DSP First, 2/e

Modified TLH

Lecture 5 Spectrum Representation

Chapter 3; 3-1

READING ASSIGNMENTS

- This Lecture:
 - Chapter 3, Section 3-1

- Other Reading:
 - Appendix A: Complex Numbers

LECTURE OBJECTIVES

- Sinusoids with DIFFERENT Frequencies
 - SYNTHESIZE by Adding Sinusoids

$$x(t) = \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

- SPECTRUM Representation
 - Graphical Form shows <u>DIFFERENT</u> Freqs

Example 3-1: To determine the spectrum of the following signal,

$$x(t) = 10 + 14\cos(200\pi t - \pi/3) + 8\cos(500\pi t + \pi/2)$$

which is the sum of a constant and two sinusoids, we must convert from the general form in (3.2) to the two-sided form in (3.4). After we apply the inverse Euler formula, we get the following five terms:

$$x(t) = 10 + 7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t} + 4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$
(3.1)

Note that the constant component of the signal, often called the DC component, can be expressed as a complex exponential signal with zero frequency (i.e., $10e^{j0t} = 10$). Therefore, in the list form suggested in (3.5), the spectrum of this signal is the set of five rotating phasors represented by the frequency/complex amplitude pairs

$$\{(0, 10), (100, 7e^{-j\pi/3}), (-100, 7e^{j\pi/3}), (250, 4e^{j\pi/2}), (-250, 4e^{-j\pi/2})\}$$

Note: The terminology "DC" comes from electric circuits, where a constant value of current is called direct current, or DC. It is common to call $X_0 = A_0$ the DC component of the spectrum. Since the DC component is constant, its frequency is f = 0.

FREQUENCY DIAGRAM

- Want to visualize relationship between frequencies, amplitudes and phases
- Plot Complex Amplitude vs. Frequency

Another FREQ. Diagram

Time is the horizontal axis

A musical scale consists of a discrete set of frequencies.

MOTIVATION

- Synthesize Complicated Signals
 - Musical Notes

- Chords: play several notes simultaneously
- Human Speech
 - Vowels have dominant frequencies

- Application: computer generated speech
- Can all signals be generated this way?
 - Sum of sinusoids?

Example 3-2: For the special case of a signal formed as the product of two sinusoids with frequencies $\frac{1}{2}$ Hz and 5 Hz

$$x(t) = \cos(\pi t)\sin(10\pi t) \tag{3.2}$$

it is necessary to rewrite x(t) as a sum before its spectrum can be defined. One approach is to use the inverse Euler formula as follows:

$$x(t) = \left(\frac{e^{j\pi t} + e^{-j\pi t}}{2}\right) \left(\frac{e^{j10\pi t} - e^{-j10\pi t}}{2j}\right)$$

$$= \frac{1}{4}e^{-j\pi/2}e^{j11\pi t} + \frac{1}{4}e^{-j\pi/2}e^{j9\pi t} + \frac{1}{4}e^{j\pi/2}e^{-j9\pi t} + \frac{1}{4}e^{j\pi/2}e^{-j11\pi t}$$

$$= \frac{1}{2}\cos(11\pi t - \pi/2) + \frac{1}{2}\cos(9\pi t - \pi/2)$$
(3.3a)
$$(3.3b)$$

In this derivation, we see four terms in the additive combination (3.10b), so there are four spectrum components at frequencies $\pm 11\pi$ and $\pm 9\pi$ rad/s, which convert to hertz as 5.5, 4.5, -4.5, and -5.5 Hz. The magnitude is the same ($^{1}_{4}$) for all four components. It is also worth noting that neither of the original frequencies (5 Hz and Hz) used to define x(t) in (3.9) appear in the spectrum.

