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SAMPLING AND ALIASING REFERENCES CH 4 2/12/2019
Let’s Go to the Movies

Interesting illusion: the helicopter's blades are somehow in sync with
the camera’s shutter making it seem as though they are not moving.

O 47 https://www.youtube.com/watch?v=qgvuQGY946g

Helicopter blades and other fast spinning objects often produce

strange effects on camera. Lauren explains why. 3:51

https://www.youtube.com/watch?v=AYQAKwCxScc

Audio Sampling Rate Demo 0:35

https://www.youtube.com/watch?v=hRhVb6iRArg&feature=youtu.be
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https://www.youtube.com/watch?v=qgvuQGY946g
https://www.youtube.com/watch?v=AYQAKwCxScc
https://www.youtube.com/watch?v=hRhVb6iRArg&feature=youtu.be

Video Aliasing

Why car wheels rotate
backwards in movies 4:25

https://www.youtube.com/watch?v=SFbINinFsxk&feature=yout
u.be
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https://www.youtube.com/watch?v=SFbINinFsxk&feature=youtu.be

READING ASSIGNMENTS

This Lecture:
Chap 4, Sections 4-1 and 4-2

Other Reading:
TLH WEBSITE
Next Lecture: Chap. 4, Sects. 4-3 and 4-4
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Sampling

Figure 4-1: Block diagram representation of the ideal continuous-to-discrete (C-to-D)

converter. The parameter

T, seconds.

x(1)

specifies uniform sampling of the input signal every

n=1,234...

nTs In seconds

x[n] =x(nT)
—

Sometimes ADC, A2D, Analog-to-Digital



Sampling Sinusoidal Signals @ of2)

Figure 4-2: Plotting format for discrete-time signals, called a stem plot. In MATLAB, the
function stem produces this plot. Some students also refer to the stem plot as a “lollypop”
plot.
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>> help stem
stem Discrete sequence or "stem" plot.

stem(Y) plots the data sequence Y as stems from the x axis
terminated with circles for the data value. If Y Is a matrix
then each column is plotted as a separate series.

stem(X,Y) plots the data sequence Y at the values specified
In X.
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Sampling Sinusoidal Signals @of2)

Figure 4-3: A continuous-time 100 Hz sinusoid (a) and two discrete-time sinusoids

formed by sampling at f, =2000samples/s (b) and at f =500samples/s (c).

(a) Continuous Waveform: x(7) = cos(2(100)7)
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(b) Sampled: x(nTs) = cos(2w (100)n Ty), with Ty = 0.5 ms
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(c) Sampled: x(nTs) = cos(2m(100)nTy), with Ty = 2 ms
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LECTURE OBJECTIVES

SAMPLING can cause ALIASING

Sampling Theorem
Sampling Rate > 2(Highest Frequency)

Spectrum for digital signals, x[n]
Normalized Frequency

2nf

2 @LIASING
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SYSTEMS Process Signals

) {
X0 sysTEM LUK

PROCESSING GOALS:
Change x(t) into y(t)
For example, more BASS, pitch shifting
Improve x(t), e.g., image deblurring
Extract Information from X(t)
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System IMPLEMENTATION

ANALOG/ELECTRONIC:

Circuits: resistors, capacitors, op-amps

{ {
X0 precrronics —22

DIGITAL/MICROPROCESSOR

Convert x(t) to numbers stored in memory

x(1) x/n/

— A-to-D ﬂ» y—(v>

COMPUTER D-to-A
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SAMPLING x(t)

SAMPLING PROCESS

Convert x(t) to numbers X[n]
“n” is an integer index; X[n] is a sequence of values
Think of “n” as the storage address in memory

UNIFORM SAMPLING at t = nTy
IDEAL: x[n] = x(nT,)

X0 | cpop 2,
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SAMPLING RATE, f_

SAMPLING RATE (f,)
£ =1/T.
NUMBER of SAMPLES PER SECOND

T.= 125 microsec - f, = 8000 samples/sec
UNITS of f ARE HERTZ: 8000 Hz

UNIFORM SAMPLING at t =nT= n/f,
IDEAL: X[n] = x(nT.)=x(n/f,)

x[n]>=x(n T)

4
L C-to-D
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STORING DIGITAL SOUND

X[n] is a SAMPLED SISIGNAL
A list of numbers stored in memory

EXAMPLE: audio CD

CD rate Is 44,100 samples per second
16-bit samples
Stereo uses 2 channels

Number of bytes for 1 minute Is
2 X (16/8) X 60 X 44100 = 10.584 Mbytes
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(a) Continuous Waveform: x(7) = cos(27(100)z7)
f =100Hz| |

—0.01 —0.005 0 0.005 0.01 0.015 0.02
Time (s)

(b) Sampled: x(nTs) = cos(2m(100)nTy), with T =
f, =2kHz| 1.
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f, =900Hz

(c) Sampled: x(nTs) = cosRm(100)nTy), with T} :@
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vay 4 \Which one provides the most accurate representation of x(t)?




