Review of Jan 19 Lecture

ENG 3315 Spring 2022

DSP First

Second Edition

James H. McClellan • Ronald W. Schafer • Mark A. Yoder

Modified by TL Harman Spring 2021 For CENG 3315

Chapter 1

Introduction

Mathematical Representation of Systems (3 of 3)

Figure 1-6: Block Diagram Representation of a Sampler.

Ideal means NO Numerical or Electronic Errors

CD vs Record - Characteristics

Characteristic	CD	Vinyl Record*
Low frequency	20 Hz	10 Hz
High frequency	22.05 kHz	50kHz
Frequency response ripple	+- 0.5 dB	+- 3 dB
Dynamic Range	90 dB	70 dB
Signal to Noise Ratio	90 dB	60 dB
Harmonic Distortion	0.01 %	1-2 %
Stereo separation	90 dB	30 dB
Lossy	Yes	No
Damage – Scratch, dust, etc.	Relatively unaffected	Definitely

Technically – CD "sounds better on paper" But for Sound to your ears??

^{*} Depends heavily on Record Player.

<u>LectureCh2_1</u> VanVeen Video, Tuning Fork, Rotating Vector Video, Review of Trig, Phase = Time Shift

https://sce.uhcl.edu/harman/CENG3315 DSP Spring2020/Lectures2020/2 1 TLH SlidesLecture1 Ch2

1to2 3 D%20S%20P%20First.pdf

1. Barry VanVeen Introduction to DSP Introductory overview of the field of signal processing: signals, signal processing and applications, philosophy of signal processing, and language of signal processing. 12:58

https://www.youtube.com/watch?v=YmSvQe2FDKs

DSP First

Second Edition

DSPFIRST SECOND EDITION

James H. McClellan • Ronald W. Schafer • Mark A. Yoder

Let's Master Sinusoids

TLH Modified CENG 3315 CHAPTER 2 2-1 TO 2-3

Chapter 2

Sinusoids

LET'S VIEW A FEW VIDEOS - SINUSOIDAL REVIEW

1. Dr. Van Veen and Sinusoids 11 Minutes

Introduction to Signal Processing
137,979 views
https://www.youtube.com/watch?v=YmSvQe2FDKs&feature=y
outu.be

2. Why Study Sinusoids?
https://www.youtube.com/watch?v=yXjXJ5OlNyQ&feature=youtu.be

3. Example Finding Parameters of a Sinusoid from a Graph **6:19** https://www.youtube.com/watch?v=h72Eax1jQkw&feature=y outu.be

Table 2-1: Basic Properties of the Sine and Cosine Functions

Table 2-2: Some Basic Trigonometric Identities

Page 14

Number	Equation	
1	$\sin^2\theta + \cos^2\theta = 1$	
2	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	
3	$\sin 2\theta = 2\sin\theta\cos\theta$	
4	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$	
5	$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$	

SINUSOIDAL SIGNAL

$$A\cos(\omega t + \varphi)$$

FREQUENCY

AMPLITUDE

• Magnitude

- Radians/sec
- Hertz (cycles/sec)

$$\omega = (2\pi)f$$

• PERIOD (in sec)

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

PHASE

Relation of Frequency to Period (1 of 2)

Time-Domain versus Frequency-Domain

Figure 2-6: Sinusoidal signal with parameters A = 20, $\phi = -0.4\pi rad$.

$$\Omega_0 = 2\pi (40), F_0 = 40 \text{ Hz}, \text{ and}$$

Relation of Frequency to Period (2 of 2)

Figure 2-7: Cosine Signals (*B*)
$$F_0 = 100 \text{ Hz}$$
; (*C*) $F_0 = 0$

$$X(t) = 5Cos(2\pi f_0 t)$$
 for Several Values of $F_0: (A)F_0 = 200$ Hz;

$$F_0: (A) F_0 = 200 \text{ Hz};$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

(a) Cosine Signal:
$$f_0 = 200 \text{ Hz}$$

$$\omega = 2\pi f$$

1. Why Study Sinusoids? VanVeen

https://www.youtube.com/watch?v=yXjXJ5OINyQ

```
Fundamental reasons why sinusoids
  are so important in signal
  processing:
    1. They occur in nature (physics)
       - electromagnetic waves (e.g. light)
       - pendulum
       - crystal oscillator
       -tuning fork
```

2. They are used in communication systems

- radio WIBA BIOKHZ
AM, FM

- television

-cellular

- etc

3. Any signal can be represented as a "sum" of sinusoids

- music, speech

- images - FMRI

- Stock prices

- EEG

- etc

THIS IS THE BIG ONE!

LTI SYSTEMS CAN CHANGED AMPLITUDE AND PHASE BUT NOT FREQUENCY!

LINEAR TIME INVARIANT SYSTEM DIFFERENCE OR DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS.

