DSP First, 2/e

MODIFIED TLH

Sampling & Aliasing

Sampling Sinusoidal Signals (1 of 2)

Figure 4-2: Plotting format for discrete-time signals, called a stem plot. In MATLAB, the function stem produces this plot. Some students also refer to the stem plot as a "lollypop" plot.

>> help stem stem Discrete sequence or "stem" plot.

stem(Y) plots the data sequence Y as stems from the x axis terminated with circles for the data value. If Y is a matrix then each column is plotted as a separate series.

stem(X,Y) plots the data sequence Y at the values specified in X.

Sampling Sinusoidal Signals (2 of 2)

Figure 4-3: A continuous-time 100 Hz sinusoid (a) and two discrete-time sinusoids formed by sampling at $f_s = 2000 \text{ samples/s}$ (b) and at $f_s = 500 \text{ samples/s}$ (c).

LECTURE OBJECTIVES

- SAMPLING can cause ALIASING
 - Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$
ALIASING

System IMPLEMENTATION

ANALOG/ELECTRONIC:

Circuits: resistors, capacitors, op-amps

DIGITAL/MICROPROCESSOR

Convert x(t) to numbers stored in memory

SAMPLING x(t)

SAMPLING PROCESS

- Convert x(t) to numbers x[n]
- "n" is an integer index; x[n] is a sequence of values
- Think of "n" as the storage address in memory
- UNIFORM SAMPLING at t = nT_s
 - IDEAL: $x[n] = x(nT_s)$

SAMPLING RATE, f_s

- SAMPLING RATE (f_s)
 - $f_s = 1/T_s$
 - NUMBER of SAMPLES PER SECOND
 - T_s = 125 microsec → f_s = 8000 samples/sec
 - UNITS of f_s ARE HERTZ: 8000 Hz
- UNIFORM SAMPLING at $t = nT_s = n/f_s$
 - IDEAL: $x[n] = x(nT_s) = x(n/f_s)$

$$\xrightarrow{x(t)} C-to-D \xrightarrow{x[n]=x(nT_s)}$$

STORING DIGITAL SOUND

- x[n] is a SAMPLED SISIGNAL
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples
 - Stereo uses 2 channels
- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

May 2 Which one provides the most accurate representation of x(t)?

SAMPLING THEOREM

- HOW OFTEN DO WE NEED TO SAMPLE?
 - DEPENDS on FREQUENCY of SINUSOID
 - ANSWERED by SHANNON/NYQUIST Theorem
 - ALSO DEPENDS on "RECONSTRUCTION"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

DISCRETE-TIME SINUSOID

Change x(t) into x[n]DERIVATION

$$x(t) = A\cos(\omega t + \varphi)$$

$$x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$$

$$x[n] = A\cos((\omega T_s)n + \varphi)$$

$$x[n] = A\cos(\hat{\omega}n + \varphi)$$

$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$
DEFINE DIGITAL FREQUENCY

DIGITAL FREQUENCY

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

- $-\pi$ to π If 2 sided
- $\hat{\omega}$ VARIES from 0 to 2π , as f varies from 0 to the sampling frequency
- UNITS are radians, <u>not</u> rad/sec
 - DIGITAL FREQUENCY is <u>NORMALIZED</u>

SPECTRUM (DIGITAL)

$$x[n] = A\cos(2\pi(100)(n/1000) + \varphi)$$

100-Hz Cosine Wave: Sampled with $T_s = 1 \text{ msec } (1000 \text{ Hz})$

 $f_s = 80 \text{ samples/s}.$

 $\hat{\omega} = \pm 2 \cdot 5\pi \text{ rad},$

Subtract 2pi = 0.5pi

Fa = 100 - 80 = 20 Hz

The REST of the STORY

- Spectrum of x[n] has more than one line for each complex exponential
 - Called <u>ALIASING</u>
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period = 2π
 - Because

$$A\cos(\hat{\omega}n + \varphi) = A\cos((\hat{\omega} + 2\pi\ell)n + \varphi)$$

ALIASING DERIVATION

- Other Frequencies give the same $\hat{\omega}$

$$x_1(t) = \cos(400\pi t)$$
 sampled at $f_s = 1000$ Hz
 $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$
 $x_2(t) = \cos(2400\pi t)$ sampled at $f_s = 1000$ Hz
 $x_2[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$
 $x_2[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$
 $\Rightarrow x_2[n] = x_1[n]$ 2400 $\pi - 400\pi = 2\pi(1000)$

ALIASING DERIVATION

- Other Frequencies give the same $\hat{\omega}$

If
$$x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$$

and we want : $x[n] = A\cos(\hat{\omega}n + \varphi)$

then :
$$\hat{\omega} = \frac{2\pi (f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$$

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$