SAMPLING THEOREM

HOW OFTEN DO WE NEED TO SAMPLE?
DEPENDS on FREQUENCY of SINUSOID
ANSWERED by SHANNON/NYQUIST Theorem
ALSO DEPENDS on "RECONSTRUCTION”

Shannon Sampling Theorem
A continuous-time signal x(7) with frequencies no higher than f,,x can be

reconstructed exactly from its samples x|gl= x(nT), if the samples are taken
at arate f, = 1/7; that is greater tha
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Reconstruction? Which One?

Given the samples, draw a sinusoid through the values

Two continuous cosine functions drawn through the same samples

AIRAANSIRAN AT RN

AUUMUMUUUMUVVUVW

0
Time Indcx AXis, n

X[n] = COS(O.47ZT]) When 7 is an nteger
cos(0.4zn) = cos(2.4 7zn)

Occam’s razor -> pick lowest frequency sinusoid
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Be careful... See the References on the \Website
https://www.youtube.com/watch?v=qgvuQGY946g
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DISCRETE-TIME SINUSOID

Change x(t) into x|n]
X(t) = Acos(awt + @)
X[n] = x(nT,) = Acos(wnT, + @)

X[n] = Acos((@T,)n + @)

X[n] = Acos(on + @)

N —
w=owl= f_ | DEFINE DIGITAL FREQUENCY
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DIGITAL FREQUENCY @

2rf

o=l =7

/s

@ VARIES from O to 21, as f varies from
0 to the sampling frequency

UNITS are radians, not rad/sec
DIGITAL FREQUENCY is NORMALIZED
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SPECTRUM (DIGITAL)

. f L )|(* “ 1

|X

X[n]= Acos(27z(100)(n/1000) + @)

100-Hz Cosine Wave: Sampled with 7 = 1 msec (1000 Hz)
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SPECTRUM (DIGITAL) ?2??

c?)=27zi 3 X 4 7 X
2 |
f, =100 Hz A,

X[n] = Acos(2z(100)(n/100) + @)

100-Hz Cosine Wave: Sampled with 7 = 10 msec (100 Hz)
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(a) Spectrum of the 100 Hz Cosine Wave

N[ =

Magnitude

100 Hz sinusoid
fs =80 Hz
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(b) Sampled at Ts = 12.5 ms (fs = 80 Hz)
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The REST of the STORY

Spectrum of x[n] has more than one line for
each complex exponential

Called ALIASING

MANY SPECTRAL LINES

SPECTRUM is PERIODIC with period = 27
Because

Acos(én + @)= Acos((@+27¢)n+ @)
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ALIASING DERIVATION

Other Frequencies give the same @
X (t) =cos(400t) sampled at f, =1000 Hz
X,[N] = c0s(4007z555) = €0s(0.47zn)

X, (t) = cos(2400 #t) sampled at f, =1000 Hz
X, [N] = c0s(24007 1555) = c0s(2.4zn)

X,[n]=cos(2.47n) = cos(0.47zn + 27zn) = cos(0.47zn)

= X,[n] = x[n] 24007 — 4007 = 2(1000)
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ALIASING DERIVATION

Other Frequencies give the same @
If x(t) = Acos(2z(f + ¢ 1)t + @) v 2
/s

and we want : x[n]= Acos(wn + @)

pen: 0= 221+ 22t 2L,

S

o=at, =2 [F2al

S

S S
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ALIASING CONCLUSIONS

Adding an INTEGER multiple of f, or —f, to
the frequency of a continuous sinusoid X(t)
gives exactly the same values for the
sampled signal x[n] = x.(n/fy)

GIVEN x[n], we CAN’'T KNOW whether it came
from a sinusoid at f or (f,+f,) or (f, + 2f.) ...

This I1s called ALIASING
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SPECTRUM for x[n]

PLOT versus NORMALIZED FREQUENCY

INCLUDE ALL SPECTRUM LINES

ALIASES
ADD MULTIPLES of 2n
SUBTRACT MULTIPLES of 2n

FOLDED ALIASES

(to be discussed later)
ALIASES of NEGATIVE FREQS
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SPECTRUM (MORE LINES)

H=27 | X 31X X 31X
AN | :
),
f, =1kHz —?“ 2“(0$

X[n] = Acos(27(100)(n/1000) + @)
100-Hz Cosine Wave: Sampled with 7 = 1 msec (1000 Hz)
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SPECTRUM (ALIASING CASE)
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X[n] = Acos(27z(100)(n/80) + @)

100-Hz Cosine Wave: Sampled with 7. = 12.5 msec (80 Hz)
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SAMPLING GUI (con2dis)

Input: x(t) = cos (27(16.8)t + 1.05) x[n] = cos (27(0.84)n + 1.05)

0.5 ‘
o o -~ |

Output: x(t) = cos(27 (3.2)t — 1.05)
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SAMPLING GUI (con2dis)

<) CON2DIS v1.01
Plot Options  Exit  Help

Input: cos(2x 17.0 t)

x[n] = cos(2x 0.85 n)

Output: cos(2x 3.0 t)
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SPECTRUM (FOLDING CASE)
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X[n] = Acos(27z(100)(n/125) + @)

100-Hz Cosine Wave: Sampled with 7 = 8 msec (125 Hz)
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