

Modified TLH Lecture Chapter 5 FIR Filtering Intro

READING ASSIGNMENTS

This Lecture:

- Chapter 5, Sects. 5-1, 5-2, 5-3 & 5-4 (partial)

• Other Reading:

Next Lecture: Ch. 5, Sects 5-4, 5-6, 5-7 & 5-8
 CONVOLUTION

- RUNNING (MOVING) AVERAGE FILTER
- CAUSAL Filter >= 0
- Finite Impulse Response Description
- Unit Impulse Signal and Filter Response
- Compare 3-point and 7-point Averge

LECTURE OBJECTIVES

INTRODUCE FILTERING IDEA

- Weighted Average
- Running Average
- FINITE IMPULSE RESPONSE FILTERS

- FIR Filters

Show how to <u>compute</u> the output y[n] from the input signal, x[n]

DIGITAL FILTERING

$$\begin{array}{c|c} x(t) \\ \hline & A-to-D \end{array} \xrightarrow{x[n]} & \hline & COMPUTER \end{array} \xrightarrow{y[n]} & D-to-A \xrightarrow{y(t)} \\ \end{array}$$

- Characterized SIGNALS (Fourier series)
- Converted to DIGITAL (sampling)
- Today: How to PROCESS them (DSP)?
- CONCENTRATE on the COMPUTER
 - ALGORITHMS, SOFTWARE (MATLAB) and HARDWARE (DSP chips, VLSI)

DISCRETE-TIME SYSTEM

$$\xrightarrow{x[n]} COMPUTER \xrightarrow{y[n]}$$

OPERATE on x[n] to get y[n]

- WANT a GENERAL CLASS of SYSTEMS
 - ANALYZE the SYSTEM

 TOOLS: TIME-DOMAIN & FREQUENCY-DOMAIN

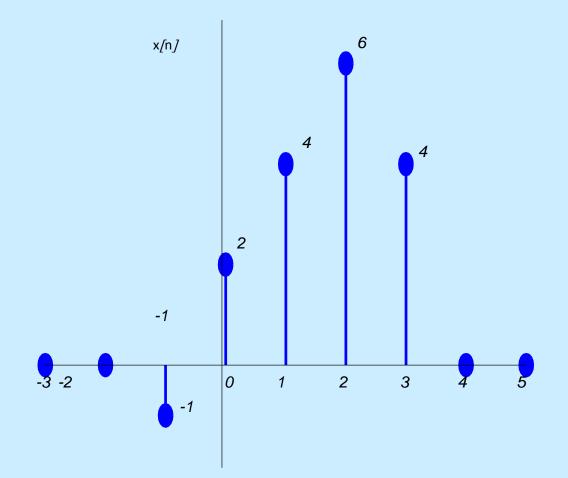
• **SYNTHESIZE** the SYSTEM

D-T SYSTEM EXAMPLES

EXAMPLES:

- POINTWISE OPERATORS
 - SQUARING: y[n] = (x[n])²
- RUNNING AVERAGE
 - RULE: "the output at time n is the average of three consecutive input values"

Consider the points



The Running (Moving) Average Filter

• A three-sample *causal* moving average filter is a special case of (5.1)

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2]), \qquad (5.4)$$

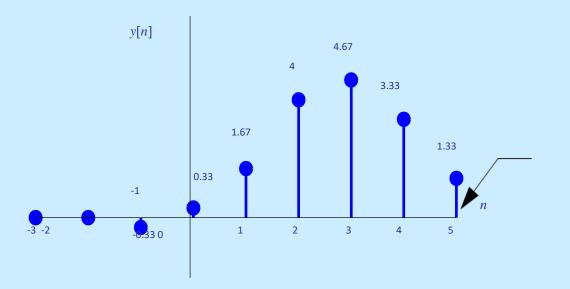
which uses no future input values to compute the present output