DSP First

Second Edition

TLH LECTURE 2_2 Section 2-3.2, 2-4

Chapter 2

Sinusoids

PLOTTING COSINE SIGNAL from the FORMULA

$$5\cos(0.3\pi t + 1.2\pi)$$

• Determine period:

$$T = 2\pi / \omega = 2\pi / 0.3\pi = 20/3$$

Determine a peak location by solving

$$(\omega t + \varphi) = 0$$
$$0.3\pi t + 1.2\pi = 0$$

```
% Lecture Ch2 2
% 5*cos(0.3*pi*t +1.2*pi)
% Find the radian frequency, the frequency, and period
omega = 0.3*pi % 0.9425 rad/sec
omega_deg = 0.3*180 % 54 degrees per second
f = omega/(2*pi) % 0.1500 Hertz (cycles/sec)
                    % 6.6667 seconds in a period
T = 1/f
%
% Find phase shift and time shift 0.3*pi*t+1.2*pi =0
%
phi shift = 1.2*pi % 3.7699 rad
tpeak= -1.2*pi/(0.3*pi) % -4 seconds (shift to LEFT)
% CHECK 1.2*pi/2*pi and -4/T
rad_shift_ratio = -1.2*pi/(2*pi) % 0.6000 (60%)
t_shift_ratio = -4/T % 0.6000 Same ratio
```

TIME-SHIFT

• In a mathematical formula we can replace t with t-t_m

$$x(t-t_m) = A\cos(\omega(t-t_m))$$

Thus the t=0 point moves to t=t_m

Peak value of cos(ω(t-t_m)) is now at t=t_m

PHASE ←→ TIME-SHIFT

Equate the formulas:

$$A\cos(\omega(t-t_m)) = A\cos(\omega t + \varphi)$$

• and we obtain:

$$-\omega t_m = \varphi$$

• or,

$$t_m = -\frac{\varphi}{\omega}$$

```
%
format long % Get full precision
figure(1)
t=-0.02:.0001:.02;
y=5*cos(200*pi*t + 0.25*pi);
plot(t,y),grid,xlabel('Time')

t_shift = -.25*pi/(2*pi)*(1/100) % -0.001250000000000 s
sprintf('%0.5f', t_shift) % ans = '-0.00125'
```

F= 100 Hz Shift is 0.25*pi or 45 degrees. Shift is to left in figure.


```
% A*cos(wt + Phi) = A(cos(wt)sin(Phi)-sin(wt)cos(Phi)
A= 5
Phi = pi/4  % 0.7854
w=200*pi  % 628.3185 rad/sec
f=200*pi/(2*pi)
t=0:.0001:.1;
y1=A*cos(w*t+Phi);
y2=A*[cos(w*t)*sin(Phi)-sin(w*t)*cos(Phi)];
figure(1)
subplot(2,1,1),plot(y1),title('A*cos(wt + Phi)')
subplot(2,1,2),plot(y2),title('A(cos(wt)sin(Phi)-sin(wt)cos(Phi)')
```

ARE THEY THE SAME ??

YOU BET!

Attenuation

In real waves, there will always be a certain degree of <u>attenuation</u>, which is the <u>reduction of the signal amplitude</u> <u>over time</u> and/or over distance.

$$x(t) = A\cos(\omega t + \varphi)$$

In a sinusoid, A is a constant.

However, the amplitude can have exponential decay, e.g.,

$$A(t) = Ae^{-t/\alpha}$$

$$x(t) = Ae^{-t/\alpha}\cos(\omega t + \varphi)$$

MATLAB Example (I)

Generating sinusoids in MATLAB is easy:

```
% define how many values in a second
fs = 8000;
% define array tt for time
% time runs from -1s to +3.2s
% sampled at an interval of 1/fs
tt = -1 : 1/fs : 3.2;
xx = 2.1 * cos(2*pi*440*tt + 0.4*pi);
```

The array xx then contains a "sampled" signal of:

$$x(t) = 2.1\cos(880\pi t + 0.4\pi)$$

MATLAB Example (II)

Introducing attenuation with time

```
% fs defines how many values per second
fs = 8000;
tt = -1 : 1/fs : 3.2;
yy = exp(-abs(tt)*1.2);% exponential decay
yy = xx.*yy;
soundsc(yy,fs)
```

Array yy contains a signal with changing amplitude:

$$y(t) = 2.1e^{-1.2|t|}\cos(880\pi t + 0.4\pi)$$

Soundsc lets you hear the signal yy

CLICK SPEAKER

```
% define how many values in a second
fs = 8000;
% define array tt for time
% time runs from -1s to +3.2s
% sampled at an interval of 1/fs
tt = -1 : 1/fs : 3.2;
xx = 2.1 * cos(2*pi*440*tt + 0.4*pi);
%fs defines how many values per second
fs = 8000;
tt = -1 : 1/fs : 3.2;
yy = \exp(-abs(tt)*1.2);% exponential decay
yy = xx.*yy;
soundsc(yy,fs)
```

Figure 2-9: Plotting the 40-hz Sampled Cosine 2.8(b) for (A)

$$T_s = 0.005 S$$
; (B) $T_s = 0.0025 S$; (C) $T_s = 0.0005 S$

RESOLUTION MAKES ALL THE DIFFERENCE 0.005, 0.0025, 0.0005

Page 20

STRAIGHT LINE INTERPOLATION

rson Education, Inc. All Rights Reserved

