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Table 2-1: Basic Properties of the Sine and Cosine Functions

Property Equation
Equivalence sinf = cos(@ — m/2) or cos(f) = sin(f + 7 /2)
Periodicity cos(f + 2mk) = cos, when k is an integer
Evenness of cosine cos(—60) = cos b
Oddness of sine sin(—f) = —sin 6
Zeros of sine sin(rk) = 0, when k is an integer
Ones of cosine cos(2mk) = 1, when k is an integer
Minus ones of cosine | cos[2w (k + %)] = —1, when £ is an integer
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Table 2-2: Some Basic Trigonometric Identities

Page 14
Number Equation
1 sin® 0 + cos? 6 = 1
) cos 20 = cos? 6 — sin’ 6
3 sin 260 = 2sin 6 cosH
4 sin(e £ B) = sina cos B & cosa sin B
5 cos(a £ B) = cosacos B Fsinu sin B
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SINUSOIDAL SIGNAL

Acos(awt+ @)
°F'?EFSLJ:::ZC + AMPLITUDE

* Hertz (cycles/sec) * Magnitude

w=(2r)f

* PERIOD (in sec) * PHASE
1 2r

T=—
f



Relation of Frequency to Period @ of2)

Time-Domain versus Frequency-Domain

Figure 2-6: Sinusoidal signal with parameters A = 20, Q, = 27r(40), F, =40 Hz, and
¢ =-0.4zxrad.
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Relation of Frequency to Period @of2)

Figure 2-7: Cosine Signals X (t)=5Cos(27ft) for Several Valuesof ~ F: (A)F, = 200 Hz;
(B) F,=100Hz; (C)F, =0
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TIME-SHIFT

* In a mathematical formula we can replace t with t-t

X(t—t,) = Acos(w(t—t;))

* Thus the t=0 point moves to t=t_

* Peak value of cos(m(t-t,)) is now at t=t
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PHASE € =2 TIME-SHIFT

* Equate the formulas:

Acos(a(t—t,)) = Acos(wt + @)

 and we obtain:

AAAAAAA



PLOTTING COSINE SIGNAL from the FORMULA
5c0s(0.37t+1.27)

* Determine period:

* Determine a peak location by solving
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Time shift -4 sec

5c0s(0.37t +1.27)

5cos (0.3 [t +4])



“""DSP-First, 2/e

LECTURE 4 # Ch2
Phasor Addition Theorem

ADDING PHASORS WITH THE SAME FREQUENCY



owl—\omg@

Euler’'s FORMULA

Complex Exponential
* — . 1
Real part is cosine { |sin®

Imaginary part is sine K?
Magnitude Is one
el? = cos(0) + jsin(O)

re’? = rcos(6) + jrSiﬂ(Q|

LA g
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POP QUIZ: Complex Amp

* Find the COMPLEX AMPLITUDE for:

X(t) = J3 cos(/ 7zt +0.57)
e Use EULER’S FORMUTLA:

X(t) _ 9;{{\/§ej(777zt+0.572)}
_ 9;{{\/§ej0.57zej777zt}




POP QUIZ-2: Complex Amp

e Determine the 60-Hz sinusoid whose COMPLEX

* Convert X to POLAR:
X(t) = ER{(\/_ + j3)ie"(12°”t)}
_ m{rejﬂ/3611207{t}
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WANT to ADD SINUSOIDS

* Main point to remember: Adding sinusoids of
common frequency results in sinusoid with SAME

frequency

Two Cosine Waves and Their Sum
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TLH MODIFIED

LECTURE # CH2-3
Complex Exponentials

& Complex Numbers
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Euler’'s FORMULA

Complex Exponential
* — . 1
Real part is cosine { |sin®

Imaginary part is sine K?
Magnitude Is one
el? = cos(0) + jsin(O)

re’? = rcos(6) + jrSiﬂ(Q|

LA g

L
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O ODN

nth‘

COMPLEX EXPONENTIAL

el?t = cos(mt) + jsin( wt)

Interpret this as a Rotating Vector

0 = ot

Angle changes vs. time f?‘;ine
ex: o=20v rad/s cosd
Rotates 0.2v in 0.01 secs \J

el? = cos(0) + jsin(O)




B
% ROOTS OF UNITY

We often have to solve zN=1
How many solutions?