Euler's Formula Reversed

Solve for cosine (or sine)

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

$$e^{-j\omega t} = \cos(-\omega t) + j\sin(-\omega t)$$

$$e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$$

$$e^{j\omega t} + e^{-j\omega t} = 2\cos(\omega t)$$

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

INVERSE Euler's Formula

- What is the "spectrum" representation for a single sinusoid?
- Solve Euler's formula for cosine (or sine)

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

SPECTRUM Interpretation

Cosine = sum of 2 complex exponentials:

$$A\cos(7t) = \frac{A}{2}e^{j7t} + \frac{A}{2}e^{-j7t}$$

- One has a positive frequency
- The other has negative freq.
- Amplitude of each is half as big

GRAPHICAL SPECTRUM

AMPLITUDE, PHASE & FREQUENCY are labels

NEGATIVE FREQUENCY

- Is negative frequency real?
- Doppler Radar provides intuition
 - Police radar measures speed by using the Doppler shift principle
 - Let's assume 400Hz ←→60 mph
 - +400Hz means towards the radar
 - -400Hz means away (opposite direction)
 - Think of a train whistle

Negative Frequency is still a rotating phasor

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- View as vector rotating counterclockwise
 - $\theta = \omega t$
 - Angle changes vs. time

Negative frequency > clockwise rotation

General form of sinusoid spectrum

General form:

$$A\cos(\omega t + \varphi)$$

$$= \frac{A}{2}e^{j\varphi}e^{j\omega t} + \frac{A}{2}e^{-j\varphi}e^{-j\omega t}$$

- Amplitudes are multiplied by ½
- Complex amplitudes are complex conjugates
 - Called conjugate symmetry

SPECTRUM Interpretation

Cosine = sum of 2 complex exponentials:

$$A\cos(7t + 0.1) = \Re\{Ae^{j0.1}e^{j7t}\}\$$
$$= \frac{A}{2}e^{j0.1}e^{j7t} + \frac{A}{2}e^{-j0.1}e^{-j7t}$$

- One has a positive frequency
- The other has negative freq.
- Amplitude of each is half as big

Recall SPECTRUM of cosine

AMPLITUDE, PHASE & FREQUENCY are labels

REPRESENTATION of SINE

Sine = sum of 2 complex exponentials:

$$A\sin(7t) = \frac{A}{2j}e^{j7t} - \frac{A}{2j}e^{-j7t}$$

$$= \frac{1}{2}Ae^{-j0.5\pi}e^{j7t} + \frac{1}{2}Ae^{j0.5\pi}e^{-j7t}$$

$$\frac{-1}{j} = j = e^{j0.5\pi}$$

- Positive freq. has phase = -0.5π
- Negative freq. has phase = $+0.5\pi$

GRAPHICAL Spectrum of sine

EXAMPLE of SINE (has Phase of $-\pi/2$)

$$A\sin(7t) = \frac{1}{2}Ae^{-j0.5\pi}e^{j7t} + \frac{1}{2}Ae^{j0.5\pi}e^{-j7t}$$

AMPLITUDE, PHASE & FREQUENCY are labels

SPECTRUM ---> SINUSOID

Add the spectrum components:

What is the formula for the signal x(t)?

Gather (A,ω,ϕ) information

- Frequencies:
 - -250 Hz
 - -100 Hz
 - 0 Hz
 - 100 Hz
 - 250 Hz

Amplitude & Phase

• 4
$$-\pi/2$$
• 7 $+\pi/3$
• 10 0
• 7 $-\pi/3$
• 4 $+\pi/2$

Note the conjugate phase

DC is another name for zero-freq component **DC** component always has $\phi=0$ or π (for real x(t))

Add Spectrum Components-1

Add Spectrum Components-2

Simplify Components

$$x(t) = 10 +$$

$$7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t}$$

$$4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$

Use Euler's Formula to get REAL sinusoids:

$$A\cos(\omega t + \varphi) = \frac{1}{2}Ae^{j\varphi}e^{j\omega t} + \frac{1}{2}Ae^{-j\varphi}e^{-j\omega t}$$

FINAL ANSWER

$$x(t) = 10 + 14\cos(2\pi(100)t - \pi/3) + 8\cos(2\pi(250)t + \pi/2)$$

So, we get the general form:

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

SPECTRUM of VOWEL (Polar Format)

SPECTRUM of VOWEL (Polar Format)

Aug 2016

Vowel Waveform (sum of all 5 components)

Note that the period is 10 ms, which equals $1/f_0$