From ECE 2601 Chapter 5 Causal is From The Past

The Running (Moving) Average Filter ECE 2610 Signals and Systems 5–4 >> n= -3:5; >> x = $[0 \ 0 \ -1 \ 2 \ 4 \ 6 \ 4 \ 0 \ 0]$ >> % We will learn about the filter function later >> y = filter(1/3*[1 \ 1 \ 1],1,x); >> stem(n,y,'filled')

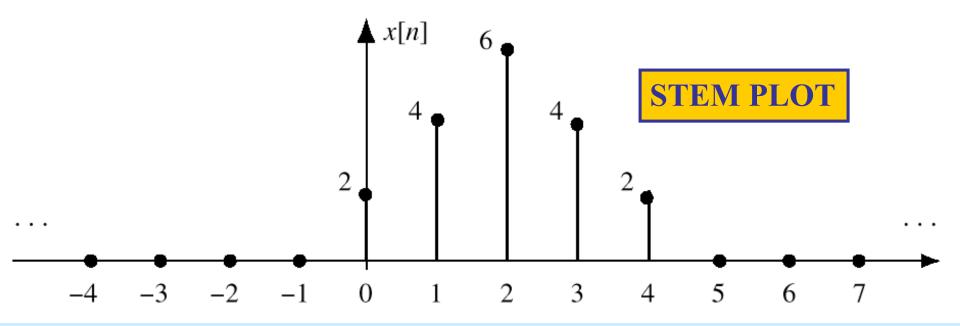
• The action of the moving average filter has resulted in the output being *smoother* than the input

• Since only past and present values of the input are being used to calculate the present output, this filtering operation can operate in *real-time*



DISCRETE-TIME SIGNAL

x[n] is a LIST of NUMBERS INDEXED by "n"



3-PT AVERAGE SYSTEM

ADD 3 CONSECUTIVE NUMBERS

Do this for each "n"

the following input-output equation

Make a TABLE

$$y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$$

n	n < -2	-2	-1	0	1	2	3	4	5	<i>n</i> > 5
x[n]	0	0	0	2	4	6	4	2	0	0
y[<i>n</i>]	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	4	2	$\frac{2}{3}$	0	0

n=0 $y[0] = \frac{1}{3}(x[0] + x[1] + x[2])$

n=1
$$y[1] = \frac{1}{3}(x[1] + x[2] + x[3])$$

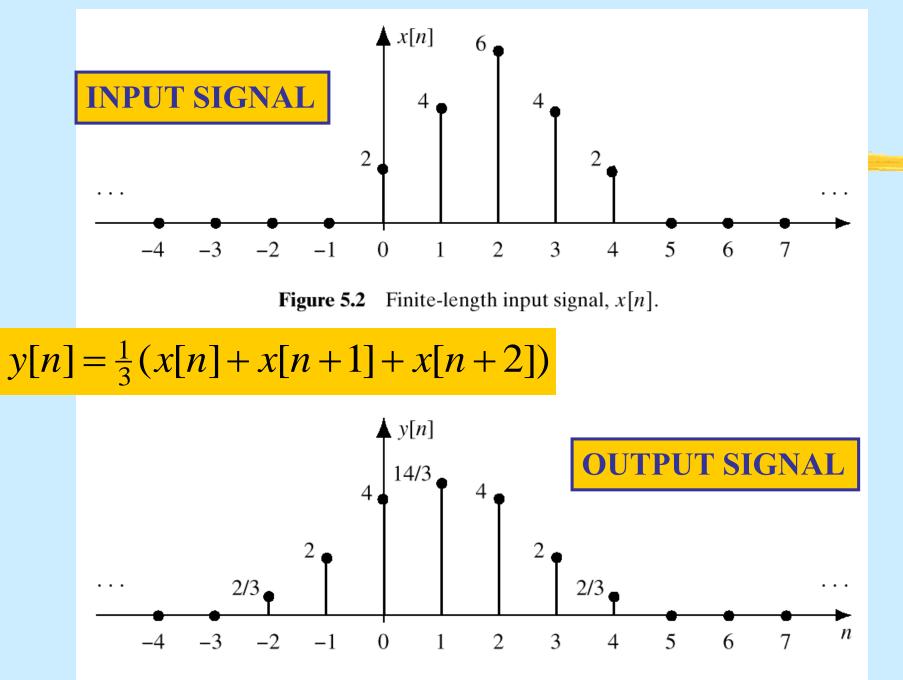


Figure 5.3 Output of running average, y[n].