—=r=1 N6’:2vk:>«9:2—‘/k

N
z=gei2%N K-012..N-1



O ONXO B

ROOTS OF UNITY for N=6

i8TV6

Imaginary Axis

» X

Real Axis

Solutions to zN=1
are N equally
spaced vectors on
the unit circle!

What happens if
we take the sum
of all of them?
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POP QUIZ-2: Complex Amp

Determine the 60-Hz sinusoid whose

COMPLEX AMPLITUDE is: _
X =+/3+ i3

Convert X to POLAR:

X(t) = R{(J/3 + j3)eit2v}
_ m{\@ejv/?,ejlzovt}

= X(t) = \@COS(_].ZO vt+v/3)
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Note atan (3/43) —is atan(\3) = /3

Remember 60 degree angle
Cos= 1/2  Sin=+3/2



PROBLEM SESSION 1

EXAMPLE 2-1 Plotting Sinusoids
2 xLT
Figure 2-6 shows a plot of the signal /

x(t) = 20cos(2r(40)t — 0.47) (2.3)

In terms of our definitions, the signal parameters are A = 20, wy = 27(40) rad/s,
fo = 40Hz, and ¢ = —0.47 rad. The signal size depends on the amplitude parameter
A; its maximum and minimum values are +20 and —20, respectively. In Fig. 2-6 the
maxima occur at

t=...,—0.02,0.005,0.03,...
and the minima at
..., —0.0325, —0.0075, 0.0175, ...

The time interval between successive maxima in Fig. 2-6 is 0.025s, which is equal

to 1/f,. To understand why the signal has these properties, we will need to do more
analysis.



PHASE € =2 TIME-SHIFT

* Equate the formulas:

Acos(a(t—t,)) = Acos(wt + @)

 and we obtain:

AAAAAAA



2-3.1 Relation of Frequency to Period ’e&feoj L ATT ecodrans

The sinusoid plotted in Fig. 2-6 is a periodic 81gnal The period of the sinusoid, denoted

?EQ\U D by Tp, is the time duration of one cycle of the sinusoid. In general, the frequency of
the sinusoid determines its period, and the relationship can be found by applying the
definition of periodicity x(t + Tp) = x(¢) as follows:

g \(een
/M(’ A cos(wg(t + Tp) + ¢) = A cos(wpt + ¢) d\h o\ P
é()o - qov/s =5 -';' F5.0ms cos(wot + woTy +¢) = cos(wot + @) e oM &
A =15 voof. 09T L= ms
20 B e 5 B e el o E B e 5 AR il e e 2 e E E O & B v 8.5 - R w5 E -
B EIT L L TEIE ol "I 4 W Y POT S gt
x(t) 0_; ...... ....... ....... ...... ...... ZWF@Q:ZT T—b = \//:,_
—1w0p/ T i ol = 5 s < i e SRR 3. .. 5 . <eo ¥4 200 E N
el e N o b b R TR, Figure 2-6 Sinusoidal signal with parameters
003 002 —001 0 | 001 002 003 004 A= 2% wo = 27 (40), fo =40 Hz, and
~{0 Time ¢ (s) A ¢ = —0.4x rad. ‘
" SmS Joms 37 ’[::: L =25

L T L el doc/,



% Plot of cosine and shifted cosine

% 20*cosine(2*pi*40 -0.4*pi) vs 20*cosine (2*pi*40)
$ TO= 1/40 = 25ms.
taxis = -.04:.001: .04;
x1l=cos (2*pi*40*taxis) ;

X2=cos (2*pi*40*taxis -0.4*pi);
subplot(2,1,1); plot(taxis,x1)
subplot(2,1,2); plot(taxis,x2)

grid on
| (0{')

Consider a time axis from -.04 to +.04 seconds
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DSP First, 2/e

Modified TLH

Lecture 5
Spectrum Representation

Chapter 3; 3-1



2
9
Example 3-1: To determine the spectrum of the following signal,

x(t) =10+ 14 cos(200xt — x/3) + 8 cos(S00xt + 7 /2)

which is the sum of a constant and two sinusoids, we must convert from the general form in (3.2) to
the two-sided form in (3.4). After we apply the inverse Euler formula, we get the following five terms:
x(1) =10 + Te~I7/3 127000 7 jx/3 =27 (100}

+ 4€j7t/2€j27r(?_50)t n 4(,—_j7r/2(,—j27l'(250)1 3.

