

MODIFIED TLH

Lecture 9 Sampling & Aliasing

SAMPLING AND ALIASING REFERENCES CH 4 2/12/2019 Let's Go to the Movies

Interesting illusion: the helicopter's blades are somehow in sync with the camera's shutter making it seem as though they are not moving.

0:47 <u>https://www.youtube.com/watch?v=qgvuQGY946g</u>

Helicopter blades and other fast spinning objects often producestrange effects on camera. Lauren explains why.3:51

https://www.youtube.com/watch?v=AYQAKwCxScc

Audio Sampling Rate Demo 0:35

https://www.youtube.com/watch?v=hRhVb6iRArg&feature=youtu.be

Video Aliasing

Why car wheels rotate backwards in movies 4:25

https://www.youtube.com/watch?v=SFbINinFsxk&feature=yout u.be

READING ASSIGNMENTS

- This Lecture:
 - Chap 4, Sections 4-1 and 4-2

- Other Reading:
 - TLH WEBSITE
 - Next Lecture: Chap. 4, Sects. 4-3 and 4-4

Sampling

Figure 4-1: Block diagram representation of the ideal continuous-to-discrete (C-to-D)converter. The parameter T_s specifies uniform sampling of the input signal every T_s seconds.n = 1, 2, 3, 4...nTs in secondsnTs in seconds

Sometimes ADC, A2D, Analog-to-Digital

Sampling Sinusoidal Signals (1 of 2)

Figure 4-2: Plotting format for discrete-time signals, called a stem plot. In MATLAB, the function stem produces this plot. Some students also refer to the stem plot as a "lollypop" plot.

Copyright © 2016, 1998 Pearson Education, Inc. All Rights Reserved

>> help stem stem Discrete sequence or "stem" plot.

stem(Y) plots the data sequence Y as stems from the x axis terminated with circles for the data value. If Y is a matrix then each column is plotted as a separate series.

stem(X,Y) plots the data sequence Y at the values specified in X.

Sampling Sinusoidal Signals (2 of 2)

Figure 4-3: A continuous-time 100 Hz sinusoid (a) and two discrete-time sinusoids

LECTURE OBJECTIVES

- SAMPLING can cause ALIASING
 - Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

SYSTEMS Process Signals

PROCESSING GOALS:

- Change x(t) into y(t)
 - For example, more BASS, pitch shifting
- Improve x(t), e.g., image deblurring
- Extract Information from x(t)

System IMPLEMENTATION

ANALOG/ELECTRONIC:

Circuits: resistors, capacitors, op-amps

DIGITAL/MICROPROCESSOR

Convert x(t) to numbers stored in memory

SAMPLING x(t)

SAMPLING PROCESS

- Convert x(t) to numbers x[n]
- "n" is an <u>integer index;</u> x[n] is a sequence of values
- Think of "n" as the storage address in memory
- UNIFORM SAMPLING at t = nT_s
 IDEAL: x[n] = x(nT_s)

$$\xrightarrow{x(t)} C-to-D \xrightarrow{x[n]}$$

SAMPLING RATE, f_s

SAMPLING RATE (f_s)

- $f_s = 1/T_s$
 - NUMBER of SAMPLES PER SECOND
- T_s = 125 microsec → f_s = 8000 samples/sec
 UNITS of f_s ARE HERTZ: 8000 Hz
- UNIFORM SAMPLING at t = nT_s = n/f_s
 IDEAL: x[n] = x(nT_s)=x(n/f_s)

$$\xrightarrow{x(t)} C-to-D \xrightarrow{x[n]=x(nT_s)}$$

STORING DIGITAL SOUND

- x[n] is a SAMPLED SISIGNAL
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples
 - Stereo uses 2 channels
- Number of bytes for 1 minute is

2 X (16/8) X 60 X 44100 = 10.584 Mbytes

SAMPLING THEOREM

• HOW OFTEN DO WE NEED TO SAMPLE?