Aug

PAST, PRESENT, FUTURE

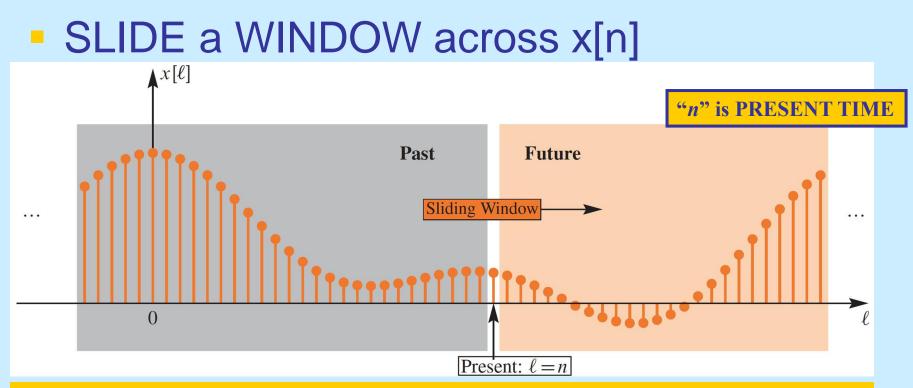


Figure 5-3 Filter calculation at the present time $(\ell = n)$ uses values within a sliding window. Gray shading indicates the past $(\ell < n)$; orange shading, the future $(\ell > n)$. Here, the sliding window encompasses values from both the future and the past.

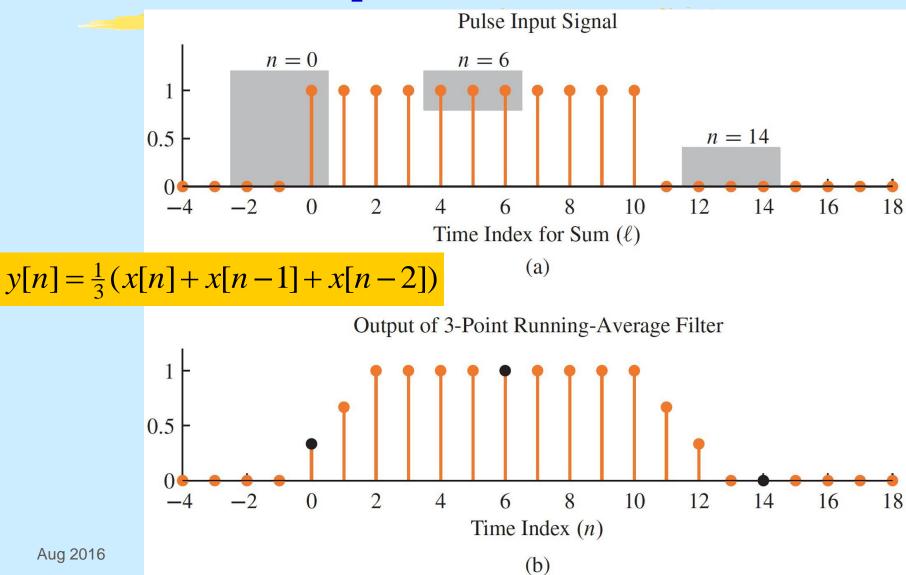
ANOTHER 3-pt AVERAGER

Uses "PAST" VALUES of x[n] IMPORTANT IF "n" represents REAL TIME WHEN x[n] & y[n] ARE STREAMS

 $y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$

n	n < -2	-2	-1	0	1	2	3	4	5	6	7	<i>n</i> > 7
x[n]	0	0	0	2	4	6	4	2	0	0	0	0
<i>y</i> [<i>n</i>]	0	0	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	4	2	$\frac{2}{3}$	0	0