Note that the constant component of the signal, often called the DC component, can be expressed as a
complex exponential signal with zero frequency (i.e., 10¢/” = 10). Therefore, in the list form suggested
in (3.5), the spectrum of this signal is the set of five rotating phasors represented by the frequency/
complex amplitude pairs

((0, 10), (100, 7e™/7/3), (=100, 7e/™/3), (250, 4e/™/?), (=250, 4¢777/2))

Note: The terminology “DC” comes from electric circuits, where a constant value of current is called direct current,
or DC. It is common to call Xy = Ay the DC component of the spectrum. Since the DC component is constant, its
frequency is f = 0.
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FREQUENCY DIAGRAM

Want to visualize relationship between
frequencies, amplitudes and phases

Plot Complex Amplitude vs. Frequency
Example 3-1 10 Complex amplitude

7ei7/3 | (Femin/E

—250 \_ -100 0 100 250 oo
Spectral line




WHAT IS BANDWIDTH?
https://www.youtube.com/watch?v=whUkZUORix0
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https://www.youtube.com/watch?v=whUkZUORix0

Frequency Response Magnitude

01 : -1.00
~ 0.9- : -0.81
S 0.8- | -0.64 o
% 06l  3dB Bandwidth i ggz g
S 051 F0.25 B
2 04- F0.16
Q 0.3 £0.09 ¢
E 0.2- [0.04 ~

0.1- [ 0.01

0.0- [ 0.00

10 100 400

Frequency (kHz)

Definition - For bits/second

The maximum amount of data transmitted over an internet connection in a
given amount of time.

Bandwidth is often mistaken for internet speed when it's actually the volume of
information that can be sent over a connection in a measured amount of time —
calculated in megabits per second (Mbps).
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EFuler’s Formula Reversed

Solve for cosine (or sine)
el = cos(a) + jsin(a)

e~ — cos(—ab) + jsin(—ab)
e~ — cos(a) — jsin( a)
eldt 4 e=Jdt — 2c05( )

cos(a) = L(el® +e1d)
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INVERSE Euler’s Formula

What is the “spectrum” representation for
a single sinusoid?

Solve Euler’s formula for cosine (or sine)

cos(at) = L(el? +e7I®)

sin( ab) = %j(ej“Jt — e Jd)
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SPECTRUM Interpretation

Cosine = sum of 2 complex exponentials:

Acos(7t) = /J7t Hel!
One has a positive frequency
The other has negative freq. <

Amplitude of each is half as big
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GRAPHICAL SPECTRUM

Acos(7t+0.1) :@m 4 Bgi0tg 7

A o jos

2

7 0 7 o
Freq. in rad/s

AMPLITUDE, PHASE & FREQUENCY are labels



DSP First, 2/e

Lecture 6

Periodic Signals, Harmonics
& Time-Varying Sinusoids

Section 3-4
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Harmonic Signal

Periodic signal : x(t) = x(t+T)
Can only have harmonicfregs: f, =k f,

X(t) = A+ i A cos(27kft + @)
= f,T =1
X(t) is periodic if / l

cos(2zkf, (t+T) + ¢, ) = cos(2zkf,t + 272kf, T + @, )
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Define FUNDAMENTAL FREQ

X(t) = AﬁiAk cos(2+gok) f 1
k=1 O —_—

Largest f, such that
f, =kf, (any =27 1,)

f, = fundamenta | Frequency
f. / f, = Integer, for all k
T, = fundamenta | Period

Main point:

for periodic signals, all
spectral lines have
frequencies that are
iInteger multiples of the
fundamental frequency
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Harmonic Signal
Spectrum

| Harmonic fregs : f, =k f, |

N
X(t) = A, + ZAk cos(2 7kf,t + @, ) 1
k=1 fO ——

X, = Ag !

