebraic equations.

Stability of a discrete linear system can be determined by analyzing
the transfer function H(z) given by the Z-transform.

The transfer function H(z) can be evaluated to determine
the frequency response of a discrete system.

Digital filters can be analyzed and designed using
the Z-transform.

Digital control systems can be analyzed and designed using

Z-transforms.

18
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TABLE 10.4 Ezxample Z Transforms

f(n) (z) f(n) I(z)
2 —

u(n) . i 1> 1z > 1 cos(nw)u(n) P i 7 ic()js:;ujr 1_.\z| > 1

Z zZsinw
n (n, . ‘ 1 (1) - R 1

a"u(n) ‘ z| > a sin(nw)u(n) 7 9 coso T 1 z| >
= n za

nu(n) o z| > 1 na u(n) G-t |z] > a

19



TABLE 10.5 MATLAB commands for Discrete Analysis

Command Result

Numerical operations:

conv Convolution and polynomial
multiplication.

roots Roots of a polynomial.

residue Partial fraction expansion.

Symbolic Math Toolbox operations:

ztrans Z transform.

iztrans Inverse Z transform.

Signal Processing Toolbox operations:

freqz Frequency response of discrete
system.

residuez Partial-fraction expansion.

VI.1 Z-transforms and Frequency Response

Relate Z and F.

If the transfer function H(z) is evaluated for values of
z = exp(i2mF') = exp(if2)

we obtain the frequency response, H(i2wF'), of the system. This is equiv-
alent to evaluating H(z) on the unit circle in the z-plane. Note that the
function H(i27F) is periodic with period 1 since exp(i27F') is periodic
with period 1. According to Equation 10.30 the digital frequency

F=2L—rr,
AR

where T, is the sampling time or time between samples. The analog
frequency f = 1/7 corresponds to the digital frequency F' =1 or Q = 27.

20



z-plane and Frequency Response
The accompanying MATLAB script and figures show the pole-zero plot
and frequency response for a system with transfer function

z

H(z) = ——.
=) & .9

After defining the numerator and denominator of H(z), the subplot command

in the script reduces the size of the pole-zero plot but leaves the labels full size.

The command zplane produces the plot of Figure 10.3. Then, the command

freqz plots the magnitude in dB and the phase of the frequency response.

MATLAB Script

Example 10.17
% ZEX.M Show the Z-plane and frequency response of the function

% H(z)=z/(z-.9)

clear,clf

num=[1 0]; den=[1 -0.9]; % Define numerator and denominator of H(z)
subplot(2,2,1) % Keep plot small

figure(1)

zplane (num,den) J Draw the z-plane

figure(2)

freqz(num,den) % Plot frequency response

1t

© 05
(3]
[oR
=
g 0 ................... O ........... Mew mom e e
k=)
(]
£ o5

-1t

-1 0 1
Real part

FIGURE 10.3 z-plane plot of H(z) = z/(z — 0.9)
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Magnitude Response (dB)
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10.4 Amplitude and phase plots of H(i27F)
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