CAUSAL 3-pt AVERAGER



Finite Impulse Response

- Each output value y[n] is the some of a FINITE number of weighted values of the input sequence x[n]
- The FIR filter can be represented in various ways:
- By a difference Equation Page 150
- By the Impulse Response Page 158
- By the Convolution Sum Page 162

GENERAL CAUSAL FIR FILTER

• FILTER COEFFICIENTS {b_k} • DEFINE THE FILTER **NOTE: Index k = 0, 1,2,...** $y[n] = \sum_{k=0}^{M} b_k x[n-k]$

For example,
$$b_k = \{3, -1, 2, 1\}$$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

GENERAL CAUSAL FIR FILTER

FILTER COEFFICIENTS {b_k}

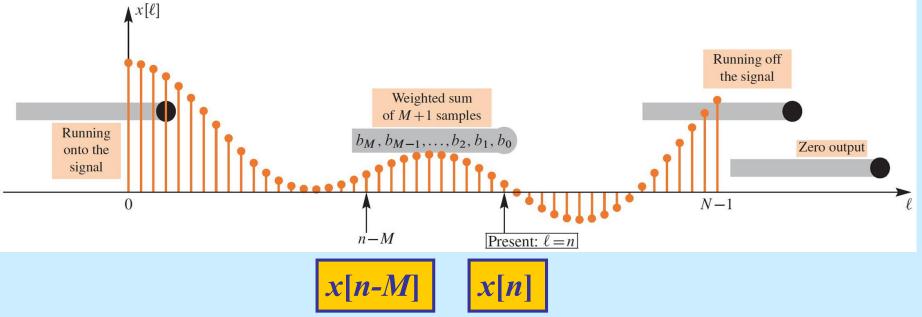
$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

FILTER <u>ORDER</u> is M FILTER <u>"LENGTH"</u> is L = M+1 NUMBER of FILTER COEFFS is L

GENERAL CAUSAL FIR FILTER

SLIDE a WINDOW across x[n]

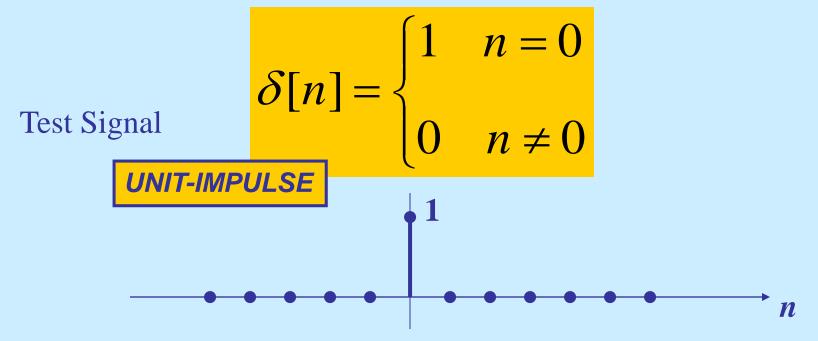
$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$



FILTERED STOCK SIGNAL

SPECIAL INPUT SIGNALS

x[n] has only one NON-ZERO VALUE



UNIT IMPULSE SIGNAL δ [n]