N
X(’[) _ Xo n Z{%XkejZﬂkfot _l_%xze—jZ;zkfot}
k=1
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Periodic Sighal: Example

Fundamental frequency

®aia(tT)_ giatgial — giatgi2r — glat

.ej7a)b(t+T) — ej7cabtej147z — ej7a)ot
ap =27 T

=l =27
X(t+T) = plian(t+T) 4 @7 (t+T) | 1000 (t+T)

— ejwot + ej7€00t 4 elea)Ot — X(t)
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Harmonic Spectrum (3 Fregs)

I A .
3rd (@)
| | 5th
] -3 -3 1
5 : ] o .
-50 -30 -10 0 10 30 50 f (in Hz)
What is the fundamental frequency? 10 Hz
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(S

POP QUIZ: FUNDAMENTAL

Here's another spectrum:

10
| 7ej72'/3 7e_J7T/3 _
4e—j72'/2 46172-/2
24 -104 8 104  [tinrn) ]

What is the fundamental frequency?

(0.1)GCD(104,240) = (0.1)(8)=0.8 Hz




O\I—‘ON'U@GMG@

(S

Fundamental Frequency

Multiply and divide by 10
104, 240 8 divides 13, 30 —
Now divide by 10 > 0.8

0.8,1.6,24,...8,8.8, 9.6, 10.4,...

24,24.8, ...

16, ...



Example of a Periodic Signal o3

Figure 3-16: Sum of three cosine waves with harmonic frequencies. The spectrum is

shown in Figure 3-18(a), and the fundamental frequency of Xn (t) is 10 Hz.

X(t) =2Cos(20mt)-2/3 Cos(20m(3)t) + 2/5 Cos(20m(5)t)

0 0.5 1 1.5 2
Time ¢ (s)

Copyright © 2016, 1998 Pearson Education, Inc. All Rights Reserved
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MODIFIED BY TLH
Lecture 7
Fourier Series Analysis



OORLONXQ C >

lived from 1768 to 1830

Fourier studied the mathematical theory of heat
conduction. He established the partial differential equation
governing heat diffusion and solved it by using infinite
series of trigonometric functions.



1.5

0.5

Fourier Series of Square Wave

T T

T

1.5

0.5

Fourier Series of Square Wave Train for n=1,3,5,...101

—

.
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Harmonic Signal->Periodic
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STRATEGY: x(t) > a,

ANALYSIS

Get representation from the signal

Works for PERIODIC Signals

Measure similarity between signal & harmonic
Fourier Series

Answer is: an INTEGRAL over one period
To

a, = j X(t)eiektdt




Fourier Series: x(t) > a,

ANALYSIS
Given a PERIODIC Signal

Fourier Series coefficients are obtained
via an INTEGRAL over one period

INTEGRAL over one period
To

a, = j X(t)e ekt

Aug 2016 © 2003-2016, JH McClellan & RW Schafer
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Full-Wave Rectified Sine

X(t) = sin( 27t/ T,) Periodis T, = 4T, Frequency
Doubles

sin(2rt/T)
/\ | T/\ /\ /
t - - - - >
_Tl O Tl 2T1 4

= Absolute value flips the
x() negative lobes of a sine wave

/AVA TA /AVAVi
Ll 1 I 1 I >

B . 0 T, 9T, AT, 1

Auc (b) 22




Full-Wave Rectified Sine {a,}

1%
_ —j(27ITy)kt
-3 | x(t)e dt

TO
- — (271 Ty)kt
:Tiojsm(%t)e 27 /To)k ¢

1

o i7Toktt

To 2J

0
To

0
e (7 /To)(2k-1)t To

12To (= J(7/T)(2k-1))

To

0
e—j(ﬂ/To)(2k+1)t

12To (= (7 /Tg)(2k+1))