- DEPENDS on FREQUENCY of SINUSOID
- ANSWERED by SHANNON/NYQUIST Theorem
 ALSO DEPENDS on "<u>RECONSTRUCTION</u>"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

Reconstruction? Which One?

Given the samples, draw a sinusoid through the values

Be careful... See the References on the Website *https://www.youtube.com/watch?v=qgvuQGY946g*

DISCRETE-TIME SINUSOID

Change x(t) into x[n] DERIVATION $x(t) = A\cos(\omega t + \varphi)$ $x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$ $x[n] = A\cos((\omega T_s)n + \varphi)$ $x[n] = A\cos(\hat{\omega}n + \varphi)$ $\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$ DEFINE DIGITAL FREQUENCY

DIGITAL FREQUENCY $\hat{\boldsymbol{\omega}}$

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

ŵ VARIES from 0 to 2π, as f varies from 0 to the sampling frequency
 UNITS are radians, <u>not</u> rad/sec
 DIGITAL FREQUENCY is <u>NORMALIZED</u>

SPECTRUM (DIGITAL)

$$x[n] = A\cos(2\pi(100)(n/1000) + \varphi)$$

100-Hz Cosine Wave: Sampled with $T_s = 1$ msec (1000 Hz)

SPECTRUM (DIGITAL) ???

$$x[n] = A\cos(2\pi(100)(n/100) + \varphi)$$

100-Hz Cosine Wave: Sampled with $T_s = 10$ msec (100 Hz)

May 2016

The REST of the STORY

- Spectrum of x[n] has more than one line for each complex exponential
 - Called <u>ALIASING</u>
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period = 2π
 - Because

$$A\cos(\hat{\omega}n+\varphi) = A\cos((\hat{\omega}+2\pi\ell)n+\varphi)$$

ALIASING DERIVATION

• Other Frequencies give the same $\hat{\omega}$ $x_1(t) = \cos(400 \pi t)$ sampled at $f_s = 1000$ Hz $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$ $x_2(t) = \cos(2400 \,\pi t)$ sampled at $f_s = 1000 \,\text{Hz}$ $x_2[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$ $x_{2}[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$ $\Rightarrow x_2[n] = x_1[n]$ $2400\pi - 400\pi = 2\pi(1000)$

ALIASING DERIVATION

• Other Frequencies give the same $\hat{\omega}$ If $x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$ and we want : $x[n] = A\cos(\hat{\omega}n + \phi)$ then : $\hat{\omega} = \frac{2\pi (f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$ $\hat{\omega} = \omega T_s = \frac{2\pi f}{f} + 2\pi \ell$ 26 May 2016

ALIASING CONCLUSIONS

- Adding an <u>INTEGER multiple</u> of f_s or -f_s to the frequency of a continuous sinusoid x_c(t) gives <u>exactly the same values</u> for the sampled signal x[n] = x_c(n/f_s)
- GIVEN x[n], we CAN'T KNOW whether it came from a sinusoid at f_o or (f_o + f_s) or (f_o + 2f_s) ...
- This is called ALIASING

SPECTRUM for x[n]

PLOT versus NORMALIZED FREQUENCY

- INCLUDE <u>ALL</u> SPECTRUM LINES
 - ALIASES
 - ADD MULTIPLES of 2π
 - SUBTRACT MULTIPLES of 2π
 - FOLDED ALIASES
 - (to be discussed later)
 - ALIASES of NEGATIVE FREQS

SPECTRUM (MORE LINES)

SPECTRUM (ALIASING CASE)

$$x[n] = A\cos(2\pi(100)(n/80) + \varphi)$$

100-Hz Cosine Wave: Sampled with $T_s = 12.5$ msec (80 Hz)

SAMPLING GUI (con2dis)

SAMPLING GUI (con2dis)

SPECTRUM (FOLDING CASE)

$$x[n] = A\cos(2\pi(100)(n/125) + \varphi)$$

100-Hz Cosine Wave: Sampled with $T_s = 8 \text{ msec} (125 \text{ Hz})$