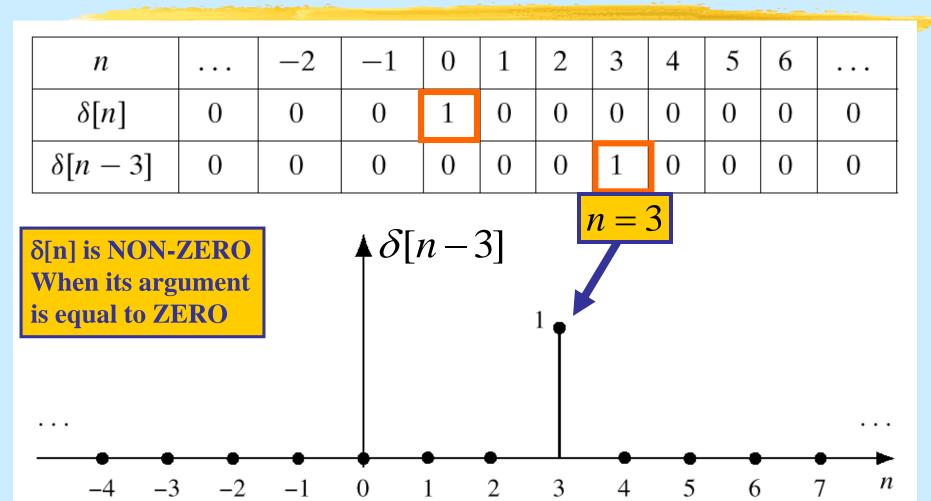
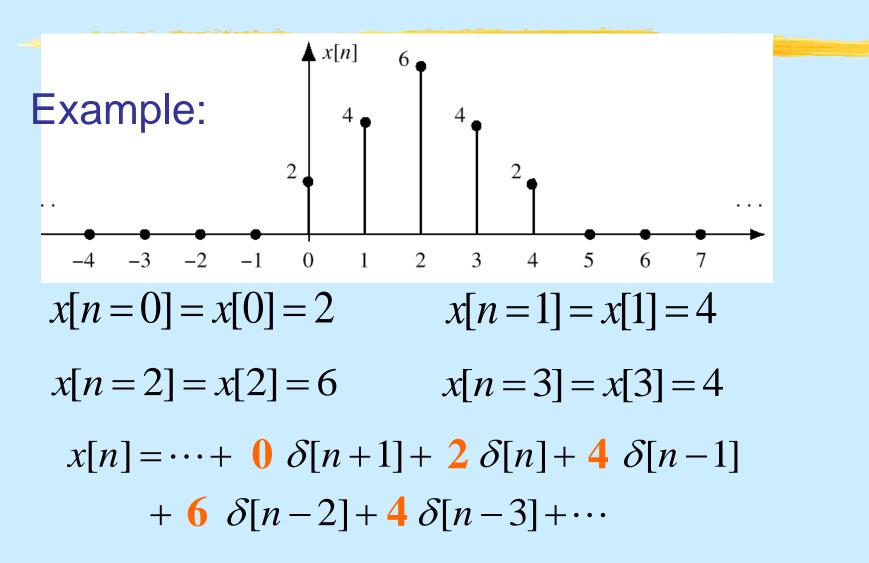


Figure 5.7 Shifted impulse sequence, $\delta[n-3]$.

Sequence Representation



UNIT IMPULSE RESPONSE

 FIR filter description usually given in terms of coefficients b_k

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- Can we describe the filter using a <u>SIGNAL</u> instead?
- What happens if input is a unit impulse?

Example: 4-pt AVERAGER

CAUSAL SYSTEM: USE PAST VALUES

 $y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$

• INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$

$$x[n] = \delta[n]$$

$$y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$$

OUTPUT is called "IMPULSE RESPONSE"
 Denoted h[n]=y[n] when x[n]=δ[n]

Unit Impulse Response

.

$$y[n] = \frac{1}{4}x[n] + \frac{1}{4}x[n-1] + \frac{1}{4}x[n-2] + \frac{1}{4}x[n-3]$$

$$x[n] = \delta[n]$$

$$y[n] = \frac{1}{4} \delta[n] + \frac{1}{4} \delta[n-1] + \frac{1}{4} \delta[n-2] + \frac{1}{4} \delta[n-3]$$

$$= h[n]$$

SUM of Shifted Impulses

 $h[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3] + 0\delta[n-4]$

n | -1 0 1 2 3 4 5 6 0 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ 0h[n]0 0 () $\frac{1}{10}$ $\frac{1}{4}$ 0 $0 \ 0 \ 0 \ 0 \ 0$ $h[0]\delta[n]$ () $h[1]\delta[n-1] = 0 = 0$ $\frac{1}{4}$ 0 0 0 0 0 () $h[2]\delta[n-2]$ 0 $0 \frac{1}{4} 0 0 0$ 0 0 () $h[3]\delta[n-3]$ 0 $0 \frac{1}{4} 0$ 0 0 0 0 () $h[4]\delta[n-4]$ \mathbf{O} $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ ()()