Full-Wave Rectified Sine

X(t) = \sin( 27t/ Tl)\
Period : T, = %Tl

= X(t) =[sin( 7t/ T,)|

(71 Te)(2k=1)t (71 Te)(2k+1)t
= je : dt— 4 Ie 0 dt

To

0 23



Full-Wave Rectified Sine {a,}

a—i(x/To)(2k-1)t To - i (x/To)(2k+D)t To

A = i12To(—j(7/To)2k-1)|  j2To(=i(#/To)(2k+1))
0 0
. 1 —j (I Ty)(2k-1)T 1 —j (I Ty)(2k+1D)T
=1, @I 1) 1 T )
(2k-1) (2k+1)

1 —jrk-1) a1 [(a-im(2k+1) )
— 7(2k-1) (e 1)‘ 7(2k+1) (e 1

2k+1—(2k-1) 2k —2
(7z(4k2 -1) X( ) 72'(4k2 1)
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Fourier Coefficients: a,

a, I1s a function of k
Complex Amplitude for k-th Harmonic

— 2

Sy

— —l or targe
w(4k? —1) NOTETLT

Does not depend on the period, T,

DC value is

a, =2/ 7 = 0.6336
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Spectrum from Fourier Series

Plot|a, | for Full-Wave Rectified Sinusoid

a, =
7(4k2 1) 2
T
—2 —2
3 3r
—2 —2
9 2 5 157y —2 =2
6% 357 35w By
17| G .

—4Fy —3Fy —2Fy —Fp 0 Fo 2Fy 3Fo 4Fy f
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*Components

> Full-Wave Rectified Sinusoid x(t) = sin(t/T,)
1 | |
6 T, =10ms 0 - —2

j —F,=100Hz | * 7(4k?-1)

+ a, =2/ =0.6336

Reconstruct From Finite Number of

N
Xy () =85+ {ak glamhol 4 gr g7l
k=1

j

How close is x, (t) to x(t) = sin( 7t/ T,)|?

armonic



Reconstruct From Finite Number of Spectrul
Components
Full-Wave Rectified Sinusoid x(t) = sin(zt/T,)

TO =10 ms (a) Sum of DC and 1°¢ through 4™ Harmonics

l e = '{,_;rf"”"'i:h' R }:y',_;*”' ""*.,_r' = 2 m S WS ’»\ OB emaw w S '/5""""1.3,\__\ - , =R A
=F =10Hz .o | / N\ /N " /N7 /N /\"

,,,,,,,
S L T e N A T T N T T T AT . N e T
,,,,,,,

a, =2/ =0.6336

1

N
y.

Xo(1)

o \ 7 > X T » X . ’ ° T r 1 avel
& A A ) & \ y 7 | VAN | VLW A W |
/ \ / \ g \ / \ i/
Sl SN S VLR Y A T " AP WY S Y A U
/ % i / \ K \ / A
/ \ ‘' / \ - J \ - / \ - / \ -
/ \ J \ V4 ) 4 ) 7 \
J \ '/ \ ‘' / \ '/ WO | \ '
J \ '/ \ / \ / \ ,,
| \ : / \:/ ¥ ; \:/ \
/ \'/ \'/ \'/ \'/ \
O W \¥) o/ v .
SN 4 L § N R . R I S

K = > 0 0.01 0.02 0.03 0.04 0.05
7Z'(4k — 1) Time 7 (s)




MODIFIED BY TLH

DSP First, 2/e

Lecture Ch3
Fourier Series Analysis

SEE COURSE WEBSITE FourierCh8 TLH



https://sce.uhcl.edu/harman/CENG3315_Sp2019/0_TLH_Work%26Book/TLH_Chap8Fourier.pdf

LECTURE OBJECTIVES

* W

¢ ANALYSIS via Fourier Series
* For PERIODIC signals: X(t+Ty) = Xx(t)

* Draw spectrum from the Fourier Series coefficients

Aug 2016 © 2003-2016, JH McClellan & RW Schafer



SPECTRUM DIAGRAM

* Recall Complex Amplitude vs. Freq

- 7el7/3 T 7e 1713 -

4e—j72'/2 4ejﬂ/2
—250 —-100 0 100 250 |f (in H>Z) |

1>

™

Aug 2016 © 2003-2016, JH McClellan & RW Schafer



fHarmonic Signal->Periodic

Sums of Harmonic
complex exponentials
are Periodic signals

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

Aug 2016 © 2003-2016, JH McClellan & RW Schafer



Fourier Trig Series

[1EXAMPLE 8.4  Fourier series square wave example
A square wave of amplitude A and period 7" shown in Figure 8.4 can be
defined as
A, Dt < Z
f(t) = T 2
—eA, -5 <t <0,

with f(t) = f(t +T), since the function is periodic.

A A1)

~ Y

FIGURE 8.4 Square wave of Example 8./



The first observation is that f(t) is odd, which yields the result that ap = 0
and a; = 0 for every coefficient of the cosine terms. Letting wo = 27/T', the

coefficients b,, are
9 T/2
b, =2 (—) / Asin(nwot) dt.
I 0

_ 4A i 2n — 1)wot]
o & (2n—1)
where (2n — 1) is introduced to assure that only odd terms are included in the

summation. The sine waves that make up the Fourier series for the odd square
wave are

The result is

fry =4 [sm(wot) y Bet)

T

so the series consists not only of sine terms, as expected, but also odd harmonics
appear. This is due to the rotational symmetry of the function since the wave
shapes on alternate half-cycles are identical in shape but reversed in sign. Such
waveforms are produced in certain types of rotating electrical machinery.

L]



1 EXAMPLE 8.5

Complex Series Square Wave Example
Consider the odd square wave of Example 8.4 and the complex Fourier
coefficients

1 0 ‘ 1 T2 ‘
A (—A)e 0t gt 4 — / (A)e "0t gy, (8.29)
T/ =

—T/2
which leads to the series

o0 6i(271—1)w0t

f(t):% ¥ =T (8.30)

as defined in Equation 8.23.

This form contains complex coefficients, but the series can be written in
terms of sine waves by combining the corresponding terms for positive and
negative arguments. To determine the coefficients, the amount of difficulty is
about the same for the trigonometric series and the complex series. However, the
complex series perhaps has an advantage when the magnitude of the coefficients
are of interest.

Each coefficient has the form

9A  PA g
Oni= T = — € y
i nm

= el B . <

and the coefficients for even values, n = 0,%2,..., are zero. Notice that the
coefficients decrease as the index n increases. The use of these coefficients to
compute the frequency spectrum of f(t) is considered later.

The trigonometric series is derived from the complex series by expanding
the complex series of Equation 8.30 as

) = Z e

n=—oo

o 2;4.6_1‘,3w0t . 2_46_@01‘, 5 %ewot + ‘Q_Aﬂizwot e
3mi T g} 3mi



and recognizing the sum of negative and positive terms for each n as 2 sin(nwot).
The trigonometric series becomes

4A [ . sin(3wot) . sin [(2n — 1)wot]
t —_ S ) t D)
flt)y == (sm«uo J— ) Z S

which is the result of Example 8.4.



Fourier Series of
3
Pulse Train

Trig and Exponential Forms

Fourier Pulse Train Lecture on Course Website



Fourier Series Synthesis

A
QA = Z(1—-4kd)
a a
a_, a_s O_s[RCSEEEEE I | SR as a;. a
RN | N a0
Epectrum Plot
To = Period _ N = Number of Coefficients
l ((/A./\ /'l)) versus / l
A
Fourier Analysis Fourier Synthesis
) "aC ' S 1 ([ . . -
x (1) Extract Sinusoids (R ' - Approximate the Signal xn (1)
— T L
Y > N
0 . xN(t) = Z a2 IR
Fo =i Hz
0 k=—N

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 14



PULSE WAVE SIGNAL
GENERAL FORM

Defined over one period

1 0<|t|<z/2
X(t) =
0 7/2<|t|<T,/2

M (1) Nonzero DC value

1
| | | | | I S
o7 Ty, L -3 03 L T, 9.