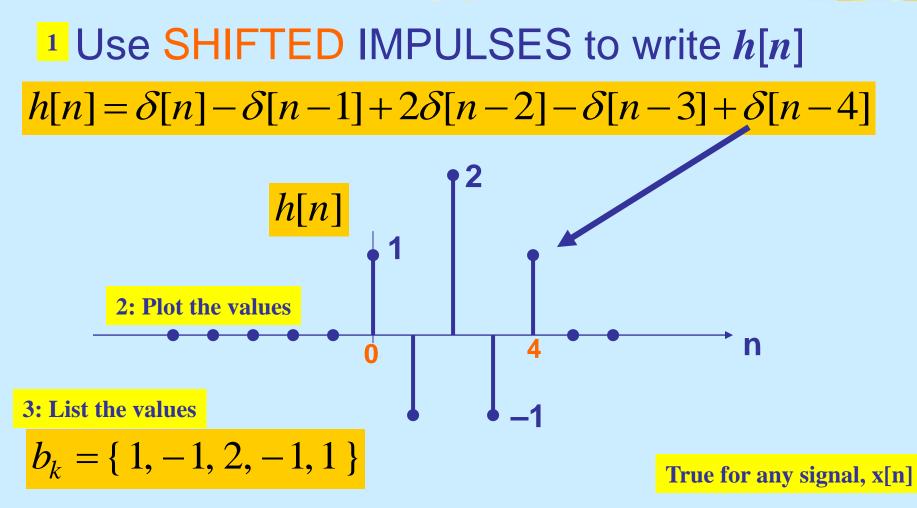
FIR IMPULSE RESPONSE

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

n	<i>n</i> < 0	0	1	2	3		М	M+1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

3 Ways to Represent the FIR filter



FILTERING EXAMPLE

- 7-point AVERAGER
 - Removes cosine

$$y_7[n] = \sum_{k=0}^{6} \left(\frac{1}{7}\right) x[n-k]$$

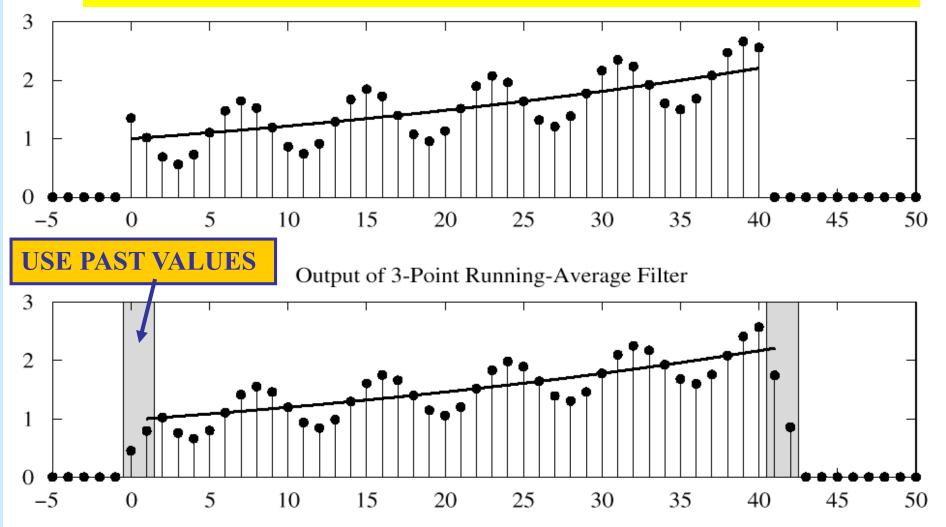
By making its amplitude (A) smaller

3-point AVERAGER
Changes A slightly

$$y_3[n] = \sum_{k=0}^{2} \left(\frac{1}{3}\right) x[n-k]$$

3-pt AVG EXAMPLE

Input : $x[n] = (1.02)^n + \cos(2\pi n/8 + \pi/4)$ for $0 \le n \le 40$



7-pt FIR EXAMPLE (AVG)