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 15



Pulse Wave {a,}

_ 1 —j(27/To)(k)t
& = Ty Ix(t)e : dt General PulseWave
—To/2 x(t):Jl Os\t\<r/2
rl2 0 7/2<|t[<T,/2
ak :T_lo jle_J(Zﬂ/To)ktdt
—7/2
a-i(27/To)kt z/2 a-i@7ITo)k(z/2) _ a=i(27/To)k(~7/2)
— (1 _
- (To) —j(27ITy)k - —-1(27)k
—7/2

ej(ﬂ'/To)k(T) _e—j(ﬂ'/To)k(T) B Sln(ﬂ'k’Z'/TO)
(J2) 7K 7k

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 16




Pulse Wave {a,} = sinc

PulseWave

a, = Sm(ﬂ;kT/TO) k=0,+1,%2,...

Double check the DC coefficient:
/2

a, =+ jle‘“””"’“’“dt Note, lim SNUK?/To) _, 7
° To ' k50 7k T
—7/2 0
/2
T P If sick?
=1 jldt =1 E = ]_ £ Where do you go if sick
—7/2

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 17



PULSE WAVE SPECTRA

T=T,/2

Ak

t=T,/4

7=T,/16

A T ="To/2
1
2
i I i -
I—2F() 0 2F0| f
(a)
A = To/4
1
4
1 a I I ‘ ‘ I - e
L B = YA 0 4F, 1 | | #
(b)
i e
‘ | | %| ‘ ‘
il ‘ | | ‘ | N
—8F0 -—4F0 0 4F0 8F0 f

Aug 2016
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50% duty-cycle (Square) Wave

r=T,/2 =a, :S'”(”k(;L/Z)/To) :S'”(Zkklz) k =0,+1,42,...

Thus, a,=0 when k Is odd

Phase Is zero because x(t) is centered at t=0
different from a previous case

PulseWave starting at t=0 1
1 0<|t|< _(—1)k J
X(t) = <z o =1=CD_ 70" (o4
0 7<|t|<T, j27K : _
’ k=0
Aug 2016

© 2003-2016, JH McClellan & RW Schafer 19



PULSE WAVE SYNTHESIS
with first 5 Harmonics

(a) Pulse Width: t = Ty/2

(c) Pulse Width: t = T /16

o L L o
XS(I) l %\ /H\ /H\ /H\
U= TO /16 0 P~ " Lv—bf—»vf—\d—vAu\—/—vavf—\d—v—th Level.

—To 0 To 2To
Aug 2016 Time ¢ (s)




FourierProblemSession EvenPulseTrain

PULSE W AVE Lettunt 33> Slide
x(m xeerm) L

{ { |
H—D.I& 5t
-.T'a- = ’/L yl T}E )


https://sceweb.sce.uhcl.edu/harman/CENG3315_Sp2019/0_ProblemSessions/FourierProblemSession.pdf

HOMEWORK HELP

Problem 4 30

Fourier series of clock signal Consider the computer clock signal shown in
the Figure, with a pulse rate of 8 million pulses per second (f. = 8 Megahertz)
and amplitude of 4 volts and a pulse width of 0.05 microseconds. NOTE: The

figure does not show the signal to scale.
- - - -

1. Find the Fourier series by hand calculation using the basic definitions of
the coefficients.

BONUS POINTS 20 See MATLAB_Fourier_Even_PulseTrain on our website
for help.



Fourier Series of Pulse Train
I | | |

I

t time in seconds

* *
0r x X -
* %
| | | | | |
-1 2 S 4 ) 7 9 10
f Hertz %107
| | I
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o [ 1
21 _
0 0l | | | ]
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FourierProblemSessionEvenPulseTrain.pdf

https://sceweb.sce.uhcl.edu/harman/CENG3315 Sp2019/0 ProblemSessions/FourierProblemSession.pdf



https://sceweb.sce.uhcl.edu/harman/CENG3315_Sp2019/0_ProblemSessions/FourierProblemSession.pdf
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